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In this work, fractional integral calculus is applied in order to derive Lagrangian
mechanics of nonconservative systems. In the proposed method, fractional time in-
tegral introduces only one parameter, α, while in other models an arbitrary number
of fractional parameters (orders of derivatives) appears. Some results on Hamilto-
nian part of mechanics, namely Hamilton equations, are obtained and discussed in
detail.
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1. Introduction

We believe today that fractional calculus plays an important role in the un-
derstanding of chaotic and scaling behaviours in complex classical and quantum
dynamical systems [1 – 10]. It is a quite irreplaceable mean for the description
and investigation of such physical process as stochastic and chaotic non-diffusive
transport in complex chaotic dynamical systems [11,12]. Fractional Liouville [13],
Langevin [14] and Fokker–Planck–Kolmogorov equations [15 – 20] have also been de-
rived and discussed in some details. In fact, the nature of the fractional derivatives
or integrals used depends on the specified physical situation [2,5,10,23]. The use of
fractional calculus to study nonconservative Lagrangian and Hamiltonian classical
dynamical systems has also been investigated in detail [22,24,25]. The applications
of the fractional calculus to the constrained dynamical systems and the extension of
the fractional variational problem of Lagrange were also treated [26 – 30]. Recently,
Lagrangians with linear velocities within Riemann–Liouville fractional derivatives
were also treated and investigated [31] and the generalized function approach of
nonconservative Lagrangian mechanics was also considered [32]. Dissipative linear
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dynamical systems with constant coefficients were used to model nonconservative
dynamical systems, and have also been discussed by several authors. Some authors
claimed that environment and dissipative systems are coupled together [33]. One
major problem of this procedure is the introduction of extra coordinates. This dif-
ficulty is eliminated when fractional derivatives in the Lagrangians are used [22],
but other problem appears, such as the non-causality of equations of motion. Con-
servative systems in general are simplification of physical reality, since they imply
that motion is frictionless even in the presence of strong constraints. The later,
as we know, imply the presence of frictional forces, and the motion in a typical
physical environment necessarily implies a certain resistance due to the medium.
The dissipative forces can be modelled in a huge number of ways. Methodologically,
dissipative Newtonian systems are nothing but a complement to the conservative
systems, since not only the energy, but also other physical quantity such as linear
and angular momentum, are not conserved. In this work, we propose a novel ap-
proach to the recent nonconservative models that were studied in the framework
of fractional differential calculus. In the proposed method, fractional time integral
requires only one parameter, α, while in other models, an arbitrary number of
fractional parameters (orders of derivatives) appears.

Our paper is organized as follows: In Sec. 2, we derive the fractional Euler–
Lagrange equations. In Sec. 3, we give a simple example by applying the resulting
fractional Euler–Lagrange equation to analyze the dynamical behaviour of the sim-
ple pendulum which undergoes small oscillations. In Sec. 4, we recall that, in New-
tonian mechanics, conservation laws can be derived from the first integral Euler–
Lagrange equations which seem totally modified using fractional Euler–Lagrange
equations. Finally, a short conclusion is given in Sec. 5.

2. Fractional Euler-Lagrange equations

Let us consider the left-sided Riemann–Liouville fractional integral of order
α ∈ [−∞,+∞] [2,34,35]

0I
α
t f(t) =

1

Γ(α)

t
∫

0

f(τ)
(

t − τ
)α−1

dτ. (1)

We wish to use this definition and require a procedure for finding the stationary
value of the following fractional action

S(q) =
1

Γ(α)

t
∫

t0

L(q̇, q, τ)
(

t − τ)α−1dτ (2)

=

t
∫

t0=0

L(q, q̇, τ) dgt(τ) (3)
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where L(q̇, q, τ) is the Lagrangian weighted with (t − τ)α−1/Γ(α) and gt(τ) =
[tα − (t − τ)α]/Γ(1 + α) with the scaling properties gkt(kτ) = kαgt(τ), k > 0. For
fixed t, integral (3) becomes a Stieltjes integral [5].

In fact, we consider a typical mechanical system with N degrees of freedom
q = (q1, . . . , qN ) where we associate a C2 function of the variables q and q̇ and
of the time τ , L(q̇, q, τ). If we let φ(τ) = (φ1(τ), . . . , φN (τ)) in the interval t0 ≤
τ ≤ t be a solution of the equations of motion with fixed boundary values, say
(φ(t0), φ(t)) = (a, b), then this solution or orbit is such that the action integral (2)
assumes an extreme value [36 – 38]. A necessary condition for the fractional action
integral S(q) to assume an extreme value, for q = φ(τ), is that φ(τ) be an integral
curve of the Euler–Lagrange equations

∂L

∂qk
−

d

dτ

(

∂L

∂q̇k

)

=
1 − α

t − τ

∂L

∂q̇k
≡ −F̄k, k = 1, . . . , N. (4)

The proof of this statement proceeds as follows: We let q0(τ) be the minimum
solution and write q(τ) = q0(τ) + σ(τ), where σ(τ) describes the deviation of q(τ)
from the minimum path q0(τ) [36,37]. Inserting into Eq. (2) gives

S =
1

Γ(α)

t
∫

t0

L(q̇0(τ) + σ̇(τ), q0(τ) + σ(τ), τ)
(

t − τ
)α−1

dτ. (5)

Performing Taylor expansions to first order in σ̇(τ) and σ(τ) yields

S =
1

Γ(α)

t
∫

t0

[

L(q̇0(τ), q0(τ), τ)+
∑

k

{

∂L

∂q̇k
σ̇k(τ) +

∂L

∂qk
σk(τ)

} ]

(

t− τ
)α−1

dτ. (6)

We integrate the term in σ(t) by parts and then

S =
1

Γ(α)

t
∫

t0

L(q̇0(τ), q0(τ), τ)
(

t − τ
)α−1

dτ −
1

Γ(α)

t
∫

t0

∑

k

σk(τ) (7)

×

[

(

t − τ
)α−1 d

dτ

(

∂L

∂q̇k

)

+
(

1 − α
) ∂L

∂q̇k

(

t − τ
)α−2

−
∂L

∂qk

(

t − τ
)α−1

]

dτ.

F̄k is the modified frictional force. In fact, frictional forces are a common type of
non-conservative force. When α = 1, we find the standard Euler–Lagrange equation
and τ → ∞, F̄k → 0. In standard Newtonian mechanics, if one considers an un-
constrained Newtonian system with self-adjoint forces, such as the one-dimensional
one, then the Lagrangian exists if the fundamental analytic theorem for configura-
tions space formulations is verified. If the system is represented more realistically
by adding, for example, a drag force linear in the velocity, the system tends to a
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non-self-adjoint situation, and as a result, a Lagrangian for its direct representa-
tion does not exist. This case, as we will see in the next section, is possible using
Eq. (4). A Lagrangian can still exist for the representation of an equivalent equa-
tion of motion, provided that it is self-adjoint, under the transformation τ = t+T ,
L(q, q̇)τ ≡ L(q, q̇)T .

It is apparent than this is no more than a modified Newton’s second law of mo-
tion written in the qk coordinate system. The RHS term in Eq. (4) could be viewed
as a generalized external force acting on the system. Usually, dissipative forces in
Newtonian systems do not affect the degrees of freedom of a physical system. For
instance, if dissipative forces are considered for a dynamical system of N particles
with 3N−n independent holonomic constraints, and thus n degrees of freedom, the
number of generalized coordinates remains unchanged. It is then possible to repre-
sent dissipative forces in terms of generalized coordinates by considering the virtual
work by the dissipative forces, which must be the same in Cartesian and in gener-
alized coordinates [39]. That is, {conservative systems} ⊂ {dissipative systems}.
Clearly, as we will see in Sec. 3, dissipative systems can also be represented by
nonlinear differential equations.

3. Damped oscillatory system

A significant example of a truly one-dimensional dynamic system is a simple
pendulum of length l and mass m, attached to the circumference of a body of
negligible radius [34]. The linear kinetic energy is therefore K = (1/2)ml2θ̇2 and
the potential energy for small oscillations is V = (1/2)mglθ2. Here θ is the angular
coordinate. The Lagrangian is then given by L = K − V . Let T = t− τ be a time-
change of variable. Then, making use of Eq. (6), one gets the following differential
equation

θ̈ +
α − 1

T
θ̇ + ω2θ = 0 , (8)

where time-derivative is now done with respect to T and ω2 = g/l, g being the
gravity constant. The second term is the dissipative term with time-decreasing
coefficient. This equation can be easily solved if we make the ansatz θ = T ρϕ(T ).
This leads to

ρ
(

ρ − 1
)

T ρ−2ϕ + 2ρT ρ−1ϕ̇ + T ρϕ̈ +
α − 1

T

(

ρT ρ−1ϕ + T ρϕ̇
)

(9)

= T ρ−2

[

T 2ϕ̈ +
(

α − 1 + 2ρ
)

T ϕ̇ +
(

T 2 + ρ
(

ρ + α − 2
))

ϕ

]

= 0.

By taking the choice α + 2ρ = 2, we get the Bessel’s differential equation

T 2ϕ̈ + T ϕ̇ +
(

T 2 − ρ2
)

ϕ = 0 (10)
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of order ±ρ. A system of linearly independent solutions of (10) is given by the pair
of Hankel functions H±

ρ (T ) so that ϕ± = T ρH±
ρ (T ) with ρ = (2−α)/2 gives a pair

of linearly independent solutions of (8).

If we let T = |χ|(1 + ξ), where ξ is a new time variable, than Eq. (8) takes the
form (which is a |χ|-independent differential equation)

θξξ +
α − 1

1 + ξ
θξ +

∣

∣χ
∣

∣

2

ω2θ = 0. (11)

A possible solution is the Fourier image [40]

θ(T, χ) = Fx→χ[θ̃] = (2π)−n/2

∫

Rn

exp{−ixχ}θ(ξ, x)dx , x ∈ R
n . (12)

with n ≡ α. Equation (11) is parameterized by the new frequency parameter ω̄2 ≡
|χ|2ω2. In fact, Eq. (8) can be written in the following form

mlθ̈ + ml
α − 1

T
θ̇ = −

∂V

∂θ
. (13)

This is the causal equation of motion with friction but where the dissipative term
is time-decreasing. In reality, fractional operators have memory due to their nonlo-
cality in time. For that purpose, it is crucial to solve the simple pendulum problem
with the two time variables t − τ and t + τ where τ is the intrinsic time and t is
the observer’s time. If we repeat the same calculation steps, one finds

mlθ̈ + ml
α − 1

T
←

θ̇ = −
∂V

∂θ
, (Retarded) (14)

mlθ̈ − ml
α − 1

T
→

θ̇ = −
∂V

∂θ
, (Advanced) (15)

where T
←

and T
→

are new notations for retarded and advanced time-change vari-
ables. Allowing both a retarded and an advanced equation of motion to arise from
the fractional action, fractional Euler–Lagrange equation seems natural. In this
way, fractional action is preferable because it does not assume a priori the left
fractional derivatives to be favored over the right fractional ones. Now we turn our
attention to the Hamiltonian equations of motion.

4. The Hamiltonian formulation of dynamics

In classical mechanics, conservations laws are derived from the first integral of
the Euler–Lagrange equations. Certainly, the presence of the (1−α)/(t− τ)∂L/∂q̇i
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in the RHS of Eq. (4) will change the situation. Let us first discuss the case where
the Lagrangian is not a function of qi, that is ∂L/∂qi = 0. Hence, Eq. (4) reads

d

dτ

(

∂L

∂q̇i

)

=
α − 1

t − τ

∂L

∂q̇i
, (16)

giving ∂L/∂q̇i ∝ (τ − t)1−α. Consider now the motion of a particle in the absence

of force. Then L = (1/2)m~̇r 2 and ∂L/∂q̇i = ∂L/∂~̇r = m~̇r ∝ (τ − t)1−α. It is clear
that this result represent a deviation from the Newton’s first law of motion. Only
when α = 1, that is, when no fractional integral is considered, that we fall into the
standard Newton’s first law of motion. For an arbitrary coordinate system, we can
define a fractional conjugate momentum as

pi ≡
∂L

∂q̇i
∝

(

τ − t
)1−α

. (17)

This is an anomalous conjugate momentum and it does have the property that, if
L does not depend on qi, it is not a constant of motion.

In general, if the Lagrangian function has no explicit time dependence, then the
function

H(q, q̇) =
N

∑

k=1

q̇k
∂L

∂q̇k
− L(q, q̇) (18)

must be is a constant of motion. Indeed, differentiating with respect to time gives

dH

dτ
=

N
∑

i=1

[

q̈i
∂L

∂q̇i
+ q̇i

d

dτ

∂L

∂q̇i
−

∂L

∂qi
q̇i −

∂L

∂q̇i
q̈i

]

(19)

=
N

∑

i=1

[

Cq̇i

(

1 − α
)(

τ − t
)−α

−
∂L

∂qi
q̇i

]

(20)

=

N
∑

i=1

[

q̇i

(

1 − α
)(

τ − t
)−α

]

≡
1 − α

(τ − t)α

N
∑

i=1

q̇i, (21)

where C = 1 in Eq. (21) for simplicity, and use was made of δL/δqk = 0. One can
remark that the energy is conserved only when α = 1. As τ → ∞, that is at late
times, dH/dτ → 0. In fact in classical mechanics, Hamiltonian given by Lagrangian
not depending on time is a constant of motion. In fractional mechanics this is not
the case.

It is possible to obtain the fractional canonical equations directly from our
fractional Hamiltonian’s variational principle by writing

F (q, p, q̇, ṗ, τ) =
N

∑

k=1

pk q̇k − H(q, p, τ) (22)
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where q, p, q̇, ṗ are four sets of independent variables. Requiring that

δ

{

1

Γ(α)

t
∫

t0

F (q, p, q̇, ṗ, τ)
(

t − τ
)α−1

dτ

}

= 0 , (23)

and varying the variables qk and pk independently, we get our generalized Euler–
Lagrange equations δF/δqk = 0, δF/δpk = 0. When written, they are

∂F

∂qk
−

d

dτ

(

∂F

∂q̇k

)

=
1 − α

t − τ

∂F

∂q̇k
, (24)

∂F

∂pk
−

d

dτ

(

∂F

∂ṗk

)

=
1 − α

t − τ

∂F

∂ṗk
, (25)

or

ṗk = −
∂H

∂qk
−

1 − α

t − τ
pk , (26)

q̇k =
∂H

∂pk
, (27)

k = 1, . . . , N . This pair of equations represents the fractional canonical equations.
In fact, the presence of the second term on the RHS of Eq. (26) is not a surprise.
Remember that the Euler–Lagrange equations with external forces are

∂F

∂qk
−

d

dτ

(

∂F

∂q̇k

)

= −Fk, (28)

and the corresponding Hamilton’s equations are

ṗk = −
∂H

∂qk
+ Fk, (29)

q̇k =
∂H

∂pk
. (30)

We note that Hamilton’s equations with external forces violate the Lie algebra
conditions and verify instead the Lie-admissible algebra [39].

The last comment concerns the Poisson bracket for f and g. It is in fact a skew-
symmetric bilinear of derivatives of any pair of dynamical quantities with respect
to coordinates and momenta. A Poisson bracket is defined by

{f, g}(x) =

N
∑

i=1

{

∂f

∂pi

∂g

∂qi
−

∂f

∂qi

∂g

∂pi

}

. (31)
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It is possible to write, in a more symmetric form, the canonical Eqs. (26) and (27)
by means of Poisson brackets. Indeed, one can easily verify that they read

ṗk +
α − 1

t − τ
pk = {H, pk}, (32)

q̇k = {H, qk}. (33)

If we let g(q, p, τ) be a dynamical quantity, then

d

dτ
g(q, p, τ) =

∂g

∂τ
+

N
∑

k=1

(

∂g

∂qk
q̇k +

∂g

∂pk
ṗk

)

(34)

=
∂g

∂τ
+

N
∑

k=1

(

∂g

∂qk

∂H

∂pk
−

∂g

∂pk

(

∂H

∂qk
+

α − 1

τ − t
pk

))

(35)

=
∂g

∂τ
+ {H, g} −

α − 1

τ − t

N
∑

k=1

pk
∂g

∂pk
. (36)

If g is an integral of motion, then

∂g

∂τ
+ {H, g} =

α − 1

τ − t

N
∑

k=1

pk
∂g

∂pk
, (37)

and if g has no explicit time dependence

{H, g} =
α − 1

τ − t

N
∑

k=1

pk
∂g

∂pk
. (38)

As a result, we have noncommutativity. Commutativity occurs at late times or
for α = 1.

5. Conclusions

In this paper, we use left-sided Riemann–Liouville fractional integral to write the
Euler–Lagrange equations in fractional form. The derived equations are similar to
the standard ones, but with the presence of fractional generalized external force act-
ing on the system. As an application, we studied the simple pendulum. By treating
the action as a fractional integral, the presence of a linear time-decreasing dissipa-
tive term force is shown. By introducing two time variables, we derived the natural
advanced and retarded equations of motion. Hamiltonian conservative laws are also
treated. The conjugate momentum, the Hamiltonian and the Hamilton’s equations
are shown to depend on the fractional order of integration α and vary as inverse
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of time. We hope that our approach will open the possibility of examining deeply
theoretical mechanics and complex dynamical systems. Further consequences and
developments, in particular the inverse problem in fractional Newtonian mechanics,
relativistic dynamics, geometrical aspects and symplectic manifolds as well as some
applications to quantum mechanics and fields theory will be dealt with in future
work.

Acknowledgements

I would like to thank the referees for their useful and precious comments and
the Ministry of Commerce, Industry and Energy, Korea, for supporting this work
under research Grant R-2004-096-000.

References

[1] E. W. Montroll and M. F. Schlesinger, in Studies in statistical mechanics, eds. J.
Leibowitz and E. W. Montroll, North-Holland, Amsterdam (1984).

[2] K. B. Oldham and J. Spanier, The Fractional Calculus, New York, Academic Press
(1974).

[3] K. M. Kolwankar and A. D. Gangal, Phys. Rev. Lett. 80 (1998) 214.

[4] G. Cooper and D. Cowan, Exploration Geophysics 34 (2003) 51.

[5] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999); Frac-
tional Calculus and Applied Analysis 5 (2002) 367.

[6] F. Mainardi and G. Pagnini, Appl. Math. Comp. 141 (2003) 51.

[7] S. Z. Rida and El-Sayed Ama, Appl. Math. Comp. 147 (2004) 29.

[8] H. C. Rosu, L. Madueno and J. Socorro, J. Phys. A 36 (2003) 1087.

[9] P. O. Agrawal, Nonlinear Dynamics 29 (2003) 145.

[10] R. Hilfer, Chem. Phys. 284 (2002) 399.

[11] G. M. Zaslavasky, Chaos in Dynamics Systems, Harwood, New York (1985).

[12] A. I. Saichev and G. Z. Zaslavsky, Chaos 7 (1997) 753.

[13] V. E. Tarasov, Chaos 14 (2004) 123.

[14] E. Lutz, Phys. Rev. E 64 (2001) 051106.

[15] G. M. Zaslavsky, in Transport, Chaos and Plasma Physics, Marseille, 1993, eds. S.
Benkadda, F. Doveil and Y. Elskens, World Scientific (1994) p. 2.

[16] J. P. Bouchaud and A. Georges, Phys. Rep. 195 (1990) 127.

[17] A. I. Saichev and G. Z. Zaslavsky, Chaos 7 (1997) 753.

[18] M. Giona and H. E. Roman, J. Phys. A 25 (1992) 2093.

[19] H. E. Roman and M. Giona, J. Phys. A 25 (1992) 2107.

[20] G. M. Zaslavsky, Physica D 76 (1994) 110.

[21] A. J. Lichetenberg and M. A. Lieberman, Regular and Stochastic Motion, Springer,
New York (1991).

[22] F. Riewe, Phys. Rev. E 53 (1996) 1890; Phys. Rev. E 22 (1997) 3582.

FIZIKA A 14 (2005) 4, 289–298 297



el-nabulsi: a fractional approach to nonconservative lagrangian . . .

[23] M. V. Berry, Semi-Classical Mechanics of Regular and Irregular Motion, in Chaotic
Behaviour of Deterministic Systems, eds. G. Iooss, H. G. Helleman and R. Stora,
North-Holland, Amsterdam (1983).

[24] M. Klimek, Czech J. Phys. 52 (2002) 1247; Czech J. Phys. 51 (2001) 1348.

[25] C. Shepherd and M. Naber, J. Math. Phys. 42 2203 (2001); math-ph/0301016.

[26] O. P. Agrawal, J. Math. Anal. Appl. 272 (2002) 368; J. Math. Anal. Appl. 68 (2001)
339.

[27] A. Hanson, T. Regge and C. Teitelboim, Constrained Hamiltonian Systems, Academia
Nationale dei Lincei, Rome (1976).

[28] K. Sundermeyer, Constrained Dynamics, Springer-Verlag, New York (1982).

[29] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton University
Press (1992).

[30] D. Baleanu and Y. Guler, Nuovo Cimento B 115 (2000) 319.

[31] D. Baleanu and T. Avkar, math-ph/0405012.

[32] D. W. Dreisigmeyer and P. M. Young, J. Phys. A: Math. Gen. 36 (2003) 9297.

[33] A. O. Caldeira and A. J. Leggett, Ann. Phys. (NY) 149 (1983) 374.

[34] Applications of Fractional Calculus to Physics, ed. R. Hilfer, Word Scientific, Singapore
(2000).

[35] S. G. Samko, A. A. Kilbas and O. I. Marichev, Integraly i proizvodnye drobnogo
poryadka i nekotorye ich prilozheniya, Nauka i tehnika, Minsk, (1987) (english trans-
lation, Gordon and Beach, Amsterdam, (1993)).

[36] M. S. Longair, Theoretical Concepts in Physics, Cambridge University Press (1984).

[37] H. Goldstein, Classical Mechanics, Addison-Wesley, London (1950).

[38] F. Scheck, Mechanics, Springer-Verlag (1994).

[39] R. M. Santilli, Foundations of Theoretical Mechanics I and II, Springer-Verlag (1978).

[40] J. Wirth, Math. Meth. Appl. Sc. 27 (2004) 101.

NECJELOBROJNA HAMILTONOVA VARIJACIJSKA FORMULACIJA
NEKONZERVATIVNE LAGRANGEOVE MEHANIKE

U ovom se radu primjenjuje necjelobrojni integralni račun radi izvod–enja La-
grangeove mehanike nekonzervativnih sustava. U predloženoj se metodi uvodi ne-
cjelobrojni vremenski integral samo s jednim parametrom, α, dok u drugim mod-
elima nalazimo proizvoljne brojeve necjelobrojnih parametara (redova derivacija).
Neki rezultati Hamiltonove mehanike, naime Hamiltonove jednadžbe, izvedeni su i
raspravljaju se podrobno.
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