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SUMMARY 
Research background. Mayhaw jelly, made from mayhaw berries from the southern 

United States, is a popular food product that on processing produces a berry pomace 
waste. Little information is available in the literature about this waste or how to valorize 
it. This study investigated this food production waste and its possibilities for conversion 
to a biofuel.

Experimental approach. Dried mayhaw berry wastes were characterized with fiber anal-
ysis using the US National Renewable Energy Laboratory methods. After drying and grind-
ing, hydrothermal carbonization was applied to the mayhaw berry wastes, the mayhaw 
waste without seeds, and mayhaw waste seeds. Fourier transform infrared spectroscopy 
(FTIR) was performed on mayhaw berry wastes, mayhaw waste without seeds, and may-
haw waste seeds. Calorimetry revealed the fuel value of each component of the waste and 
of the dried mayhaw berry wastes without any component separated. Friability testing on 
pellets of the biomass investigated their durability.

Results and conclusions. Fiber analysis indicated a high proportion of lignin compared 
to cellulose in the dried mayhaw waste. Hydrothermal carbonization did not enhance the 
fuel value of the seeds due to their tough outer coat that inhibited hydrothermal carbon-
ization’s high ionic-product water penetration. Other mayhaw berry waste samples had 
enhanced fuel value after treatment at 180 or 250 °C for 5 min, with a higher fuel value at-
tained for 250 °C treatment. After hydrothermal carbonization, the wastes were easily pel-
letized into durable pellets. Fourier transform infrared spectroscopy characterization in-
dicated raw seeds had high lignin content, as did the hydrothermal carbonization-treated 
mayhaw berry wastes. 

Novelty and scientific contribution. Hydrothermal carbonization is a process not previ-
ously applied to mayhaw berry wastes. This study fills in the gaps of this waste biomass’ 
potential to become a biofuel.
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INTRODUCTION 
Converting biomass to biofuels or bio-products is essential in developing a sustaina-

ble, non-fossil fuel-based economy. If waste biomass from food production is used, the 
feedstock will be inexpensive and in a central location rather than in a field. Recently, there 
has been a growing interest in the use of berry waste due to its high nutritional value, var-
ious health benefits, low cost, and eco-friendly nature (1). Berry waste is most often pro-
duced as a by-product from the pressing process to produce jams, jellies, juices, and wines 
(1). Berry waste or berry pomace consists of seeds, peeled skin, and pulp that make up ap-
prox. 20 % of the whole berry (2). It has normally been composted but microbiological 
quality and safety have been concerns with this utilization method for berry waste (3). 
Therefore, other safer and more effective methods of utilizing berry waste have been in-
vestigated and implemented in different industries. 
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Berry seed oil is useful in the cosmetics industry due to 
their fatty acid compositions, high tocopherol content, and 
resistance to oxidative stress resulting in better shelf life (1,4). 
The seed oil is utilized in toothpaste, shampoo, lipstick, skin 
oils/creams, and various other cosmetic products (1,4). Nev-
ertheless, methods to extract berry seed oil require an extrac-
tion process that uses hazardous chemicals such as hexane 
(4,5). 

Various methods of extraction and modifications to the 
berry waste have been investigated to determine the best 
method to maintain or enhance the waste’s nutritional value. 
One such study investigated how fermentation affected the 
nutritional content of blueberry pomace. Results showed that 
fermentation enhanced antioxidative properties, microbiota 
community structure, and increased phenolic compound 
content and the production of short-chain fatty acids (e.g. 
acetic, butyric, and lactic acids) (6). Fermentation via con-
trolled pH in the acidic range also provided a suitable method 
to obtain bioactive compounds from strawberry waste (7). 
However, fermentation is a long and complicated process. In 
another study, berry pomace was complexed with rice-pea 
protein isolate blends to create a protein polyphenol aggre-
gate particle that was then analyzed in an in-vitro gastroin-
testinal model (8). The modified particles contained higher 
polyphenol concentrations, retained higher antioxidant/an-
ti-inflammatory activity, and were more stable than the un-
modified samples (8). High polyphenolic content has also 
been reported after acid hydrolysis of strawberry, raspberry, 
blueberry, and blackberry decoctions (9). Researchers have 
also explored various solvent extraction methods, such as 
comparing supercritical CO2 solvents to conventional sol-
vents in lingonberry pomace (10). Supercritical CO2 extraction 
did not perform as well as conventional extraction in terms 
of radical scavenging (11). Kitrytė et al. (12) investigated en-
zyme-assisted pressurized extraction applied to chokeberry 
pomace and were able to extract a number of antioxidants, 
as well as monosaccharides (12). 

If the wastes from processing are considered, blueberry 
pomace has higher total phenolic and total anthocyanin con-
tent than raspberry pomace (13). Furthermore, blueberry 
pomace has higher protein content than cranberries (14). 
Blueberries and raspberries both have a good balance of n-6 
and n-3 fatty acids and high beta-sitosterol content, thus 
making them reliable sources of polyunsaturated fatty acids 
(PUFAs) and phytosterols (15). Raspberry seeds contain a 
higher percentage of oil, which is a reason why it is so widely 
utilized in cosmetics and even some pharmaceuticals (1). 
These differences in berries can affect how much a certain 
type of berry waste is used and can determine the industries 
in which they can be applied. One such usage of berry waste 
that has not been completely investigated yet is the use of 
berry waste as a biofuel. This may be because different types 
of berries have a high degree of variability, as do their indi-
vidual berry waste components, which hinders their efficient 

application in energy production (16). Little research is avail-
able on this topic in the literature.

The present study investigates the conversion of mayhaw 
berry wastes to a pelletizable biofuel. The method used was 
hydrothermal carbonization (HTC), a process not previously 
applied to mayhaw berry wastes. The HTC process converts 
raw biomass into a coal-like product called hydrochar 
through the temperature and pressure conditions resem-
bling the coalification process in geological rocks (17). Com-
pared to the moist biomass, hydrochar has a higher fuel value 
and available carbon content. The HTC process is also known 
as wet torrefaction to some waste to energy experts. An ad-
vantage of using the HTC process on biomass is that only wa-
ter, with no hazardous chemicals, is added to the biomass (18). 
This means that wet biomass directly sourced from a jel-
ly-making process could undergo HTC with no energy-inten-
sive drying needed. 

MATERIALS AND METHODS 

Chemicals and materials 

Sulfuric acid (reagent grade, 95–98 %) was purchased 
from Millipore Sigma, Merck (St. Louis, MO, USA). Denatured 
ethanol (90.5 %) was purchased from Duda Energy (Decatur, 
AL, USA). Nylon membrane discs of pore size 0.45 µm were 
bought from Foxx Life Sciences (Salem, NH, USA).

Raw mayhaw berry wastes were acquired from Mr. Mi-
chael Book of Mayhaw Market, a local farmer in Ruston, LA, 
USA as shown in Fig. S1. The dried mayhaw berry waste used 
for the purpose of this research study was separated from any 
remaining leaves after the jelly making process. 

 

Microscale preparation and characterization of  
mayhaw berries

Dried mayhaw berry wastes were ground in a tabletop 
coffee bean grinder to separate the skins of the berries from 
the seeds for about 30 s. This grinding allowed the separation 
of the biomass into three categories: mayhaw berry wastes 
(MB), mayhaw seeds (MS), and mayhaw berry waste without 
seeds (MH) for further analysis. The ground samples were fur-
ther hand sieved through a #20 mesh (0.84 mm openings) 
and a #80 mesh (0.18 mm openings) from Gilson Company 
Inc. (Lewis Center, OH, USA) for aggregate particle size sepa-
ration. The pass-through samples from the sieving step were 
collected separately as #20 pass through (0.18–0.84 mm par-
ticle size) and #80 pass through (less than 0.18 mm particle 
size). The three sample types used in this investigation were 
mayhaw berry wastes (MB), mayhaw seeds (seeds separated 
from the berry skins using the grinding and sieving process, 
MS), of particle size 0.84 to 0.18 mm, and mayhaw berry 
wastes without seeds (MH). The small quantity of stems was 
lumped in with the MH portion. The samples were weighed 
on an analytical balance in triplicate to quantify the fractions 
of mayhaw seeds and MH.
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Fiber analysis

Fiber of the as received dried mayhaw waste was ana-
lyzed using the standard National Renewable Energy Labora-
tory (NREL) protocols LAP/TP-510-426 18 through 22 (19). Sol-
uble components within the biomass, consisting of 
non-structural parts, must be removed from the biomass be-
fore compositional analysis. This is performed to prevent any 
discrepancies in later analytical procedures as per NREL pro-
tocols. Biomass extractives capable of dissolving in water 
and/or ethanol solvent were removed by Soxhlet extraction. 
Biomass (~8 g) was placed in a thimble and 200 mL of ethyl 
alcohol were transferred into a conical flask. The thimble with 
biomass was inserted carefully into a Soxhlet siphon tube and 
kept above the conical flask with ethyl alcohol. The whole 
setup was kept in an oil bath at 80 °C for 24 h, and after that 
the biomass from the thimble was taken out and its loss was 
measured. The percentage of the removed extractives was 
then calculated.

The cellulose, hemicellulose, and lignin content of the 
samples were determined by quantitative saccharification 
with acid hydrolysis and subsequent HPLC analysis, using 
NREL protocols LAP/TP-510-426 18 through 22 (19). For the 
dried mayhaw waste biomass, ethanol extraction was carried 
out to remove the non-structural components of the biomass 
(as described in the previous section) prior to acid hydrolysis 
and thus the biomass fraction regarded as extractives was 
removed from the whole biomass sample. The concentra-
tions of glucose, xylose, arabinose, galactose, and mannose 
were quantified using an HPLC (ThermoFisher Scientific, 
Waltham, MA, USA) equipped with refractive index detector 
and an Aminex HPX-87P column (300 mm×7.8 mm; Bio-Rad 
Laboratories, Inc., Hercules, CA, USA). The column tempera-
ture was maintained at 80 °C and the flow rate was 0.6 mL/
min of deionized (DI) water. Each experiment was performed 
in triplicate. Total cellulose release upon acid hydrolysis was 
determined as the sum of cellobiose and glucose and the to-
tal hemicellulose release was determined as the sum of xy-
lose, galactose, arabinose, and mannose. The sum of acid-
insoluble and acid-soluble lignin was represented as total 
lignin content available in each sample.

The NREL fiber analysis procedure was followed to mea-
sure the acid-soluble lignin and acid-insoluble lignin from the 
biomass with acid hydrolysis (19). A UV-2401PC spectropho-
tometer (Shimadzu Corporation, Kyoto, Japan) was used to 
analyze the acid-soluble lignin in the biomass. Once the bio-
mass extractives were removed, samples were hydrolyzed 
with 72 % H2SO4 and, with the hydrolysis, acid-soluble lignin 
in the sample was dissolved. Subsequently, 3 mL of this sam-
ple were measured and diluted 10 times with DI water. With 
DI water as a blank, analytes (lignin) in the sample were 

measured by absorbance at a wavelength of 260 nm. To de-
termine the acid-insoluble lignin, as per the NREL procedure, 
the solid remaining after acid solid lignin was dissolved was 
washed, dried, and then held at 750 °C for 3 h. By mass differ-
ence, acid-insoluble lignin was found.

As per NREL/TP-510-42622, mayhaw waste samples of ap-
prox. 0.5 g in triplicate were heated in crucibles to 575 °C in a 
furnace and held for 24 h (20). The mass fraction (in %) re-
maining was considered as ash (inorganics).

 

Hydrothermal carbonization

The various types of mayhaw biomass samples were hy-
drothermally carbonized in a Parr reactor (Parr Instrument 
Company, Moline, IL, USA). Hydrothermal carbonization (HTC) 
was used to study the effects of high temperature and pres-
sure on the berry wastes and to drive the lignin separation 
within it. In these experiments, the DI water to biomass mass 
ratio was 10:1.

After HTC treatments at 180 or 250 °C for 5 min, the may-
haw biomass and the liquid with it were brought to room 
temperature through quenching. Once the HTC-treated bio-
mass was cooled, solid biomass was separated from the solu-
tion using a nylon filter (0.45 µm pore size) membrane. A sim-
ple filtration unit was set up by connecting a Buchner funnel 
with a filter and a filtration flask to a vacuum pump inside the 
fume hood. The HTC-treated biomass with the solvent was 
filtered and the filter cake (filtride) from the filtration was sep-
arated using vacuum. Filtered biomass was dried at 105 °C for 
24 h prior to weighing, to ensure all moisture was thorough-
ly removed.

 

Bomb calorimeter

Higher heating values (HHV) of combustion for samples 
were measured in an adiabatic oxygen bomb calorimeter 
(1341EB bomb calorimeter; Parr Instrument Company) fitted 
with continuous temperature recording. Samples were 
placed in a drying oven at 105 °C for 24 h prior to analysis, and 
HHVs are reported on a dry, ash-free basis. Each sample (0.4 
to 0.5 g) was weighed into a metal crucible and 10 cm of fuse 
wire was bent to touch the top of the biomass. Each sample 
was oxygenated to 3.04 MPa pressure in the vessel. DI water 
(1 L) was added to the calorimeter. Measurements of initial 
water temperature, initial crucible mass, initial fuse wire mass, 
biomass sample mass, final water temperature, crucible mass 
after ignition, fuse wire mass after ignition, and ash mass 
were recorded. The standard error in HHV was determined by 
running the procedure 5 times on mayhaw wastes without 
seeds. HHV was calculated as follows:

	 v initial final v[ water)· · (water)] [( (fuse) (fuse) (fuse)]
(sample) (ash)

( )c T m m m c
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where cv(water)=4.186 J/(kg·K) is the specific heat of water, 
cv(fuse)=5.86·106 J/(kg·K) is the specific heat of the fuse mate-
rial, ΔT is the change in temperature in K, m(water)=0.001 kg 
(assuming ρ(water)=1000 kg/m3 of DI water).

Energy densification was calculated as the heat of com-
bustion of the HTC-treated biomass divided by the heat of 
combustion of raw dried biomass (no units).

 

Pelletization

Mayhaw samples were pelletized to show the effects of 
compaction of the material for energy densification and to 
study the pellets for transportation feasibility via friability 
test. Pelletization was carried out in a 13-mm internal diam-
eter cylindrical hardened steel dry pressing die set from 
Across International (#SDS13.H, Livingston, NJ, USA) heated 
at 140 °C. Pressure was applied using a crankshaft hydraulic 
compression machine (model 50H, 50-ton capacity; Dake 
Corporation, Grand Haven, MI, USA) with 5 ton of pressure 
and holding this pressure for 30 s. Sample preparation in-
volved taking 1 g biomass and adding 0.2 g DI water to it for 
wetting purposes. The friability test used a BEXCO Tablet Dig-
ital Friability Test Apparatus (single drum) with i-therm KTM-
-443 Timer (Busan, Korea). Pellets of mayhaw waste (raw and 
HTC-treated) were loaded in the transparent acrylic drum for 
1 and 24 h at a drum rotation speed of (25±1)×g. The acrylic 
drum’s arm carried the pellets along with it up to a predeter-
mined height of (156±2) mm and allowed them to fall from 
that specified height, while the drum was rotating. 

 

Fourier transform infrared spectroscopy

A Mattson Genesis II FTIR (Mattson Technology, Fremont, 
CA, USA) was used to obtain the spectra of the untreated and 
HTC-pretreated biomass samples. KBr pellets, the standard 
method to prepare solid samples for Fourier transform infra-
red spectroscopy (FTIR), were prepared with 1 mg of sample 
mixed with 100 mg of KBr. The pellets were made with a pel-
let holder press by applying pressure. Single beam spectra of 
the samples were collected with 32 scans with resolution 2 
cm−1 from wavenumber 4000 to 500 cm−1. FTIR spectroscopy 
was performed on the mayhaw seeds (MS) and mayhaw ber-
ry wastes without the seeds (MH). FTIR spectroscopy was also 
performed on mayhaw berry wastes under three conditions: 
1) before treatment, 2) after HTC treatment at 180 °C, and 3) 
after HTC treatment at 250 °C.

 

Statistical analysis

Data measurements were made in triplicate and standard 
error bars are shown in figures, all calculated using Microsoft 
Excel 2016 (Microsoft Corp., Redmond, WA, USA).

RESULTS AND DISCUSSION 
Dried mayhaw samples were characterized and hydro-

thermal carbonization (HTC) was performed on the mayhaw 

seeds (MS) and mayhaw berry waste without the seeds (MH). 
The focus of the work was on the solid products of the HTC 
runs, particularly on their potential for use as fuel pellets.

 

Mayhaw waste characterization

Component fractions

The mayhaw seeds and mayhaw berry waste without the 
seeds each comprised about half of the received dried may-
haw waste, as shown in Fig. S2. On average, mayhaw berry 
waste without the seeds was the smaller portion by mass at 
(39±4.9) % of the received biomass, and mayhaw seeds aver-
aging (48±6.5) % of the received biomass was the larger por-
tion by mass (data not shown). The remainder of the waste 
biomass (13 %) was unable to be collected because its particle 
size was too small. Thus, both components were similar in 
their mass for the waste biomass as received.

 

Mayhaw fiber composition

From the NREL fiber analysis (19), dried mayhaw berry 
wastes were comprised of 26.2 % cellulose, 19.4 % hemicel-
lulose, 39.6 % lignin, 12.0 % extractives and 2.7 % ash (inor-
ganics). Blueberries as a whole fruit have been found to con-
tain higher amounts of lignin than cellulose (28.4 % lignin 
compared to 16.0 % cellulose) (21). The ratio of lignin to cel-
lulose in dried mayhaw berry wastes is thus somewhat like 
that found in blueberries. Little other data can be found on 
berry skins in the literature.

 

Higher heating value

As seen in Fig. 1, HTC increased the higher heating value 
(HHV) of the MH samples and the dried mayhaw berry wastes 
samples (Eq. 1). The higher HTC temperature of 250 °C (13.6 
MJ/kg for dried MB) increased the HHV significantly more 
than the 180 °C HTC treatment (12.5 MJ/kg for dried MB). With 
HTC of 250 °C of dried mayhaw berry wastes, energy densifi-
cation was 1.3, while HTC of 180 °C of dried mayhaw berry 
wastes gave an energy densification 1.2.

4
5
6
7
8
9

10
11
12
13
14

raw 180 °C 250 °C

H
ig

he
r h

ea
tin

g 
va

lu
e/

(M
J/

kg
)

Mayhaw w/o seeds
Mawhaw seeds
Dried mayhaw waste

Fig. 1. Higher heating value of mayhaw berry waste without seeds, 
mayhaw seeds, and dried mayhaw berry waste as received. HTC=hy-
drothermal carbonization
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For mayhaw berry waste without the seeds, energy den-
sification was 1.1 for the 180 °C HTC treatment and 1.2 for the 
250 °C HTC treatment. Mayhaw seeds did not appear to be 
affected by the HTC treatment. Bomb calorimetry of seed 
samples gave energy densification of 0.94 from 180 °C HTC 
and 1.0 from 250 °C HTC. This lack of effect from HTC on may-
haw seeds results from the impervious seed coats that pro-
tect the seeds, particularly berry seeds, from premature 
opening (22). Huth et al. (23) have characterized the exterior 
of the seeds with higher lignin as more resistant to water pen-
etration, which suggests that the brief period of time they 
underwent HTC was not sufficient to achieve penetration of 
the seeds. However, this raises the question of why the may-
haw wastes that included seeds showed increased energy 
densification. An explanation for this phenomenon may be 
the fact that the seeds that were combined with the remain-
der of the mayhaw waste in its natural form were ground to 
pass a 20 mesh (0.84 mm). The seed outer layer was thus dis-
rupted, giving the water under HTC conditions the ability to 
remove lower fuel value components, leaving higher HHV lig-
nin as part of the solid product. In addition, ground seed par-
ticles in the mayhaw waste are likely to have hard irregular 
edges as seen in Fig. 2. Since stirring occurs during HTC, these 
edges may abrade the softer components of the mayhaw 
waste, allowing the water solvent access to more surface area 
to remove lower HHV components. This could account for the 
greater energy densification of the dried mayhaw berry 
wastes.

cause cellulose to condense into structures with more bonds, 
as well as increasing numbers of double bonds. These con-
densed structures can have fuel values higher than virgin cel-
lulose as found in raw biomass (25). Values for the pH of the 
liquid that resulted from HTC treatment were approx. 4 for all 
runs. Typically, acetate groups, attached to xylan or other 
hemicelluloses in the biomass, detach to form acetic acid dur-
ing HTC, reducing the resulting liquid’s pH compared to the 
neutral pH of DI water initially added (26).

 

Pellet durability

The goal of pelletization is to make biomass fuel pellets 
more durable, so that they can be transported without loss 
of mass to produce small, potentially flammable particles 
(27). Pellets of HTC-treated and -untreated mayhaw wastes 
are shown in Fig. S2. After 1 h of tumbling, the loss was 0.79, 
1.97, 2.86, 13.80 and 24.42 % for the HTC-treated dried may-
haw berry waste at 250 °C, HTC-treated mayhaw berry waste 
without seeds at 250 °C, mayhaw seeds, mayhaw berry waste 
without seeds and MB, respectively (data not shown).

The pellets made from 250 °C HTC-treated biomass ap-
peared to show lower loss of mass after 1 h of tumbling than 
the untreated biomass of the same type. Mayhaw seeds pel-
lets gave improved durability compared to mayhaw berry 
waste without seeds pellets that contained the skins. This 
finding could be attributed to the hard seed coat, which also 
contains a higher lignin content (23). When added to raw bio-
mass, high-lignin HTC solids have been reported to improve 
pellet durability, thus acting as a binder (28). Continuation of 
tumbling for 24 h indicated that pellets from 250 °C HTC of 
mayhaw berry wastes showed a loss of 8.36 %, while mayhaw 
berry waste without seeds pellets undergoing the same HTC 
treatment had a 2.09 % loss of mass. Longer tumbling obvi-
ously removed more mass, but again the presence of seeds 
in the pellet may have abraded skin-related structure and al-
lowed loss. For comparison, untreated mayhaw berry waste 
without seeds that had been pelletized lost 31.86 % of its 
mass after 24 h of tumbling. The HTC process reduced friabil-
ity and increased durability in the pellets made from the 250 
°C HTC solid product.

 

FTIR spectroscopy

FTIR can be used to compare the prevalence of biomass 
components in samples (29). FTIR spectra of untreated may-
haw seeds and mayhaw berry waste without seeds in Fig. 3 
show bonds of interest. 

 Several differences in the areas of the spectra vibrations 
are notable when comparing FTIR spectra of raw mayhaw 
seeds and raw mayhaw berry waste without seeds. For the 
MS, more prominent lignin vibrations existed at 835 cm–1 (sy-
ringyl lignins (30,31)), 1457 cm–1 (CH2 deformation/stretching 
lignin and xylan (32)), 1513 cm–1 (aromatic skeletal vibration 
(33–36)), and 1734 cm–1 (ester-linked acetyl, feruloyl and p- 
-coumaroyl groups between hemicellulose and lignin (37,38)). 

Fig. 2. Dried mayhaw waste as seen under an optical microscope with 
10× zoom

Mass yields of solid product compared to raw biomass for 
HTC tended to correspond with HHV increases, with lower 
mass yields indicating higher HHV. For HTC at 180 °C of may-
haw berry waste without the seeds and mayhaw berry 
wastes, mass yields were near 63 %, while mass yields for 250 
°C were lower, near 50 %. HTC at 180 °C of mayhaw seeds had 
a high mass yield of 84 %, but a lower mass yield for 250 °C of 
54 %. The underlying reason for this trend is that HTC re-
moves lower fuel value components such as hemicellulose 
and cellulose, while retaining the lignin that has a higher fuel 
value (24). In addition, higher HTC process temperature can 
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More prominent cellulose and hemicellulose vibrations were 
noted in the raw mayhaw berry waste without seeds at 1060 
cm–1 (C-O stretching vibration (39)), 1110 cm–1 (C-OH skeletal 
vibration cellulose and hemicellulose (40), and 1160 cm–1 
(C-O-C asymmetric stretching cellulose I and cellulose II (39)). 
Since lignin vibrations were more predominant in the may-
haw seeds component, and cellulose and hemicellulose ap-
peared larger in the mayhaw berry waste without seeds por-
tion, it is likely that the mayhaw seeds contained more lignin. 
As discussed above, lignin coating of the seed prevents its 
premature opening. More cellulose in the mayhaw berry 
waste without seeds portion may encourage the ingestion 
by animals and the later expelling of the seed with fertilizing 
manure.

The FTIR spectra were compared in Fig. 4 for dried MB, 
and the solid product of this biomass after HTC treatment at 
either 180 or 250 °C.

Lignin vibrations appeared to become more dominant in 
the HTC samples: at 1322 cm–1 (syringyl ring and C–O stretch-
ing vibration (31)), 1457 cm–1 (CH2 deformation/stretching lig
nin and xylan (32)), and 1513 cm–1 (aromatic skeletal vibration 

(33–36)). Cellulose vibrations appeared to become smaller in 
the HTC-treated sample, particularly at 896 cm–1 (amorphous 
cellulose (41)) and 1160 cm–1 (C-O-C asymmetric stretching 
cellulose I and cellulose II (39)). These observations suggest 
that hemicellulose and cellulose are removed by HTC treat-
ment, leaving the lignin that has a greater fuel value. Other 
researchers have reported that the concentration of lignin in 
HTC-treated biomass does occur (24). In addition, more dou-
ble bonds may have been formed in condensation reactions 
of carbohydrate portions as evidenced in the vibration at 
1654 cm–1 in the HTC treated spectra (25). The vibration for 
the links between hemicellulose and lignin at 1734 cm–1 
(37,38) appeared to be smaller for the HTC-treated samples, 
suggesting their breakage and removal of hemicellulose. 

CONCLUSIONS 
Our results indicate that the protective coating of mayhaw 

seeds (MS), high in lignin, prevents the hydrothermal carbon-
ization (HTC) process from removing lower higher heating val-
ue (HHV) components from the seeds. However, the HTC pro-
cess does enhance fuel value for dried mayhaw wastes (MB), 
with the skins (MH) and seeds (MS) unseparated. The im-
proved HHV values means that the undried mayhaw berry 
wastes could be processed using HTC to densify their energy 
content, since water is added in the HTC process. Durable pel-
lets were attainable from the HTC-treated biomass, as seen in 
friability testing. Thus, we conclude that as a by-product of 
food processing that is already transported, HTC-treated may-
haw jelly waste is a plausible biofuel resource. 
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