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method, three kinds of exact solutions of the general variable-coefficient KdV equa-
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1. Introduction

In recent decades, the study of nonlinear problems has been greatly intensified
in many areas of science and technology. Most nonlinear problems are charac-
terized by nonlinear equations. The methods of their solution play an important
role in the understanding nonlinear problems. Many methods have been proposed,
such as the inverse scattering method [1], Backlund transformations method [2],
Hirota transformations method [3], Darboux transformations method [4], the ho-
mogeneous balance method [5], the hyperbolic expansion method [6], sine-cosine
method [7], direct reductions method [8] and Jacobian elliptic function method [9].
However, these methods can only solve the problems of constant-coefficient non-
linear equations. But constant-coefficient nonlinear equations can only characterize
approximately the reality of physical phenomena, and studying of the corresponding
variable-coefficient nonlinear equations is very important.

In Ref. [10], the general variable-coefficient KdV equation has been studied by
the function transform in truncated expansion method

ut + 2β(t)u +
[

α(t) + β(t)x
]

ux − 3cγ(t)uux + γ(t)uxxx = 0 . (1)

FIZIKA A (Zagreb) 15 (2006) 2, 85–90 85



shi liangma et al.: improved truncated expansion method and new exact . . .

New kinds of solitary wave solutions were obtained. This method is very efficient.

In this paper, the truncated expansion method is improved and the special
function transform is applied. Many kinds of new exact solutions of the general
variable-coefficient KdV equation are obtained, which include the new kinds of
solitary wave solutions of Ref. [10].

2. The improved method

Our improved method can be summed up as follows. For a given general
variable-coefficient nonlinear equation

U(t, x, u, ux, uxx, uxxx, . . .) = 0 , (2)

we seek for its solutions in the form

u(x, t) =
N

∑

n=0

An(t)Fn, F = F (ξ) , (3)

where

ξ = f(t)x + g(t) (4)

and f(t) and g(t) are some functions which should be found. In solving the nonlinear
equation, the process will be very brief if we can transfer from the form of derivatives
to the form of a single derivative. So, we propose that F = F (ξ) satisfy

Fξ = p + qF + rF 2, (5)

where p, q and r are constants.

When q2 < 4pr, by integrating Eq. (5) with respect to ξ one obtains

F =

√

4pr − q2

2r
tg

√

4pr − q2

2
(ξ + C1) −

q

2r
. (6)

When q2 = 4pr, by integrating Eq. (5) with respect to ξ we obtain

F = −

q

2r
−

1

rξ + C2
. (7)

When q2 > 4pr, by integrating Eq. (5) with respect to ξ we obtain

F =

√

q2
− 4pr

r
·

C3 e

√

q2
− 4prξ

1 − C3 e

√

p2
− 4qrξ

+

√

q2
− 4pr − q

2r
, (8)

where C1, C2 and C3 are integration constants. Substitution of Eq. (6), (7) or
(8) into Eq. (1) yields the three kinds of exact solutions of the general variable-
coefficient KdV equation.
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3. The general variable-coefficient KdV equation

Equating the highest-order derivative term and the nonlinear term in Eq. (1),
we obtain N = 2, so

u = A0(t) + A1(t)F + A2(t)F
2 (9)

and we get

ut = A0t + pA1ξt + (A1t + qA1ξt + 2pA2ξt)F

+(rA1ξt + A2t + 2qA2ξ)F
2 + 2rA2ξtF

3, (10)

ux = ξx

[

pA1 + (qA1 + 2pA2)F + (rA1 + 2qA2)F
2 + 2rA2F

3
]

, (11)

uxxx = ξ3
x

[

pq2A1 + 2p2rA1 + 6p2qA2

+(q3A1 + 8pqrA1 + 14pq2A2 + 16p2rA2)F

+(7q2rA1 + 8pr2A1 + 52pqrA2 + 8q3A2)F
2

+(12qr2A1 + 38q2rA2 + 40pr2A2)F
3

+(6r3A1 + 54qr2A2)F
4 + 24r3A2F

5
]

. (12)

Substituting (9) – (12) into Eq. (1) and making that the coefficients of all powers
of F are equal to zero, we get

F 5 : −6cγ(t)ξxrA2
2 + 24γ(t)ξ3

xr3A2 = 0, (13)

F 4 : −3cγ(t)ξx(3rA1A2 + 2qA2
2) + γ(t)ξ3

x(6r3A1 + 54qr2A2) = 0, (14)

F 3 : 2rA2ξt + 2r[α(t) + β(t)x]ξxA2 − 3cξx(2rA0A2 + rA2
1 + 3qA1A2 + 2pA2

2)

+γ(t)ξ3
x(12qr2A1 + 38q2rA2 + 40pr2A2) = 0, (15)

F 2 : rA1ξt + A2t + 2qA2ξt + 2β(t)A2 + [α(t) + β(t)x]ξx(rA1 + 2qA2)

−3cγ(t)ξx(rA0A1 + 2qA0A2 + qA2
1 + 3pA1A2)

+γ(t)ξ3
x(7q2cA1 + 8pr2 + 8q2A2 + 52pqrA2) = 0, (16)

F 1 : A1t + qA1ξt + 2pA2ξt + 2β(t)A1 + [α(t) + β(t)x]ξx(qA1 + 2pA2)

−3cγ(t)ξx(qA0A1 + 2pA0A2 + pA2
1)

+γ(t)ξ3
x(q3A1 + 8pqrA1 + 14pq2 + 16p2rA2) = 0, (17)

F 0 : A0t + pA1ξt + 2β(t)A0 + [α(t) + β(t)x]ξxpA1 − 3cγ(t)ξxpA0A1

+γ(t)ξ3
x(pq2A1 + 2p2rA1 + 6p2qA2) = 0. (18)

From Eqs. (13) and (14) it follows that

A2 =
4r2

c
ξ2
x =

4r2

c
f2(t), A1 =

4qr

c
ξ2
x =

4qr

c
f2(t) . (19)
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From Eqs. (15) – (17) and (19) it follows that

ξt + [α(t) + β(t)x] f(t) − rγ(t)A0 f(t) + (q2 + 8pr)γ f3(t) = 0 . (20)

This proves that the former hypothesis is self-consistent. Comparing (20) to (5),
we obtain

ft = −β(t) f(t),

gt = −α(t) f(t) + 3cγ(t)A0 f(t) − (q2 + 4pr)γ(t) f3(t) . (21)

Substituting (20) into (18), we obtain

A0t + 2β(t)A0 = 0 . (22)

From Eqs. (21) and (22), we get

f(t) = Cf e−
∫

β(t)dt,

g(t) =

∫

[

− α(t) f(t) + 3cγ(t)A0 f(t) − (q2 + 8pr)γ(t) f3(t)
]

dt + Cg,

A0 = C0 e−
∫

2β(t)dt (23)

where Cf , Cg and C0 are integration constants.

So we can get the exact analytic solution of Eq. (1),

u = A0 +
4qr

c
f2(t)F (ξ) +

4r2

c
f2(t)F 2(ξ)

= A0 +
4r

c
f2(t) [qF (ξ) + rF 2(ξ)] . (24)

When constants p, q and r have different values, we can also obtain new kinds of
exact solutions of variable-coefficient KdV equation. When q2 < 4pr,

u = e−2
∫

βdt

[

C0 −
C2

fq2

c
+

(4pr − q2)C2
f

c
tg2

√

4pr − q2

2
(ξ + C1)

]

. (25)

If
√

4pr − q2/2 = 1, Eq. (25) takes the form

u = e−2
∫

βdt

[

C0 −
C2

fq2

c
+

4C2
f

c
tg2(ξ + C1)

]

= e−2
∫

βdt

[

C0 −
C2

fq2

c

]

+ e−2
∫

βdt
4C2

f

c
tg2(ξ + C1). (26)
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This is in consonance with the second exact analytic solution of Ref. [11].

When q2 = 4pr, we obtain

u = e−2
∫

βdt

[

C0 −
4prC2

f

c
+

4r2C2
f

c

1

(rξ + C2)2

]

. (27)

When q2 > 4pr,

u = e−2
∫

βdt

[

C0 −
4prC2

f

c
+

4(q2
− 4pr)C2

f

c
·

C3e

√

q2
− 4prξ

(

1 − C3e

√

q2
− 4prξ)2

]

. (28)

From Eq. (28), if
√

q2
− 4pr/2 = 1, C3 = −1, we obtain

u = e−2
∫

βdt

[

C0 −
4prC2

f

c
−

16C2
f

c
·

e2ξ

(1 + e2ξ)2

]

= e−2
∫

βdt

[

C0 −
4prC2

f

c
+

4C2
f

c

]

+ e−2
∫

βdt
4C2

f

c
tanh2 ξ. (29)

This is in consonance with the first exact analytical solution of Ref. [11].

From Eq. (28), if p = 0, q = −1, r = 1, C3 = −1, we get

u = e−2
∫

βdt

[

C0 −
4C2

f

c
·

eξ

(1 + eξ)2

]

= C0 e−2
∫

βdt
− e−2

∫

βdt
C2

f

c
sech2 1

2
ξ. (30)

This is in consonance with the soliton solution (34) of Ref. [10].

4. Conclusions

In this paper, we have presented a new function transform form and obtained
new kinds of exact solutions of variable-coefficient KdV equation with improved
truncated expansion method, which include the exact solutions of Ref. [10]. In
addition, when the constants p, q and r take up different values, we can obtain
many new exact solutions. This method of solving equations is adapted to solving
other variable-coefficient nonlinear equations.
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POBOLJŠANA METODA PREKIDA RAZVOJA I NOVA RJEŠENJA OPĆE
KdV JEDNADŽBE S PROMJENLJIVIM KOEFICIJENTIMA

U ovom radu, primjenom posebnih pretvorbi funkcija i prekidom razvoja, postigli
smo tri egzaktna rješenja opće KdV jednadžbe s varijabilnim koeficijentima.
Postignuta rješenja su općenita i sadrže neka poznata analitička rješenja u drugim
radovima.
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