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Optimal path selection of innovation resource allocation
in China’s regions with shared inputs

Zhiwen Zhang , Zilong Wang and Yongfen Zhu

College of Economics and Management, Nanjing University of Aeronautics and Astronautics,
Nanjing, Jiangsu, China

ABSTRACT
As an effective form of interaction between innovation subjects
and resources, the regional innovation network’s optimal alloca-
tion of resources is the key to improving national innovation cap-
acity. According to the innovation value chain, the process of
resource allocation in innovation can be divided into two correla-
tive sub-systems: the knowledge innovation stage (KIS) and the
achievements commercialisation stage (ACS). To evaluate regional
innovation efficiency, a two-stage network data envelopment ana-
lysis model with shared inputs is used, with fuzzy set qualitative
comparative analysis to analyse the improvement path of
resource allocation efficiency from the dimensions of regional
environment and network structure. The results show that effi-
ciency in the KIS is higher than in the ACS, and the efficiency
scores for most regions in China are better under the model with
shared inputs. The efficiency of innovative resource allocation is
affected by the cross-action of seven factors: regional economic
development, infrastructure, policy system, social culture, network
scale, network openness, and network centrality. To achieve high-
efficiency resource allocation, regions should build an innovation
network that matches their environmental characteristics. These
findings provide theoretical guidance for formulating innovative
resource allocation policies suitable for different regions.
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1. Introduction

With the transformation of the technological innovation model from closed to open,
linear to network, innovation subjects such as enterprises, R&D institutions, and uni-
versities have begun to promote in-depth cooperation and coordinated development.
These innovation subjects form a regional innovation network based on the sharing
of innovation resources and activities. The optimal allocation of regional innovation
resources plays a key role in improving national innovation capacity. Of particular
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concern is how to evaluate the effects of regional allocation and realise the optimal
allocation of resources.

In considering how to realise the optimal allocation of innovation resources, scholars
have focused on what perspective and which method to adopt. Relevant literature based
on a macro perspective has mainly analysed the impact of national Science and
Technology (S&T) planning or innovation policies on resource allocation (Klingebiel &
Rammer, 2014; Zhou et al., 2002). Research from the micro perspective has paid particular
attention to how companies, universities, and research institutions optimise their internal
resources. In terms of method, the work can be divided into two categories: evaluation
index system and mathematical model optimisation. For example, Qi and Guo (2015) pro-
posed an evaluation index system for the allocation of China’s S&T resource market, using
the stochastic frontier analysis (SFA) method to analyse the optimisation of allocation in
terms of technology transfer, collaborative innovation, and degree of market development.
Yin et al. (2020) constructed an efficiency evaluation system in terms of financial resource
allocation and the benefits of innovation achievement. The research used the entropy-
weight Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)
method to analyse the characteristics of resource allocation efficiency in different regions,
and it proposed an optimised path for the allocation of innovative resources.

Another approach is the mathematical model optimisation method. From innova-
tive subjects, Wang and Wang (2008) constructed a structural equation model (SEM)
of the allocation system and proposed an optimal allocation model based on the
national R&D programme to improve efficiency. Liu (2011) used a two-dimensional
decision model that integrates fuzzy data envelopment analysis and the analytic hier-
archy process (AHP) to perform resource allocation optimisation tasks for R&D proj-
ects. Samimi et al. (2016) proposed a new market model, combinatorial double
auction resource allocation, which can be applied to resource allocation optimisation.

The resource allocation process of the regional innovation network is complex and
changeable; it includes not only the breakthrough and accumulation of knowledge and
technology but also the realisation of economic and market value. Thus, a single indica-
tor often fails to measure its configuration accurately, and the allocation efficiency
reflects its input–output level to some extent (Zhang, 2019). Resource allocation effi-
ciency reflects the utility of the use of resources in the allocation process and is the
ratio between various inputs and outputs. To improve the quality of economic growth
and national competitiveness, innovation resource allocation efficiency has received
high attention (Li & Chu, 2017). In recent years, scholars have divided innovation
activities into sub-stages for efficiency analysis based on the innovation value chain
(Cruz-C�azares et al., 2013; Jayanthi et al., 2009; Wang et al., 2016), which can effect-
ively open the ‘black box’. However, most of these studies have used the general two-
stage DEA model (Guan & Chen, 2010; Xiang & Chen, 2016; Xiao et al., 2012), in
which the output of the first stage is evaluated as the entire input of the second stage.
However, this model does not consider actual scenarios such as sub-stages, shared
inputs, final production from the first stage, and new inputs in the second stage.

Recently, many scholars have begun to focus on the impact of the macro environment
on the efficiency of regional innovation resource allocation. The S&T resource allocation
efficiency index system constructed by Mei and Chen (2015) contains dimensions such
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as the level of economic development, the degree of economic openness, financial sup-
port for science and technology, the level of energy consumption, the intensity of finan-
cial support for education, and the level of information technology. Wang et al. (2016)
focus on how internal and external resources of Chinese manufacturers interact to influ-
ence innovation capabilities, and the interactions between internal and external resources
of firms show different patterns of influence on innovation capabilities. Barasa et al.
(2017) analysed the relationship between the impact of firm resources and the quality of
regional institutions and hypothesised that the institutional environment in which firms
operate mediates the impact of resources on innovation output. The results showed that
the role of firm resources varies depending on the institutional environment and that
regional institutions play a positive moderating role on firm resources.

The focus of this paper is the optimal allocation of regional innovation resources.
Overall, this paper contributes to the existing literature in two important ways. First,
the past studies lack a systematic quantitative evaluation export of the efficiency of
regional innovative resource allocation. To address this research gap, we use an
improved two-stage NDEA model to evaluate the efficiency of regional innovative
resource allocation. Because of the high interdependence inherent within the structure
of the regional innovation network, the main body of the network node cannot
ignore the integrity and synergy when allocating innovation resources. This distinc-
tion, which our second contribution, proposing that the efficiency of regional innov-
ation resource allocation is not affected by a particular characteristic element or
simply superimposed; rather, it is the result of matching network structural elements
and environmental elements in different regional environments.

In this paper, an improved two-stage NDEA model with resource sharing is developed
and applied to the evaluation of the efficiency of regional innovative resource allocation.
The improvement path of resource allocation efficiency is studied using the fuzzy set
qualitative comparative analysis (fsQCA) method from the dimensions of regional envir-
onment and network structure. This combination of quantitative and qualitative methods
generates new ideas for research on the path of optimal resource allocation.

2. Two-stage network DEA model with shared resources

When evaluating the efficiency of the decision-making units (DMUs), the general
DEA model considers each one as a black box. The initial input is used to produce
the final output through the black box without considering the intermediate products.
Multiple studies have been conducted on DMUs with a two-stage structure, where
intermediate products are the output of the first stage and the only input of the
second stage (F€are et al., 2007; Kao & Hwang, 2008; Lewis & Sexton, 2004; Tone &
Tsutsui, 2009). However, in many practical environments, part of the input to the
first stage is shared by both stages. Moreover, the two-stage DEA models constructed
in previous research are unsuitable, because they assume no output in the first sub-
stage or no input in the second sub-stage.

Chen and Guan (2012), however, have taken such a scenario into account, propos-
ing a relational network two-stage DEA modelling framework that does not depend
on pre-assigned weights for the efficiency scores for the two sub-stages. Drawing on
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their analytical framework, we have developed an improved two-stage network model
(see Figure 1) that can evaluate scientific and technological innovation activities
under a shared resources scenario, as described below.

� Parts of some resources are the only inputs to one stage, while others are shared
as inputs in both stages. Note that each sub-stage owns its unique input.

� There are intermediate products in the whole process, and a part of the intermedi-
ate products is withdrawn directly as the output of sub-stage 1, which can also be
regarded as the output of the whole process. Another part of the intermediate
product is used as the input resource of the second stage.

Suppose that there is a set of n DMUs denoted by DMUj (j¼ 1,2,… ,n) and that
each DMUj has m shared resources denoted by xij (i¼ 1,2,… ,m). Assume that the pro-
portion of xij in the first stage and second stage are aij and (1-aij), respectively. The
first stage has m1 inputs denoted by xi1j(i¼ 1,2,… ,m1) and shared input denoted by
aijxij. Correspondingly, the inputs for the second stage are denoted by
xi2j(i¼ 1,2,… ,m2) and (1-aij)xij. Suppose also that the first stage has s1 outputs denoted
by yr1j(r1¼1,2,… ,s1) and h intermediate outputs denoted by zdj(d¼ 1,2,… ,h), which zdj
then become inputs to the second stage and are referred to as intermediate measures.
The outputs from the second stage are denoted by yr2j(r2¼1,2,… ,s2).

Based upon the variable returns to scale (VRS) model of Banker et al. (1984), the
fractional efficiency scores for DMUk in the first and second stages are calculated
respectively by

h1k ¼ max

Ps1
r1¼1

ur1yr1k þ
Ph1

d1¼1
p1dzdkPm1

i1¼1
vi1j0xi1k þ

Pm
i¼1 g

1
i aij0xik

(1)

s:t:

Xs1

ri¼1
ui1yi1j þ

Xh1

d1¼1
p1dzdjXm1

i1¼1
vixij þ

Xm

i¼1
g1
i aijxij

� 1 j ¼ 1, 2, . . . , n

vi, urj ,g
1
i , p

1
d � 0

0 < aij � 1

Figure 1. A two-stage process with shared resource inputs.
Source: Adopted from Chen and Guan (2012).
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and

h2k ¼ max

Ps2
r2¼1

ur2yr2kPm
i¼1 g

2
i 1� aijð Þxik þ

Pm2
i2¼1 vi2xi2k þ

Ph
d¼1p

2
dzdk

(2)

s:t:

Xs2

r2¼1
ur2yr2jXm

i¼1
g2
i ð1� aijÞxij þ

Xs2

i2¼1
vi2xi2j þ

Xh

d¼1
p2dzdj

� 1j ¼ 1, 2, . . . , n

ui2 ,g
2
i , vi2 , p

2
d � 0

0 � aij � 1

Where vi, vi1 , vi2 is the weight vector of inputs xij, xi1j, and xi2j, and ur1 , ur2 is the
weight vector of outputs yr1j, yr2j, respectively. g

1
i and g2

i represent the weight vectors
of the shared resources xij allocated to sub-processes. Since zdj dual role as input and
output, using p1d and p2d to represent the weight vector of output from stage 1 and
input in stage 2, respectively.

According to Chen and Guan (2012) research to regard the overall efficiency is the
weighted average of efficiency scores of the two sub-stages. The additive model is
used for efficiency analysis. The overall efficiency of DMUk is as follows

hk ¼ d1h
1
k þ d2h

2
k (3)

Where d1 and d2 are user-specified weights that the ratio of input resources in
each sub-stage to overall resources of the DMUk, represented by

d1 ¼
Xs1

i1¼1
vi1xi1k þ

Xm

i¼1
g1
i aikxikXm1

ii¼1
vi1xiik þ

Xm

i¼1
vi1xik þ

Xs2

i1¼1
vi2xi2k þ

Xh

d¼1
pdzdk

(4)

d2 ¼
Xm2

i2¼1
vi2xi2k þ

Xm

i¼1
g2
i 1� aikð Þxik þ

Xh

d¼1
pdzdkXm1

ii¼1
vi1xiik þ

Xm

i¼1
vi1xik þ

Xm2

i2¼1
vi2xi2k þ

Xh

d¼1
pdzdk

(5)

By letting t ¼ 1=ðPm1
ii¼1 vi1xiik þ

Pm
i¼1 vi1xik þ

Pm2
i2¼1 vi2xi2k þ

Ph
d¼1 pdzdkÞ,

l ¼ tu, t ¼ tv, p ¼ tx, and a ¼ ta: The overall efficiency of the two-stage process
with shared resource for DMUk can be evaluated by solving the fractional planning
model (6)

hk ¼ max
X
r1¼1

l11yr1k þ
X
r2¼1

lr2yr2k þ
X
d¼1

xdzdk (6)
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s:t:
P

i¼1 tixik þ
P

i¼1 tixik þ
P

i2¼1 ti2xi2k þ
P

d¼1 xdzdk ¼ 1P
i1¼1 ln1yi1j þ

P
r2¼1 li2yr2j �

P
i¼1 tixij �

P
i1¼1 tixijj �

P
i2¼1 ti2xi2j � 0P

ii¼1 li1yi1j þ
P

d¼1 xdzdj �
P

i1¼1 ti1xijj �
P

i¼1 wixij � 0P
r2¼1 lr2yr2j �

P
i2¼1 ti2xi2j �

P
d¼1 xdzdj �

P
i¼1 tixij þ wixij � 0

wi � ti � 0
l1, l2, ti, ti1 , ti2 ,xd,wi � 0

Assume that the optimal solution of the model (6) is fl�r1 , l�r2 , t�i , t�i1 , t�i2 ,x�
d,w

�
i g,

thus the overall efficiency and sub-stages efficiency for DMUk can be calculated as

Ek ¼
P

r1¼1 l
�
r1yr1k þ

P
r2¼1 l

�
r2yr2k þ

P
d¼1 x

�
dzdk (7)

E1k ¼
P

ri¼1 l
�
riyiikP

d¼1 x
�
dzdk þ

P
i1¼1 v

�
i xiik þ

P
i¼1 w

�
i xik

(8)

E2k ¼
P

r2¼1 l
�
r2yr2kP

i2¼1 t
�
i2xi2k þ

P
d¼1 x

�
dzdk þ

P
i¼1 t

�
i xik �

P
i¼1 w

�
i xik

(9)

Once we obtain an optimal solution to model (7)–(9), the efficiency scores of both
individual stages can be calculated accordingly. However, since model (6) can have
alternative optimal solutions, the decomposition of the overall efficiency defined in
model (7) may not be unique. Therefore, we follow Kao and Hwang (2008) approach
to find a set of multipliers that produce the highest first or second stage efficiency
score while maintaining the overall efficiency score of the entire process. Under the
VRS assumption, the sub-stages efficiency can be obtained by

E1
k ¼ max

X
r1¼1

lr1yr1k þ
X
d¼1

xdzdk (10)

s:t:
P

i1¼1 ti1xiik þ
P

i wixik ¼ 1

X
r1¼1

lr1yr1j þ
X
d¼1

pdzdj �
X
i1¼1

ti1xi1j �
X
i¼1

wixij � 0

X
r2¼1

lr2yr2j �
X
i2¼1

ti2xi2j �
X
d¼1

xdzdj �
X
i¼1

tixij þ
X
i¼1

wixij � 0

X
r1¼1

l1y1y1 þ
X
r2¼1

lr2yr2j þ
X
d

xdzdj

�E
X
i¼1

tixij þ
X
i1¼1

ti1xi1j þ
X
i2¼1

ti2xi2j þ
X
d¼1

xdzdj
� �

¼ 0

wik � vik � 0lr1 , lr2 , ti, ti1 , ti2 ,xd,wi � 0

and
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E2k ¼ max
X
r2¼1

lr2yr2k2k (11)

s:t:
P

i2¼1 ti2xi2k þ
P

d¼1 xdzdk þ
P

i¼1 tixik�
P

i¼1 wixik ¼ 1P
r1¼1 li1yi1j þ

P
d¼1 pdzdj�

P
i1¼1 ti1xi1j�

P
i¼1 wixij � 0P

r2¼1 lr2yr2j�
P

i2¼1 ti2xi2j�
P

d¼1 xdzdj�
P

i¼1 tixij þ
P

i¼1 wixij � 0P
r1¼1 lr1yr1j þ

P
r2¼1 li2yr2j þ

P
d¼1 xdzdj

�E
X
i¼1

tixij þ
X
i1¼1

ti1xi1j þ
X
i2¼1

ti2xi2j þ
X
d¼1

xdzdj
� �

¼ 0

wik�tik � 0li1 , lr2 , ti, ti1 , ti2 ,xd,wi � 0

3. Empirical analysis

3.1. Evaluating the allocation of regional innovative resources with
shared inputs

3.1.1. Indicator system
Based on the innovation value chain and considering the shared inputs (Broekel,
2015; Guan & Chen, 2012), the process of regional innovative resource allocation was
divided into two sub-processes: the knowledge innovation sub-process (KIS) and the
achievements commercialisation sub-process (ACS) (see Figure 2).

The efficiency of regional innovation resource allocation can be regarded as the
output–input ratio of regional innovative resources. Adhering to the principles of sys-
tematicness, scientificity, and accessibility, we built a two-stage efficiency measure-
ment index system that considers shared resources. The evaluation index system
incorporates human, financial, material, and other innovation elements (Kogan et al.,
2017; Tan, 2004; Wang et al., 2016). The input–output choices were as described in
the following sub-sections.

3.1.1.1. Original inputs in the knowledge innovation Sub-process (stage 1 KIS). R&D
talents are an important part of regional human resources in innovation. R&D labour
input plays a decisive role in improving the efficiency of the regional innovation

Figure 2. Two-stage process with shared inputs of regional innovative resource allocation.
Source: Author’s own drawing.
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network’s resource allocation. We therefore selected the full-time equivalent of R&D
personnel to represent human resources (IHR).

Financial investment (capital investment) has a direct impact on the allocation of
regional innovation resources. Generally speaking, the more financial resources are
invested, the more regional innovation activities will be carried out, which is condu-
cive to enhancing efficiency. Intramural expenditure on R&D was therefore chosen as
a proxy variable for financial resources (IFR).

Regional innovative material resources include land and workshops, production
equipment, and R&D equipment (Fu et al., 2020). Considering the availability of
data, fixed assets (in scientific research and technical services) were selected to repre-
sent material resources (IMR).

3.1.1.2. Original inputs in the achievement commercialisation Sub-process (stage 2
ACS). The new inputs in the ACS mainly included human resources (NHR) and
financial resources (NFR) consumed during this stage. The non-R&D personnel was
represented by subtracting the number of personnel in R&D from the annual average
number of employees, and financial resources were represented by expenditure on
new product development. It is worth noting that previous studies (Furman et al.,
2002; Guan & Chen, 2012) ignored the original input of the KIS, thereby neglecting
indispensable factors in Stage 2 economic activities. On this basis, we selected mater-
ial resources as the shared input of the KIS and the ACS; that is, the KIS and the
ACS share the input of fixed assets (in scientific research and technical services).

Patents have so far emerged as the most appropriate indicator measuring regional
innovation achievements (Guan & Chen, 2012). Compared with the pieces of patent
applications and grants, the number of inventions in force owned by the region can
better reflect the innovation ability (Bai & Bian, 2016). It is an effective indicator to
measure the innovation output visible in a part of KIS, of course, it will then be used
as an input to ACS.

3.1.1.3. Intermediate products connecting the KIS and the ACS. Patents have emerged
as the most appropriate indicator of regional innovation achievements (Guan &
Chen, 2012). Compared with patent applications and grants, the number of inven-
tions in force owned by a region better reflects its innovation ability (Bai & Bian,
2016). Because it is an effective indicator for measuring the innovation output visible
in a part of the KIS, it was used here as an input to the ACS.

3.1.1.4. Final outputs from the KIS. The S&T outputs of knowledge and technology
constitute the main output in the KIS. The number of scientific papers is an effective
indicator of the quality of a regional innovation subject and the output of new know-
ledge. The transaction value of the technology market reflects the scale of technology
research and development, technology transfer, technology consulting, and technology
service transactions in a region, and effectively reflects the market value of technol-
ogy. Thus, for the expected outputs of the KIS, we selected the scientific papers issued
by higher education and R&D institutions, and the value of contract exportation
form domestic technical markets.
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3.1.1.5. Final outputs from the ACS. The final output of the commercialisation stage is
the economic benefits of new products. Compared to other measures, new product sales
revenue can more fully reflect the commercial value of innovations. Thus, we selected the
sales revenue from new products (RNP) as the economic output indicator.

To eliminate the impact of price changes on our analysis, we dealt with the varia-
bles related to prices as follows (Goto & Suzuki, 1989; Griliches, 1980; Zhu & Xu,
2003). The perpetual inventory method provided a stock estimate of internal expend-
iture on R&D and new product development after price deflating (taking the baseline
year as 2010 and the depreciation rate as 15%). New product sales revenue was proc-
essed with the producer price index for industrial products, and the price index for
investment in fixed assets was used to process innovation material resources.

As innovative resource allocation is a continuous process, time-lag effects needed to
be considered. Many studies have discussed the lag effect of innovation input on S&T
outputs (intermediate outputs) or economic outputs (final outputs). Drawing on the
whole process of innovative resource allocation and the existing literature (Bai & Bian,
2016), we set the R&D input to the economic output as a two-year lag period; that is,
the KIS and the ACS both have a one-year lag. If the original inputs in the KIS are the
t-period, then the intermediate products are the tþ 1 period. Thus, the original inputs in
the ACS are period tþ 1, and the final outputs from the KIS are period tþ 2.

3.1.2. Data sources and descriptive statistics
In line with availability, this study used data from 30 provinces in China from 2010 to
2018. Taking the two-year lag effect into account, the complete analysis period runs from
2010 to 2016. The relevant data came from China’s economic and social development
statistics database (https://data.cnki.net/). Descriptive statistics were performed on the
characteristics of the data samples, and the results are shown in Table 1.

The mean values of the indicators of innovative human resources, innovative financial
resources, and innovative material resources are 112,170� 104, 4,159,641� 104, and
1,092,424� 104, respectively. Comparing the maximum and minimum values, the results
show that the sample characteristics are close to non-normal distribution. Judging from
the standard deviation of the sample data, each variable is relatively scattered.

3.1.3. Efficiency comparison
In accordance with the indicator system constructed, we used the two-stage network
DEA model with shared inputs to measure the efficiency of China’s regional innov-
ation resource allocation. We then compared the results with the general network
DEA model. Table 2 reports overall efficiency and sub-process efficiency under
shared input scenarios and in the general two-stage NDEA model, respectively.

From the results in Table 2, we note that the overall efficiency scores of most
provinces under shared input are higher than in the general two-stage NDEA model.
The rank of some provinces changed greatly; for instance, Shaanxi rose from 29th
(E� ¼ 0.4413) to 19th (E� ¼ 0.5937), Sichuan rose from 17th (E� ¼ 0.5716) to 8th
(E¼ 0.7387), and Liaoning rose from 28th (E� ¼ 0.4582) to 22nd (E¼ 0.5677). The
overall efficiency of these provinces improved significantly after considering the shared
resources in the KIS. In contrast, Shanxi dropped from 12th (E� ¼ 0.6292) to 25th
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(E¼ 0.5238), Heilongjiang dropped from 20th (E� ¼ 0.5382) to 29th (E¼ 0.4611), and
Ningxia dropped from 19th to 24th. This indicates that the resource inputs in the KIS
of these provinces are redundant, leading to a decrease in overall efficiency.

On the whole, the efficiency of Beijing is good in each of the two models. Other
regions close to the efficient frontier are Shanghai, Zhejiang, Jiangsu, Guangdong,
and Hunan, which indicates that these regions have high resource utilisation rates
and favourable resource allocation. The regions in the lower quartile of efficiency (the
lower quartile limit value is 0.5646) are eastern China (Hainan Province), central
China (Shanxi, Jilin, and Heilongjiang), and western China (Inner Mongolia, Gansu,
Ningxia, and Xinjiang). When the results in Table 2 are combined, the efficiency
scores of the regions in central and western China are lower than those in east-
ern China.

Given these findings, the curve of efficiency from 2010 to 2016 was plotted to
investigate the variation, as shown in Figure 3.

The overall efficiency value shows a fluctuating upward trend, but the rate of
improvement is relatively slow. As for sub-phases, the efficiency value of the ACS rose
from 2013 to 2016, indicating that some improvements have been achieved in recent
years in the commercial transformation of regional innovation results. However, the
efficiency of the KIS is significantly higher than that of the ACS, which shows that
there is still ample room for better allocation and improvement in the business trans-
formation process compared with the knowledge innovation process. Comparison of
the models shows that the efficiency score of the KIS with shared inputs is lower than
the estimated value in the general two-stage model, whereas the efficiency performance
of the ACS is higher than the estimated result in the general model.

3.2. Optimal path of innovation resource allocation

3.2.1. Selection and calibration of variables
In the regional innovation network, although many factors are not input variables,
they can significantly affect innovation output, thereby impacting the effect of
resource allocation. Determining which factors lead to differences in the efficiency of

Figure 3. Trends in the overall and sub-stages efficiency of regional innovation resources.
Source: Author’s own drawing.
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innovation resource allocation in different regions will help governors to open the
black box and achieve optimal allocation.

As an organic whole, the regional innovation network is situated in a certain
environment. Therefore, in addition to the structure of the innovation network itself,
the regional environment has an important influence on its development (Schilling &
Phelps, 2007). However, few studies have examined the effect of environmental char-
acteristics on the efficiency of regional innovation activities from a general environ-
mental perspective. Therefore, this paper analyses the optimised path of regional
innovation resource allocation by considering shared input from the dimensions of
regional environment and network structure.

3.2.1.1. Network structure dimension. The larger the network scale, the more resource
acquisition channels, and the easier it is to optimise resource allocation. However,
this relationship is not absolute. The effectiveness of the network will take the form
of an inverted U shape as the network scale changes (Ngamassi et al., 2014).
Universities, scientific research institutions, and enterprises are the important network
subjects engaged in technological innovation and resource interaction (Yu et al.,
2013). Therefore, the numbers of higher education institutions, R&D institutions, and
industrial enterprises above a designated size were taken as indicators of network
scale (NS).

Network openness (NO) reflects the willingness of local governments and local net-
work members to develop in foreign economies and their ability to attract and digest
foreign resources (Li, 2014). Accordingly, the value of imports and exports, the value
of technology imported contracts, and the amount of foreign capital utilised were
taken as measures of NO.

Network centrality (NC) emphasises the status and importance of a certain net-
work ‘star’. In China, a small number of state-owned or large enterprises, as well as
some universities and scientific research institutions, have abundant high-quality sci-
entific and technological resources or resource acquisition channels, which often act
as the star in the innovation network (Ren et al., 2011). However, the distribution of
resources is uneven, not only among individual network members but also in the
local distribution of the network. For example, the distribution of innovation resour-
ces in large and medium-sized cities or provincial capitals often accounts for a large
proportion of their provinces (Shao et al., 2018). The proportion of key universities
to ordinary universities, the proportion of large and medium-sized industrial enter-
prises to industrial enterprises above a designated size, and the proportion of provin-
cial capital city GDP to the province’s GDP were selected as measures of NC.

3.2.1.2. Regional innovation milieu. Based on previous research, the following indica-
tors were selected from the two aspects of hard and soft environment: the economic
development environment (ED), the basic establishment environment (BE), the sys-
tems and policies environment (SP), and the social-cultural environment (SC).

A good economic development environment can provide excellent financial sup-
port for regional innovation, and it is an important factor in the geographical selec-
tion of innovation subjects (Bai & Bian, 2016). Regions with superior economies have
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strong innovation ability and more rational allocation of resources (Zhao & Wang,
2017). Given that per capita GDP can objectively eliminate differences in regional
population and allocation, it was used here to characterise ED.

The basic establishment environment refers to infrastructure with public welfare
attributes that support scientific research, technology development, and product
development, such as large-scale facilities, S&T infrastructure, and industrial technol-
ogy innovation infrastructure. In line with the availability of data, this paper took the
number of large national research infrastructures and the number of key state labora-
tories in each region to represent BE.

The government’s application of policy tools such as R&D subsidies and tax pref-
erences can effectively promote cooperation among innovation subjects to optimise
the effect of resource allocation (McElwee & Atherton, 2005). Accordingly, this paper
used the regional S&T financial expenditure index to reflect SP (Zhang et al., 2018).

A network of effective resource allocation often exists in a regional environment
with a high cultural level and strong innovation ability (Bai & Bian, 2016). Thus, the
provincial innovation index and the number of ordinary universities in each region
were taken as measures of higher education level and innovation ability to capture SC.

The above data were all taken from China’s economic and social development sta-
tistics database, new infrastructure research report, and urban and industrial innov-
ation report. Following the time proximity principle and to optimise the path of
efficiency improvement in the near future, we focused on factors that influenced the
allocation efficiency of innovation resources in different regions in 2016. Thus, the
resource allocation efficiency scores (E2016) considering shared inputs in 2016 were
used as the outcome variable. The network structure and regional innovation milieu
were used as condition variables. The effect of the condition variables on the outcome
variable is shown in Figure 4.

The fsQCA method was used to explore how various regional innovation networks
realised the interaction between factors under specific environmental conditions, and to
find multiple equivalent paths for high-efficiency resource allocation. According to the

Figure 4. Influencing mechanism of regional innovation resource allocation efficiency.
Source: Author’s own drawing.
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synergy principle, the innovation network is characterised by its aggregation and coop-
erativity. Because there is a certain interdependence between its characteristic factors,
ignoring the interaction causes deviations in the results of the analysis (Tao et al.,
2016). Therefore, instead of being linearly affected by a particular factor, the efficiency
of regional innovation resource allocation is the result of the joint action of various fac-
tors. In this context, the application of the fsQCA method has certain advantages.

When using fuzzy sets to calculate data, partial condition variables need to be inte-
grated internally. Of these, the NS, NC, and NO variables included three indicators, while
the BE and SC variables included two indicators. The values of Cronbach’s alpha for
these five indicators were 0.7634, 0.8641, 0.7985, 0.7063, and 0.7912, respectively, which
is higher than the critical value 0.7 and shows satisfactory consistency.

When calibrating condition variables to the fuzzy membership scores, three quali-
tative breakpoints need to be set: full membership, full non-membership, and the
cross-over point (Fiss, 2011). These three benchmarks can be selected as the top
decile, lowest decile, and median of the sample data, respectively. Using this method,
the variables were calibrated for fuzzy value, with the breakpoints shown in Table 3.

3.2.2. Necessary tested and truth table analysis
When performing qualitative comparative analysis, the necessary conditions need to
be eliminated (Fiss, 2011). In order to determine whether there were necessary condi-
tions for the efficient allocation of innovative resources among the seven condition
variables in this study, we first tested the necessity of the high-efficiency scores (that
is, the necessity of the condition sets after calibrating the fuzzy sets). If the consist-
ency score is greater than 0.9, this indicates that the causal condition is a superset of
the high-efficiency outcome; as this violates the sufficiency principle of path research,
the condition should be eliminated (Fiss, 2011; Schneider & Wagemann, 2012).

Table 4 shows the necessity analysis results, positive and negative, for the seven
conditions. The consistency scores of all the condition variables were less than 0.9,
indicating that efficient allocation of regional innovation resources is a combination
of multiple factors. A single factor does not have strong explanatory power for the
score of allocation efficiency, which shows that the pathway analysis of multi-factor
interaction is feasible.

The truth table algorithm incorporates a two-stage analytic procedure (Rihoux &
Ragin, 2009). The first step creates a truth table from the fuzzy data, which includes spec-
ifying the outcome for each configuration and determining which configurations to
include in the analysis. The second step specifies which causal conditions and outcomes

Table 3. Qualitative breakpoints for variables fuzzy calibration.
Variable category Full membership Cross-over point Full nonmembership

Outcome variable E 0.79 0.59 0.41
Causal variable NS 0.65 0.37 0.23

NO 0.40 0.21 0.10
NC 0.45 0.30 0.21
ED 7.78 4.64 3.53
BE 0.52 0.16 0.10
SP 290.84 69.30 25.43
SC 0.60 0.36 0.20

Source: Author’s own calculations.
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to minimise. Through the truth table algorithm, all paths of causal conditions can be
obtained (reflecting all possible combinations of causal conditions: the 1 s and 0 s indicate
the different corners of the vector space defined by the fuzzy set causal conditions).

As this study involved seven condition variables, the truth table included 27 (128)
potential paths. Each region was assigned to these 128 paths as a sample case.
Because the total number of cases (N) was relatively small, the frequency threshold
was set to 1, and the consistency threshold was set to 0.8 (Ragin, 2006). The Truth
Table Analysis module in fsQCA 3.0 was then used to obtain different paths for the
efficient allocation of innovative resources in China, as shown in Table 5. The eighth
column indicates the case number in Table 5, the ninth column gives the coding of
the regions (1 for a high-efficiency region, and 0 for an inefficient region), and the
tenth column indicates the consistent subset of membership in the outcome.

As shown in Table 5, there were nine high-efficiency paths, which means that
the remaining 119 paths were remainders and cannot be supported by actual cases.
FsQCA minimises the causal condition of the path through Boolean algebra to
obtain the complex solution. For paths without samples, fsQCA uses counterfactual
analysis to simplify the filtered paths, obtaining an intermediate solution and a par-
simonious solution. The parsimonious solution is the core element that has a high
degree of causality with the outcome variable (Ragin, 2008). Thus, through a com-
bination of the parsimonious and intermediate solutions, it is possible to determine
which condition variables are the core elements of the outcome and which are its
auxiliary elements.

3.2.3. Path analysis for efficient allocation
In Section 3.2.2, three solutions were derived: complex, parsimonious, and intermediate.
The complex solution yields many paths, and the explanation is not representative. The
parsimonious solution incorporates all counterfactual analysis, which may make it unsuit-
able for explaining real-life problems. The solution that lies between the two extremes is
the intermediate solution. An important advantage of the intermediate solution is that it
does not allow the elimination of necessary conditions, instead taking any superset of the
result and meaningful conditions as necessary conditions (Rihoux & Ragin, 2009). In
general, the intermediate solution is superior to the complex and parsimonious solutions
(Fiss, 2011). Table 6 presents the intermediate solution and parsimonious solution for the
efficient allocation of regional innovation resources.

As Table 6 shows, the consistency of the intermediate solution was 0.833203
(greater than the threshold value of 0.75), and its coverage was 0.673844 (i.e. the

Table 4. Necessity analysis of conditional variables.
Conditional variables Consistency Coverage Conditional variables Consistency Coverage

fz NS 0.733375 0.789905 � fz NS 0.456618 0.470013
fz NO 0.699810 0.805394 � fz NO 0.507916 0.492629
fz NC 0.687144 0.685841 � fz NC 0.511083 0.569112
fz ED 0.672855 0.728849 � fz ED 0.572343 0.573813
fz BE 0.643406 0.696466 � fz BE 0.549936 0.551702
fz SP 0.725992 0.807117 � fz SP 0.517286 0.506583
fz SC 0.770167 0.800932 � fz SC 0.454546 0.473965

Note. the set ‘not A’ is represented as�A, and the symbol ‘�’ denotes negation.
Source: Author’s own calculations.
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paths are likely to account for 67% of the efficient allocation of innovative resour-
ces). The parsimonious solution had two paths; its consistency was 0.772995
(greater than the threshold value of 0.75), and its coverage was 0.830272, which can
be interpreted as high.

Under the complex effect of the seven condition variables in the network internal
structure and the external innovation environment, two valid parsimonious solutions
constitute two main paths with high resource allocation efficiency: (1) the strategy of
low network scale in regions with high network openness, namely type Ha, and (2)
the strategy of high network scale in the region of high cultural level and high innov-
ation ability, namely type Hb. The parsimonious and intermediate solutions were
sorted to form the path set shown in Table 7, which reflects the efficient allocation of
‘All roads lead to Rome’. Referring to the recommendations of Fiss (2011), 	 is used
to indicates that the condition does not occur, � is used to indicates that the condi-
tion occurs, where � represents the core condition (each combination in parsimoni-
ous solutions) and � represents auxiliary condition (the non- parsimonious part of
intermediate), blank indicates that the condition does not affect to outcome.

From Tables 6 and 7, there were 6 paths for the efficient allocation of innovative
resources. Observing the coverage scores, it is found that the coverage of path Hb2 is
the highest (RC¼ 0.423686). Based on this, the third path can be judged to be the
most important. The analysis of each separate path to the outcome is given below.

Table 5. Truth table of efficient path for regional innovation resource allocation.
NS NO NC ED BE SP SC number E raw consist.

1 1 1 1 1 1 1 2 1 0.932170
0 1 1 1 1 1 1 1 1 0.918239
0 1 1 1 0 0 0 1 1 0.893805
1 0 0 0 0 1 1 1 1 0.886364
1 0 0 1 1 0 1 1 1 0.870861
1 1 0 1 1 1 1 4 1 0.827255
1 1 1 0 1 1 1 1 1 0.818493
0 1 1 1 1 1 0 1 1 0.812102
0 1 0 1 0 0 0 1 1 0.805461

Source: Author’s own calculations.

Table 6. Parsimonious and intermediate for efficient allocation of regional innovation resources.
Intermediate solution

Configuration Raw coverage Unique coverage Consistency

�NS�NO�NC�ED�BE�SP 0.198227 0.028499 0.841398
NS�NO�NC�BE�SP�SC 0.336922 0.024066 0.895623
NS�NO�ED�BE�SP�SC 0.423686 0.099430 0.868831
�NS�NO�ED��BE�SP��SC 0.208993 0.047498 0.841837
NS��NO��NC��ED��BE�SP�SC 0.222293 0.075364 0.886364
NS��NO��NC�ED�BE��SP�SC 0.166561 0.028499 0.870861
Solution coverage 0.673844
Solution consistency 0.833203

Parsimonious solution

Configuration Raw coverage Unique coverage Consistency

�NS�NO 0.699810 0.123496 0.805394
NS�SC 0.706776 0.130462 0.801724
Solution coverage 0.830272
Solution consistency 0.772995

Source: Author’s own calculations.
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As Tables 6 and 7 show, there were six paths for the efficient allocation of innova-
tive resources. Path Hb2 had the highest coverage score (RC¼ 0.423686). Based on
this, the third path, Hb3, can be judged to be the most important. The analysis of
each separate path to the outcome is given below.

Path Ha1 (�NS�NO�NC�ED�BE�SP) shows that when a region has a high level
of GDP per capita, a sound innovation infrastructure, and strong local policy support,
efficient allocation of innovative resources can be achieved. Due to the superior eco-
nomic basis, innovation capability, and infrastructure conditions in such regions,
some powerful members in the innovation network allocate resources uniformly, with
the result that the centrality of this type of network is generally high. Further, the
willingness of local governments and local network members to develop in foreign
economies and their ability to absorb foreign capital is also strong. The areas repre-
sentative of the Ha1 path are Tianjin (0.68,0.35) and Shanghai (0.63,1).

Path Ha2 (�NS�NO�ED��BE�SP��SC) indicates that the level of economic
development is good, but that the regional innovation infrastructure is weak, the
number of institutions of higher learning is small, and the innovation capacity is
poor. To achieve higher resource allocation efficiency in these areas, local govern-
ments need to formulate compelling innovation policies. By building resource-sharing
platforms, the internal connections of the innovation network can be strengthened.
Although regional innovation networks are not big in scale, their openness and cen-
trality are relatively high. Core organisations need to take the lead in the network to
help innovation subjects obtain funds, conduct R&D activities, and expand sales
channels. The areas that represent the Ha2 path are Chongqing (0.76,0.93) and
Jilin (0.51,0.21).

Path Hb1 (NS�NO�NC�BE�SP�SC) indicates that the regional innovation infra-
structure is comprehensive and that there is a good social environment for innov-
ation. With strong policy support from local government, the level of economic
development is no longer a necessary condition for improving innovation ability and
resource allocation efficiency. When such regions have efficient allocation, they tend
to have large networks of their own (i.e. many innovation nodes in the network, such
as universities, research institutions, and enterprises), and regional network centrality

Table 7. Efficient allocation path of regional innovation resources.

Conditional variables

Efficient configuration

Ha Hb

Ha1 Ha2 Hb1 Hb2 Hb3 Hb4

Network structure
dimension

Network scale 	 	 � � � �
Network openness � � � � 	 	
Network centrality � � 	 	

Regional Innovation
Milieu

Economic development environment � � � 	 �
Basic establishment environment � 	 � � 	 �
Systems and policies environment � � � � � 	
Social-cultural environment 	 � � � �

Raw coverage 0.198 0.209 0.337 0.424 0.222 0.167
Unique coverage 0.028 0.047 0.024 0.099 0.075 0.028
Consistency 0.841 0.842 0.896 0.869 0.886 0.871
Frequency cutoff 1
Consistency cutoff 0.805461

Source: Author’s own calculations.
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and openness are high. The regions representative of the Hb1 path are Guangdong
(0.85,0.95), Beijing (0.84,1.00), and Sichuan (0.56,0.95).

The raw coverage for path Hb2 (NS�NO�ED�BE�SP�SC) is 0.4236, which means
that this solution term contains 42.36% of the cases in the results and has the stron-
gest explanatory power for the path of efficient allocation. In this type of path, the
regional innovation environment is in a nationally advantageous position; that is, it
has the best economic development, a comprehensive innovation infrastructure, high
innovation ability, and a considerable number of universities. The strong support of
local government for innovation policies is also conducive to attracting greater invest-
ment and encouraging S&T talents to join the innovation network, which means that
the network scale is generally relatively large. In the context of macroeconomics and
politics, the network has a high degree of openness and strong resource mobility, and
there is no need to maintain intensive relationships among network members to help
them obtain resources. Therefore, under this external environment and these network
characteristics, regions have higher allocation efficiency. The regions representative of
the Hb2 path are Jiangsu (0.98,0.9), Guangdong (0.87,0.95), Zhejiang (0.86,1), Beijing
(0.84,1), Shandong (0.79,0.24), Hubei (0.58,0.81), and Fujian (0.53,0.41).

Path Hb3 (NS��NO��NC��ED��BE�SP�SC) indicates that regions with low
GDP and an imperfect innovation infrastructure but a relatively good innovation cul-
ture (that is, a large number of institutions of higher learning and training for high-
level S&T talents) can also achieve efficient resource allocation. If the government
gives support and reinforcement to innovation-related policies, for example by publi-
cising public tax breaks for high-tech enterprises, it will reduce the cost of enterprise
innovation. Innovative individuals in this type of regional innovation network should
increase communication with each other to achieve rapid circulation and sharing of
resources. With enhanced government guidance and good individual communication,
the local innovation network can achieve high-efficiency resource allocation. The
region representative of the Hb3 path is Hebei (0.51,0.74).

Path Hb4 (NS��NO��NC�ED�BE��SP�SC) describes a region where the level of
economic development is good, the innovation infrastructure is comprehensive, and
the social and cultural environment matches the innovation development. If local
government support for innovative tax incentives or R&D subsidies is inadequate, the
requirements for the regional innovation network are that the scale of the network
should be large, and that more universities, scientific research institutions, and enter-
prises need to join the network. Innovative subjects in this kind of network can
achieve the effects of high resource allocation without high network openness. The
representative region for this path is Liaoning (0.6,0.83).

4. Discussion

The path analysis showed that the intersection of network structure elements and
regional environment elements yields six combined paths, each of which embodies an
independent combination of realized outcomes and reasonably interprets the paths
and ways to reach the outcome variables, thus once again demonstrating the superior-
ity of the QCA method, which takes into account the cross-combination effects of
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multiple condition variables while effectively avoiding the endogeneity problem com-
mon to regression analysis.

Considering the path results discussed in Section 3.2.3, the following three points
can be clarified. First, the systems and policies environment is an important condition
for realising efficient allocation of regional innovation resources, in agreement with
results from Zhang et al. (2018). To some extent, this reflects the importance of local
government support for innovation. Of the six efficiently allocated paths discussed
above, five confirm that the condition occurs. From the results of the necessity ana-
lysis, the consistency of this condition (CI ¼ 0.770167) is the highest among all the
indicators, which shows that its importance is reflected in the scores. Government
application of policy tools such as R&D subsidies and tax incentives can effectively
promote collaboration and cooperation between innovative entities, thereby optimis-
ing the effect of resource allocation.

Second, network size is not a necessary condition for maintaining efficient resource
allocation in all regions. The findings from Ngamassi et al. (2014) seem consistent
with our study, they pointed out that the effectiveness of the network will take the
form of an inverted U shape as the network scale changes. The analysis of the Ha
path shows that a larger network scale does not necessarily lead to more effective
resource allocation. The scale of the network can have different effects on behaviour.
Appropriate expansion of the network scale will help to reduce transaction costs and
secure more innovative resources. However, excessive redundant connections may
also cause individuals to invest too many resources while neglecting one another.
This will increase the burden of coordination among members, which is not condu-
cive to the development of the entire regional innovation network and can have a
negative impact on resource allocation.

Third, although the regional innovation milieu provides important support for
improvements in efficiency, not all environmental elements are at a sufficiently
high level to achieve efficient allocation of regional innovation resources. As noted
by Zhang (2019), not all environmental factors are at a high level to achieve effi-
cient allocation. When the economic development, infrastructure, and social and
cultural environment of a region are below average, local government should enact
strong policies to create a highly supportive environment for innovation and to
make it more convenient to introduce capital, talents, material resources, technol-
ogy, and other important innovation resources. In this context, a region can also
achieve efficient allocation of innovative resources by strengthening cooperation
between nodes.

5. Conclusions and policy implications

This study has combined quantitative and qualitative approaches to shed light on the
optimal allocation path of regional innovation resources considering shared inputs
from the perspective of efficiency improvement. First, an improved network DEA
model was built to measure the efficiency of China’s regional innovation resource
allocation from 2010 to 2016, overall and in sub-stages, and the efficiency differences
of shared input were compared. Social network analysis was then used to explore the
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spatial relationship of regional innovation resource allocation in two stages. Finally,
the condition variables of promoting regional innovation resource allocation to
achieve high efficiency were explored, and the cross-action of high-efficiency factors
verified through comparative analysis of case paths based on QCA. The policy impli-
cations and conclusions of the findings are as follows.

Most regions in China scored higher for efficiency of innovation resource allocation
under shared inputs. During the study period, the overall efficiency of China’s regional
innovation resource allocation was at a medium-to-high level, leaving considerable
room for improvement. This emphasises the existence of problems such as redundancy
or waste of resource inputs, low conversion of high inputs, and low output. The effi-
ciency of the ACS has increased, but it remains at a lower level than the KIS, which
sets a constraint on overall efficiency and needs to be improved. Regions should inte-
grate existing innovation resources scientifically, link up the industrial chain, devote
resources to the transformation and promotion of innovation achievements, and adopt
measures to eliminate gaps in the commercialisation of achievements.

The spatial correlation network in the ACS was more complicated than in the
KIS. The efficiency of the allocation of innovative resources in various regions not
only affects neighbouring provinces but also transcends geographical restrictions to
have a spatial relationship with non-neighbouring provinces. Given the spatial rela-
tionship of China’s regional innovation resource allocation, this correlation should
be used as a reference for formulating more adaptable innovation and development
policies in different regions. At the same time, all regions should seek to strengthen
spatial relations in the ACS, actively cooperating with other regions to strengthen
collaborative innovation and resource sharing.

Improvement path analysis shows that the efficiency of regional innovation
resource allocation is affected by cross-actions of network scale, network openness,
network centrality, regional economic development, basic establishment, policy sys-
tems, and the socio-cultural environment. To achieve efficient allocation of innov-
ation resources, each region should therefore build an innovation network that
matches its own environmental characteristics. Local governments should actively cre-
ate a policy and institutional environment that is conducive to innovation, promoting
the free flow of regional innovation resource elements.
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