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1. Introduction

General relativity textbooks universally present the various tensors and connec-
tion coefficients associated with spacetime geometry. The textbooks are excellent
in terms of their description of the theory, but are often written from a perspective
of the student that will eventually do research in general relativity.

General relativity is no longer a field limited to a narrow subset of physics, and
it has entered the commercial world through the expanded use of global positioning
systems. The concepts of general relativity are also increasingly important in space
exploration and more students are taking courses that include at least elements
of general relativity. This expanded usefulness of general relativity and numerous
student comments motivate this paper.

Physics students, including advanced undergraduates and non-theorists, at-
tempting their initial course in general relativity are often overwhelmed by the
mathematics associated with various tensors and connection coefficients. As such,
some students focus on the mathematical machinery and not the underlying phys-
ical principles, and miss the beauty of the underlying spacetime geometry. This
tendency is particularly true for students who will only take a single general rela-
tivity course.
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bevelacqua: curvature systematics in general relativity

One commonly mentioned student issue is the lack of a compilation of the
various tensors and connection coefficients. Such a compilation serves to minimize
the frustration in calculating these quantities, facilitates physical insight into their
meaning, and enhances understanding of various spacetime geometries.

A number of these geometries also admit structures (e.g. wormholes) that have
been popularized in science fiction. Wormholes and their relationship to the various
spacetime geometries is another misconception of a number of students participat-
ing in general relativity courses. As such a clarification of the wormhole concept
in the context of spacetime geometry is warranted and will enhance a student’s
understanding of general relativity.

This paper has been written to address the aforementioned student issues. The
author has found that a unified set of basic connection coefficients and tensors
for a number of representative geometries enhances student comprehension of the
physical meaning of these spacetime geometries. In addition, a consistent treatment
of these geometries corrects misconceptions regarding wormhole phenomena and
their physical meaning. Herein, we present information that the author has found
to improve the comprehension and general understanding of general relativity to a
broad audience of students.

2. Basic curvature quantities

There are a number of quantities that can be used to describe spacetime geome-
tries. These include the metric tensor, inverse metric tensor, affine connection co-
efficients or Christoffel symbols, the Riemann curvature tensor, Ricci tensor, scalar
curvature, and the Einstein tensor [1 – 3]. Each of these is well defined once the
spacetime geometry is specified. For each geometry, a specific coordinate system is
provided. The various tensors and connection coefficients are defined in terms of
these coordinates.

The metric tensor gµν is provided in terms of the specified coordinates. From a
given metric gµν , we compute the components of the following: the inverse metric,
the Christoffel symbols or affine connection coefficients, the Riemann curvature
tensor, the Ricci tensor, the scalar curvature, and the Einstein tensor.

The Christoffel symbols are defined in terms of the inverse metric tensor and
partial derivatives of the metric tensor,

Γλ
µν =

1

2
gλσ(∂µgσν + ∂νgσµ − ∂σgµν) , (1)

where ∂α stands for the partial derivative ∂/∂xα, and repeated indices are summed.
An examination of Eq. (1) reveals that the Christoffel symbols are symmetric in
the lower two indices,

Γλ
µν = Γλ

νµ . (2)

The Christoffel symbols are uniquely related to the equation for timelike geo-
desics,

d2xλ

dτ2
+ Γλ

µν
dxµ

dτ

dxν

dτ
= 0 , (3)
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where xλ are the coordinates in our 4-dimensional basis and τ is the proper time.
As noted by Misner et al. [1] in describing geodesic motion on the earth: “ ... the
connection coefficients serve as ‘turning coefficients’ to tell how fast to ‘turn’ the
components of a vector in order to keep that vector constant (against the turning
influence of the base vectors)”.

The Christoffel symbols are also an important ingredient of the equation of
geodesic deviation,

Rλ
µνσ = ∂νΓλ

µσ − ∂σΓλ
µν + Γη

µσΓλ
ην − Γη

µνΓλ
ησ . (4)

The quantity Rλ
µνσ is a rank-four tensor called the Riemann curvature tensor or

Riemann curvature. It represents a measure of spacetime curvature.

An examination of Eq. (4) reveals the antisymmetry of the Riemann curvature
tensor under the exchange of the first two indices and the last two indices,

Rλ
µνσ = −Rµ

λ
νσ , (5)

Rλ
µνσ = −Rλ

µσν . (6)

By summing the first and third indices of the Riemann curvature tensor, the
rank-two Ricci tensor Rµν is obtained,

Rµν = Rλ
µλν . (7)

The Ricci tensor can be expressed in terms of the Christoffel symbols,

Rµν =
∂Γγ

µν

∂xγ
−

∂Γγ
µγ

∂xν
+ Γγ

µνΓδ
γδ − Γγ

µδΓ
δ
νγ . (8)

An inspection of Eq. (8) reveals that the Ricci tensor is symmetric in µ and ν.

The scalar curvature (R) is defined in terms of the inverse metric and the Ricci
tensor,

R = gµνRµν . (9)

Finally, the Einstein curvature tensor (Gµν) is defined in terms of the Ricci
tensor, metric tensor, and the scalar curvature,

Gµν = Rµν −
1

2
gµνR . (10)

For completeness, we note that the Einstein curvature tensor, describing the
spacetime geometry, is related to the stress-energy tensor Tµν ,

Gµν = 8πTµν , (11)

where Tµν is the measure of the matter-energy density.

In Section 3, a summary of connection coefficients and tensors for common
spacetime geometries is provided. Only non-zero components are presented and
symmetry properties are utilized to minimize the number of components presented.
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3. Tensors and connection coefficients

A number of commonly encountered spacetime geometries are investigated to
illustrate their impact on their associated derived quantities. For each, we pro-
vide all nonzero Christoffel symbols, the scalar curvature, and nonzero elements
of the Riemann curvature tensor, the Ricci tensor, and the Einstein tensor. These
quantities are provided for flat spacetime, the Schwarzschild geometry [4, 5], the
Morris-Thorne (MT) wormhole geometry [6 – 8], the Friedmann-Robertson-Walker
(FRW) geometry [1, 3, 9], and a static spherical geometry [10]. In the subsequent
discussion, spherical coordinates {r, θ, φ, t} are utilized in the description of all
spacetime geometries. The ranges of these coordinates are: 0 ≤ r ≤ ∞, 0 ≤ θ ≤ π,
0 ≤ φ ≤ 2π and 0 ≤ t ≤ ∞.

The use of spherical coordinates provides internal consistency between the var-
ious metrics utilized in this paper. It is worth noting that a specific orthonormal
basis could provide a simpler expression for a highly symmetric metric or one that
is not singular at a coordinate singularity. However, these bases would depend on
the specific spacetime geometry. An orthonormal basis would also simplify the so-
lution the Einstein equation, but solutions of the Einstein equation are beyond the
scope of this paper.

Geometrized units [1, 3] are used in the subsequent discussion. These units are
convenient for general relativity, and utilize a system in which mass, length, and
time all have units of length. In these units, the speed of light and the gravitational
constant have unit value.

3.1. Flat spacetime geometry

The coordinates used to define the flat spacetime geometry are {r, θ, φ, t}. The
metric tensor (gµν) is given by

gµν =









1 0 0 0
0 r2 0 0
0 0 r2 sin2 θ 0
0 0 0 −1









(12)

and the inverse metric tensor (gµν) by

gµν =







1 0 0 0
0 1/r2 0 0
0 0 cosec2θ/r2 0
0 0 0 −1






. (13)

For the flat spacetime, it is expected that the scalar curvature will be zero.
Zero curvature also suggests the tensors associated with its definition (e.g., the
Ricci tensor and the Riemann curvature tensor) will also have few, if any, non-zero
elements. In a similar fashion, the Einstein curvature in flat spacetime is expected
to have few, if any, non-zero elements. This qualitative argument is supported by
calculation of the elements of these tensors.
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The affine coefficients are not expected to be all zero. An inspection of the flat
spacetime metric suggests the Christoffel symbols involving t as an index are zero
since no metric coefficients are time dependent. Since there is an interrelationship
between r, θ and φ, it is expected that some of the Christoffel symbols having these
elements will be non-zero. This is in fact the case. A listing of these flat-spacetime
connection coefficients and tensors follows.

Christoffel symbols:

Γr
θθ = −r , Γr

φφ = −r sin2 θ ,

Γθ
θr =

1

r
, Γθ

φφ = − cos θ sin θ ,

Γφ
φr =

1

r
, Γφ

φθ = cot θ .

(14)

Riemann curvature tensor. All elements of the Riemann curvature tensor
are zero within the flat spacetime geometry,

Rλ
µνσ = 0 . (15)

Ricci tensor. All elements of the Ricci tensor are zero within the flat spacetime
geometry.

Rµν = 0 . (16)

Scalar curvature. The scalar curvature is zero within the flat spacetime
geometry.

R = 0 . (17)

Einstein tensor. All elements of the Einstein tensor are zero within the flat
spacetime geometry.

Gµν = 0 . (18)

3.2. Schwarzschild geometry

The simplest curved spacetimes of general relativity are those that are the most
symmetric. One of the most useful spacetime geometries is the Schwarzschild geom-
etry that describes empty space outside a spherically symmetric source of curvature
(e.g., a spherical star). In addition, the Schwarzschild geometry is a solution of the
vacuum Einstein equation or the equation describing spacetime devoid of matter
[1, 3].

The coordinates used to define the Schwarzschild metric are {r, θ, φ, t}, and the
metric tensor is given by

gµν =















1

1 − 2m/r
0 0 0

0 r2 0 0

0 0 r2 sin2 θ 0

0 0 0 −1 + 2m/r















(19)
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and the inverse metric tensor is

gµν =























1 − 2m/r 0 0 0

0 1/r2 0 0

0 0 cosec2θ/r2 0

0 0 0 r/(2m − r)























. (20)

The Schwarzschild metric has the following properties [1, 3]:

* The metric is independent of time.

* The metric is spherically symmetric. The geometry of a surface of constant t
and constant r has the symmetries of a sphere of radius r with respect to exchange
of the angles θ and φ.

* The coordinate r is not the distance from any center. It is related to the area
(A) of a two-dimensional sphere of fixed r and t, r = (A/4π)1/2.

* The constant m can be identified as the total mass of the source of curvature.

* The geometry becomes interesting at r = 0 and r = 2m. The r = 2m value is
called the Schwarzschild radius that is the characteristic length scale for curvature in
the Schwarzschild geometry. The surface of a static star (i.e., a star not undergoing
gravitational collapse) lies well outside r = 0 and r = 2m.

* At large r (r ≫ 2m), the Schwarzschild spacetime approaches flat spacetime.

* For small m (m → 0), the Schwarzschild spacetime approaches flat spacetime.

An examination of Eqs. (19) and (20) indicates that the Schwarzschild geometry
is identical to the flat spacetime in the limit that m → 0 or r ≫ 2m (Eqs. (12) and
(13)). This limit serves as a natural check on the affine connection coefficients and
curvature tensors presented below.

Christoffel symbols:

Γr
rr = m/(2mr − r2) , Γr

θθ = 2m − r , Γr
φφ = (2m − r) sin2 θ ,

Γr
tt = m(−2m + r)/r3 , Γθ

θr = 1/r , Γθ
φφ = − cos θ sin θ , (21)

Γφ
φr = 1/r , Γφ

φθ = cot θ , Γt
tr = m/(−2mr + r2) .

Examination of Eqs. (21) supports the requirement that the Christoffel sym-
bols derived from the Schwarzschild geometry reduce to those derived from flat
spacetime in the m → 0 limit or the r ≫ 2m limit.

Riemann curvature tensor. The Riemann curvature tensor has a number
of non-zero elements within the Schwarzschild geometry. In the m → 0 limit or
the r ≫ 2m limit, the flat spacetime results (Eq. 15) are obtained. The non-zero
Schwarzschild Riemann curvature tensor elements are:
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Rr
θθr = m/r , Rr

φφr = m sin2 θ/r , Rr
ttr = 2m(−2m + r)/r4,

Rθ
rθr = m/

(

(2m − r)r2
)

, Rθ
φφθ = 2m sin2 θ/r , Rθ

ttθ = m(2m − r)/r4, (22)

Rφ
rφr = m/

(

(2m − r)r2
)

, Rφ
θφθ = 2m/r , Rφ

ttφ = m(2m − r)/r4 ,

Rt
rtr = 2m/

(

(−2m + r)r2
)

, Rt
θtθ = −m/r , Rt

φtφ = −m sin2 θ/r .

Ricci tensor. All elements of the Ricci tensor are zero within the Schwarzschild
geometry.

Rµν = 0 . (23)

Scalar curvature. The scalar curvature is zero within the Schwarzschild
geometry:

R = 0 . (24)

Einstein tensor. All elements of the Einstein tensor are zero within the
Schwarzschild geometry

Gµν = 0 . (25)

The Schwarzschild geometry exhibits a discontinuity as r → 2m. This condition
may be viewed as a Schwarzschild wormhole or conduit that connects two distinct
regions of a single asymptotically flat universe. Further discussion of this geometry
is provided in Refs. [1 – 3].

Other spacetime geometries also exhibit wormhole characteristics. Accordingly,
we will further pursue the wormhole concept in the next section of this paper.

3.3. Wormhole geometry

In order to further illustrate the wormhole concept, the Morris-Thorne wormhole
geometry [6 – 8] is reviewed. The coordinates used to define the MT wormhole
geometry are {r, θ, φ, t}, and the metric tensor is

gµν =













1 0 0 0

0 b2 + r2 0 0

0 0 (b2 + r2) sin2 θ 0

0 0 0 −1













(26)

and the inverse metric tensor is

gµν =













1 0 0 0

0 1/(b2 + r2) 0 0

0 0 cosec2θ/(b2 + r2) 0

0 0 0 −1













, (27)
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where b is a constant having the dimensions of length. An examination of the
wormhole geometry indicates that it reduces to flat spacetime (Eqs. (12) and (13))
in the limit b → 0.

At the present time, the MT wormhole geometry does not represent a physically
realistic spacetime. Except for the b = 0 metric, the geometry is not flat, but
is curved. For b /= 0, an embedding of the (r, φ) slice of the wormhole geometry
produces a surface with two asymptotically flat regions connected by a region of
minimum radius b. This region resembles a tunnel or wormhole connecting the two
asymptotically flat regions [7, 8].

Insight into the geometry of the MT wormhole can be gained if the spherical
symmetry and static nature of the metric are considered. For simplicity, the discus-
sion is limited to the equatorial plane (θ = π/2) at a fixed instant of time. Using
the coordinate transformation [8],

R2 = b2 + r2 , (28)

the metric in the plane θ = π/2, t = constant is

dσ2
2−surface =

1

1 − (b/R)2
dR2 + R2dφ2 . (29)

Following Müller [8], we can imbed this two-surface in a three-dimensional Euclid-
ean space which is represented by the cylindrical coordinates (R,φ, z) by identifying
this surface with the surface z = z(R). The metric of the surface in Euclidean space
can be written as

dσ2
Euclidean =

[

1 +

(

dz

dR

2)]

dR2 + R2dφ2 . (30)

The comparison of Eqs. (29) and (30) and integration with respect to R leads to
the shape of the embedding diagram,

z(R) = ±b ln





R

b
+

(

(

R

b

)2

− 1

)1/2


 . (31)

As noted in Refs. [7] and [8], the embedding space has no physical meaning. The
structure of Eq. (31) is an upper universe connected by a throat of radius b to a lower
universe. The impression of a tube (throat) suggested by Eq. (31) is misleading.
There is no tube in spacetime, because the regions with radial coordinate R < b
are not part of the spacetime. The throat has a spherical topology and becomes
important only for geodesics that spiral in the direction of decreasing R (e.g., like
water flowing down a drain). Additional discussions about the physics of wormholes
and their shapes are found in Refs. [6 – 8].
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The wormhole geometry cannot be produced from smooth distortions of flat
spacetime. The creation of a wormhole geometry has not only a different geometry
from the flat spacetime, but also a different topology [3].

In addition to the previous discussion, the MT wormhole metric has the follow-
ing properties:

* The metric is independent of time.

* The metric is spherically symmetric because a surface of constant r and t has
the geometry of a sphere.

* At very large r (r ≫ b), the MT spacetime approaches flat spacetime.

The MT wormhole geometry also reduces to flat spacetime in the b → 0 limit.
This consistency check is indeed observed for the MT wormhole connection coeffi-
cients and curvature tensors presented below.

Christoffel symbols:

Γr
θθ = −r , Γr

φφ = −r sin2 θ ,

Γθ
θr = r/(b2 + r2) , Γθ

φφ = − cos θ sin θ , (32)

Γφ
φr = r/(b2 + r2) , Γφ

φθ = cot θ .

Riemann curvature tensor:

Rr
θθr = b2/(b2 + r2) , Rr

φφr = b2 sin2 θ/(b2 + r2) ,

Rθ
rθr = −b2/(b2 + r2)2 , Rθ

φφθ = −b2 sin2 θ/(b2 + r2) , (33)

Rφ
rφr = −b2/(b2 + r2)2 , Rφ

θφθ = b2/(b2 + r2) .

Ricci tensor. Only the Rrr element is nonzero within the MT wormhole
geometry,

Rrr = −2b2/(b2 + r2)2 , (34)

Scalar curvature. The scalar curvature is nonzero within the MT wormhole
geometry,

R = −2b2/(b2 + r2)2 , (35)

Einstein tensor. The diagonal elements of the Einstein tensor are nonzero
within the MT wormhole geometry:

Grr = −
b2

(b2 + r2)2
, Gθθ =

b2

b2 + r2
, Gφφ =

b2 sin2 θ

b2 + r2
, Gtt = −

b2

(b2 + r2)2
.

(36)

FIZIKA A (Zagreb) 15 (2006) 3, 133–146 141



bevelacqua: curvature systematics in general relativity

3.4. Static spherical geometry

The coordinates used to define the static spherical geometry [10] are {r, θ, φ, t}.
The rr and tt metric tensor elements of the static spherical geometry are functions
of r, namely exponential functions of λ(r) and φ(r). The metric tensor is given by

gµν =













e2λ(r) 0 0 0

0 r2 0 0

0 0 r2 sin2 θ 0

0 0 0 −e2φ(r)













(37)

and the inverse metric tensor is

gµν =













e−2λ(r) 0 0 0

0 1/r2 0 0

0 0 cosec2θ/r2 0

0 0 0 −e−2φ(r)













. (38)

In the subsequent discussion, the derivative with respect to r is indicated by a
prime. That is λ′ = dλ/dr. Similarly, φ ′ = dφ/dr

The static spherical geometry reduces to the flat spacetime geometry in the
limit λ(r) → 0 and φ(r) → 0. This consistency check is verified by examining the
tensors and connection coefficients noted below.

Christoffel symbols:

Γr
rr = λ′(r) , Γr

θθ = −re−2λ(r) , Γr
φφ = −e−2λ(r)r sin2 θ ,

Γr
tt = e−2λ(r)+2φ(r)φ ′(r) , Γθ

θr = 1/r , Γθ
φφ = − cos θ sin θ , (39)

Γφ
φr = 1/r Γφ

φθ = cot θ , Γt
tr = φ ′(r) .

Riemann curvature tensor:

Rr
θθr = −e−2λ(r)rλ′(r), Rr

φφr = −e−2λ(r)r sin2 θλ′(r),

Rr
ttr = e−2λ(r)+2φ(r)(λ′(r)φ ′(r)−φ ′2(r)−φ ′′(r)), Rθ

rθr = λ′(r)/r, (40)

Rθ
φφθ = (−1 + e−2λ(r)) sin2 θ, Rθ

ttθ = −e−2λ(r)+2φ(r)φ ′(r)/r,

Rφ
rφr = λ′(r)/r, Rφ

θφθ = 1 − e−2λ(r),

Rφ
ttφ = −e−2λ(r)+2φ(r)φ ′(r)/r, Rt

θtθ = −e−2λ(r)rφ ′(r),

Rt
rtr = λ′(r)φ ′(r) − φ ′2(r) − φ ′′(r), Rt

φtφ = −e−2λ(r)r sin2 θφ ′(r).
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Ricci tensor. Only the diagonal Ricci tensor elements are nonzero within the
static spherical geometry:

Rrr =
(

λ′(r)
(

2 + rφ ′(r)
)

− r
(

φ ′2(r) + φ ′′(r)
)

)/

r ,

Rθθ = e−2λ(r)
(

− 1 + e2λ(r) + rλ′(r) − rφ′(r)
)

, (41)

Rφφ = e−2λ(r) sin2 θ
(

− 1 + e2λ(r) + rλ′(r) − rφ ′(r)
)

,

Rtt = e−2λ(r)+2φ(r)
(

(

2 − rλ′(r)
)

φ ′(r) + rφ ′2(r) + rφ ′′(r)
)/

r .

Scalar curvature. The scalar curvature is nonzero within the static spherical
geometry,

R=
1

r2

(

2e−2λ(r)
(

−1+ e2λ(r)−2rφ ′(r)− r2φ ′2(r)+ rλ′(r)(2+ rφ ′(r))− r2φ ′′(r)
)

)

.

(42)

Einstein tensor. The diagonal elements of the Einstein tensor are nonzero
within the static spherical geometry:

Grr =
1

r2

(

1 − e2λ(r) + 2rφ ′(r)
)

,

Gθθ = e−2λ(r)r
(

φ ′(r) + rφ ′2(r) − λ′(r)(1 + rφ ′(r)) + rφ ′′(r)
)

, (43)

Gφφ = e−2λ(r)r sin2 θ
(

φ ′(r) + rφ ′2(r) − λ′(r)(1 + rφ ′(r)) + rφ ′′(r)
)

,

Gtt =
1

r2
e−2λ(r)+2φ(r)

(

− 1 + e2λ(r) + 2rλ′(r)
)

.

3.5. Friedmann-Robertson-Walker (FRW) geometry

The FRW geometry describes the time evolution of a homogeneous, isotropic
space that expands in time as a(t) increases and contracts as a(t) decreases [3]. The
function a(t) contains all information about the temporal evolution of the universe.

In addition to the scaling factor a(t), a constant k is included in the FRW
metric. The constant k determines the classification of the universe (i.e., k = +1
indicates a closed universe, k = 0 indicates a flat universe, and k = −1 indicates
an open universe). Although the conventional terminology flat, closed, and open
are used to distinguish the three possible homogeneous and isotropic geometries
of space, it is more physical to distinguish these features in terms of their spatial
curvature [3].

Homogeneity requires that the spatial curvature be the same at each point in
these geometries.

The flat case has zero spatial curvature everywhere. The closed and open cases
have constant positive and constant negative curvature, respectively.

Following the previous discussion of the MT wormhole geometry, embedding
can be constructed for the possible homogeneous and isotropic geometries for the
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FRW metric. If the t = constant, θ = π/2 two-surface is considered, the flat
and closed embedding diagrams correspond to a plane and sphere, respectively.
These are constant zero-curvature and positive curvature surfaces, respectively. A
t = constant, θ = π/2 slice of the open FRW geometry can’t be embedded as an
axisymmetric surface in flat three-dimensional space. That surface has a constant
negative curvature. The reader is referred to Hartle [3] for additional discussion of
FRW embedding diagrams.

The coordinates used to define the FRW geometry are {r, θ, φ, t}, and the metric
tensor is given by

gµν =

















a2(t)

1 − kr2
0 0 0

0 r2a2(t) 0 0

0 0 r2a2(t) sin2 θ 0

0 0 0 −1

















(44)

and the inverse metric tensor is

gµν =





















1 − kr2

a2(t)
0 0 0

0
1

r2a2(t)
0 0

0 0
cosec2θ

r2a2(t)
0

0 0 0 −1





















. (45)

The FRW geometry reduces to the flat spacetime geometry in the limit
a → 1 and k → 0. This consistency check is verified by examining the tensors
and connection coefficients noted below.

Christoffel symbols:

Γr
rr =

kr

1 − kr2
, Γr

θθ = (−1 + kr2)r,

Γr
φφ = (−1 + kr2)r sin2 θ, Γr

tr =
ȧ(t)

a(t)
,

Γθ
θr =

1

r
, Γθ

φφ = − cos θ sin θ , Γθ
tθ =

ȧ(t)

a(t)
,

Γφ
φr =

1

r
, Γφ

φθ = cot θ , Γφ
tφ =

ȧ(t)

a(t)
,

Γt
rr =

a(t)ȧ(t)

1 − kr2
, Γt

θθ = r2a(t)ȧ(t) , Γt
φφ = r2a(t)ȧ(t) sin2 θ .

(46)
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Riemann curvature tensor:

Rr
θθr =−r2(ȧ2(t) + k), Rr

φφr =−r2(ȧ2(t) + k) sin2 θ, Rr
ttr =

ä(t)

a(t)
,

Rθ
rθr =

ȧ2(t) + k

1 − kr2
, Rθ

φφθ =−r2(k + ȧ2(t)) sin2 θ, Rθ
ttθ =

ä(t)

a(t)
,

Rφ
rφr =

ȧ2(t) + k

1 − kr2
, Rφ

θφθ =r2(k + ȧ2(t)) , Rφ
ttφ =

ä(t)

a(t)
,

Rt
rtr =

a(t)ä(t)

1 − kr2
, Rt

θtθ =r2a(t)ä(t) , Rt
φtφ =r2a(t)ä(t) sin2 θ.

(47)

Ricci tensor. Only the diagonal Ricci tensor elements are nonzero within the
FRW geometry:

Rrr =
2k + 2ȧ2(t) + a(t)ä(t)

1 − kr2
, Rθθ = r2(2k + 2ȧ2(t) + a(t)ä(t)),

Rφφ = r2(2k + 2ȧ2(t) + a(t)ä(t)) sin2 θ, Rtt = −
3ä(t)

a(t)
.

(48)

Scalar curvature. The scalar curvature is nonzero within the FRW geometry:

R =
6
(

k + ȧ2(t) + a(t)ä(t)
)

a(t)2
. (49)

Einstein tensor. The diagonal elements of the Einstein tensor are nonzero
within the FRW geometry

Grr =
k + ȧ2(t) + a(t)ä(t)

−1 + kr2
, Gθθ = −r2(k + ȧ2(t) + a(t)ä(t)) ,

Gφφ = −r2 sin2 θ(k + ȧ2(t) + a(t)ä(t)) , Gtt =
3(k + ȧ2(t))

a2(t)
.

(50)

4. Conclusion

Using spherical coordinates, the affine connection coefficients, the Riemann cur-
vature tensor, Ricci tensor, scalar curvature, and Einstein tensor are determined for
flat spacetime, the Schwarzschild geometry, the Morris-Thorne wormhole geometry,
the Friedmann-Robertson-Walker geometry, and a static spherical geometry. This
approach provides students with a logical and consistent treatment of the basic
quantities and spacetime geometries associated with general relativity, gravitation,
and differential geometry. In addition, the approach provides a physical description
of these quantities and their interrelationships.
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IZRAZI ZA ZAKRIVLJENOST U OPĆOJ TEORIJI RELATIVNOSTI

Daje se jasan opis niza prostorno-vremenskih geometrija preko veznih koeficijenata
i tenzora zakrivljenosti koji se rabe u teoriji. Navode se afini vezni koeficijenti, Rie-
mannov tenzor zakrivljenosti, Riccijev tenzor, skalarna zakrivljenost i Einsteinov
tenzor, i oni se raspravljaju za ravan prostor, Schwarzschildovu geometriju, Morris-
Thorneovu geometriju crvotočina, te Friedmann-Robertson-Walkerovu i statičku
sfernu geometriju.
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