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 The paper presents a finite element formulation for analysis of 3D 

framed structures with thin-walled laminated composite cross-
sections, using a co-rotational approach. The formulation 

considers the effects of large displacements on the response of 

space frames subjected to conservative and static external loads. 

Classical lamination theory for thin fiber-reinforced laminates has 

been employed. Stability analysis is performed in load deflection 

manner using co-rotational formulation. The shear strain of the 

middle surface is assumed to be zero, and the cross-section is not 

distorted in its own plane. In order to illustrate the application of 

the proposed formulation, several numerical examples are 

presented. 
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1 Introduction 
 

Composite materials have gained significant attention in recent years due to their high strength-to-weight 

ratio, corrosion resistance, and excellent fatigue properties. Composite laminated spatial beams, which are 

commonly used in aerospace and civil engineering applications, offer significant advantages over their metallic 

counterparts in terms of weight reduction and design flexibility. However, these structures are susceptible to 
various types of instability, including buckling, vibration, and flutter. Therefore, it is crucial to ensure the 

global stability of these structures under different loading conditions. Large displacement analysis is an 

essential tool for predicting the load-carrying capacity of composite laminated spatial beams and ensuring their 
structural integrity. Numerous papers have been dedicated to performing finite element buckling analysis on 

various types of composite beams, and only a selection of these papers is referenced here. Lee and Kim [1] 

have studied flexural–torsional buckling of thin-walled I-section composites. Kim et al. [2] have proposed 
numerical method to evaluate exactly the element stiffness matrix for the lateral buckling analysis of thin-

walled composite I- and channel-section beams with symmetric and arbitrary laminations subjected to end 

moments. 

Vo and Lee have presented geometrically nonlinear model for composite box beams [3] and general thin-
walled open-section composite beams [4] with arbitrary lay-ups under various types of loadings. That model 

accounts for all structural coupling coming from the material anisotropy and geometric nonlinearity and 

nonlinear governing equations are derived and solved by means of an incremental Newton–Raphson method. 
Silvestre, Camotim and their co-workers [5]-[7] introduced a second-order Generalised Beam Theory (GBT) 
developed to analyse the buckling behaviour of composite thin-walled members which incorporates both local 

and global deformation modes. Saravia et al. [8] have presented geometrically nonlinear beam finite element 
for composite closed section thin-walled beams considering arbitrary displacements and rotations. Ahmadi and 

Rasheed [9] have developed generalized semi-analytical approach for lateral-torsional buckling of simply 

supported anisotropic, thin-walled, rectangular cross-section beams under concentrated load at mid-span/mid-

height. 
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Huang and Qiao [10], [11] have presented semi-analytical solution for critical buckling load and nonlinear 

load-deflection relationship of I-section laminated composite curved beams with elastic end restraints. They 

derived the governing differential equations of thin-walled curved beams from the principle of virtual 
displacement with full consideration of curvature effect. Banić et al. [12] have presented shear deformable 

beam model for the nonlinear stability analysis of composite beam-type structures. The model derives 

incremental equilibrium equations in the framework of an updated Lagrangian formulation. Stability analysis 
is a crucial aspect in the design and analysis of load-carrying structures. Two approaches are commonly used 

for this purpose: eigenvalue analysis [13] and load-deflection analysis [14]. The former approach neglects pre-

buckling deformations, while the latter considers the entire range of loading, including pre-buckling and post-

buckling phases. The load-deflection analysis, also known as nonlinear stability analysis, is more reliable for 
imperfect or real structures and loading conditions with or without material nonlinearity. 

Nonlinear response of load-carrying structures requires numerical methods such as the finite element 

method. Different descriptions, such as the total and updated Lagrangian ones [15], [16], and the co-rotational 
description [17] - [20] can be utilized. The co-rotational description is a well-known approach for developing 

efficient beam elements for nonlinear analysis of structures. It is linear on the element level, and geometrically 

nonlinear effects are introduced through the transformation from the local coordinate system to the global one. 

In this paper co-rotational description is used to develop a finite element formulation for stability analysis of 
3D framed structures with thin-walled laminated composite cross-section. The formulation considers the 

effects of large displacements on the response of space frames subjected to conservative and static external 

loads. Classical lamination theory for thin fiber-reinforced laminates has been employed, and the formulation 
is applicable to any arbitrary laminate cross-section shape. The shear strain of the middle surface is assumed 

to be zero, and the cross-section is not distorted in its own plane. 

  

2 Theoretical background 
 

2.1 Kinematics 
 

In a local Cartesian coordinate system in which beam axis, that connects all cross sectional centres of 
gravity, coincides with z axis while x and y are principal axes, cross sectional rigid body displacements are: 

 

 𝑤0 = 𝑤0(𝑧), 𝑢0 = 𝑢0(𝑧), 𝑣0 = 𝑣0(𝑧),  

𝜙𝑧 = 𝜙𝑧(𝑧), 𝜙𝑥 = −
𝑑𝑣0

𝑑𝑧
,  𝜙𝑦 =

𝑑𝑢0

𝑑𝑧
,  

𝜃 = −
𝑑𝜙𝑧

𝑑𝑧
. 

(1) 

 

In Eq. (1), 𝑤o, 𝑢o and 𝑣o are the rigid body translations in the z-, x- and y-directions, respectively; 𝜙𝑧 , 𝜙𝑥  and 

𝜙𝑦 are the rigid body rotations around z-, x- and y-axes, respectively, while 𝜃 is a cross-sectional warping 

parameter. The displacement components of an arbitrary point of the cross section are defined as: 

 
 

𝑤 = 𝑤o − 𝑦
𝑑𝑣0

𝑑𝑧
− 𝑥

𝑑𝑢0

𝑑𝑧
− 𝜔

𝑑𝜙𝑧

𝑑𝑧
  

𝑢 = 𝑢o − 𝑦 𝜙𝑧   
𝑣 = 𝑣o + 𝑥 𝜙𝑧  

(2) 

 

where x and y define the position of the cross section, while  is a value of the cross-sectional warping function. 

The strain tensor components can be written as: 

 

 
𝜀𝑧 =

𝑑𝑤𝑜

𝑑𝑧
− 𝑦

𝑑𝜙𝑥

𝑑𝑧
− 𝑥

𝑑𝜙𝑦

𝑑𝑧
− 𝜔

𝑑2𝜙𝑧

𝑑𝑧2
+

1

2
(𝑥2 + 𝑦2) (

𝑑𝜙𝑧

𝑑𝑧
)

2

 (3) 

  

𝜀𝑧𝑠 = 2𝑛
𝑑𝜙𝑧

𝑑𝑧
                                                              (4) 
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where s is a circumferential coordinate and n is a normal coordinate in a coordinate system which is introduced 

into the middle contour of the cross section. 

 
2.2 Ply stress and strains 

 

Figure 1 shows an orthotropic unidirectionally reinforced  lamina whose in-plane principal material axes 

are aligned to the natural plate axes z and s. 
 

1

2
3

 
 

Figure 1. Unidirectionally reinforced lamina. 

 
The stress-strain relations for plane stress on the orthotropic lamina in principal material coordinates are: 

 

 
{

𝜎1

𝜎2

𝜏12

} = [
𝑄11 𝑄12 0
𝑄12 𝑄22 0

0 0 𝑄66

] {

𝜀1

𝜀2

𝛾12

} (5) 

 

Where the lamina reduced stiffnesses in terms of the engineering constants are: 
 

 𝑄11 =
𝐸1

1−𝜈12𝜈21
,  𝑄22 =

𝐸2

1−𝜈12𝜈21
, 

𝑄12 =
𝜈12𝐸2

1−𝜈12𝜈21
=

𝜈21𝐸2

1−𝜈12𝜈21
,  𝑄66 = 𝐺12 

(6) 

 

In Figure 2, an elementary volume is shown with principal axes 1 and 2. To obtain the stress resultants of a 

beam cross-section, it is necessary to perform a transformation from the coordinate system of the material's 
principal axes (1-2) to the natural plate axes (z–s). The fibers are oriented at an angle of θ with respect to the 

positive direction of the z-axis. The positive direction of the angle θ is chosen in the direction opposite to the 

clockwise rotation. 

z
O

2

1

s

+q

 
 

Figure 2. Lamina in the natural plate coordinate system. 

 

After the transformation the stresses in laminate coordinates are: 
 

 

{

𝜎𝑧

𝜎𝑠

𝜏𝑧𝑠

} = [

𝑄̄11 𝑄̄12 𝑄̄16

𝑄̄12 𝑄̄22 𝑄̄26

𝑄̄16 𝑄̄26 𝑄̄66

] {

𝜀𝑧

𝜀𝑠

𝛾𝑧𝑠

} (7) 
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Where the lamina transformed reduced stiffnesses are: 

 

 

 

4 2 2 4

11 11 12 66 22

4 2 2 4

22 11 12 66 22

3 3

16 11 12 66 12 22 66

2
2 2 2 2

66 11 22 12 66

12 11 22 66

cos 2( 2 )sin cos sin

sin 2( 2 )sin cos cos

( 2 )sin cos ( 2 )cos sin

( 2 )sin cos cos sin

( 4 )s

Q Q Q Q Q

Q Q Q Q Q

Q Q Q Q Q Q Q

Q Q Q Q Q

Q Q Q Q

q q q q

q q q q

q q q q

q q q q

 + + +

 + + +

   +  +

 +  + 

 +   2 2 4 4

12

3 3

26 11 12 66 12 22 66

in cos cos sin

( 2 )cos sin ( 2 )sin cos

Q

Q Q Q Q Q Q Q

q q q q

q q q q

+ +

   +  +

 (8) 

   

After assumption that the transverse normal stresses are insignificant (s = 0), the constitutive equations are: 

 
 

{
𝜎𝑧

𝜏𝑧𝑠
} = [

𝑄̄11
∗ 𝑄̄∗

16

𝑄̄∗
16 𝑄̄∗

66

] {
𝜀𝑧

𝛾𝑧𝑠
} (9) 

 
Where the transformed reduced stiffness coefficients are: 

 

 
𝑄̄11

∗ = 𝑄̄11 −
𝑄̄12

2

𝑄̄22
 

𝑄̄16
∗ = 𝑄̄16 −

𝑄̄12𝑄̄16

𝑄̄22
 

𝑄̄66
∗ = 𝑄̄66 −

𝑄̄26
2

𝑄̄22
 

(10) 

 

Integrating over the laminate thickness n and the contour direction s, and transforming into the beam coordinate 
system, the cross-sectional internal force components follow: 

 

 
𝐹𝑧 = ∫𝜎𝑧𝑑𝐴

𝐴

 ,  𝑀𝑥 = ∫𝜎𝑧𝑦𝑑𝐴
𝐴

,  

𝑀𝑦 = − ∫ 𝜎𝑧𝑥𝑑𝐴
𝐴

,  𝑀𝑧 = ∫𝜏𝑧𝑠
𝐴

𝑛𝑑𝐴,  

𝑀𝜔 = ∫ 𝜎𝑧𝜔𝑑𝐴
𝐴

,  𝑇𝜎 = ∫𝜎𝑧(𝑥2 + 𝑦2)𝑑𝐴
𝐴

 

(11) 

 

where 𝐹𝑧 represents the axial force, 𝑀𝑧  is the torsion moment, 𝑀𝑥  and 𝑀𝑦 are bending moments with respect 

to the x and y axes, respectively, 𝑀𝜔 is the bimoment and 𝑇𝜎  is the Wagner coefficient.  

The shear forces 𝐹𝑥   and 𝐹𝑦 are treated as the reactive ones and can be determined as the first derivative of 

bending moments 𝑀𝑦 and 𝑀𝑥  with respect to z-coordinate, respectively. 
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2.3 Beam finite element 
 

In Figure 3 two-nodded beam finite element with eight degrees of freedom is presented: 

 

FzB

MxA

MA MzB

MyA

z

x

y

A Bl
MB

MyB

MxB

z

x

y

A Bl

wB qB

fyB

fxB

fzBqA

fyA fxA

 
 

Figure 3. Two-nodded spatial beam element in local coordinate system. 

 
The nodal displacement vector of the beam element is: 

 

 (𝐮𝑒)T = {𝑤B, 𝜙𝑧B , 𝜙𝑥A, 𝜙𝑥B, 𝜙𝑦A, 𝜙𝑦B, 𝜃A,, 𝜃B} (12) 

 

An appropriate nodal force vector is: 
 

 (𝐟𝑒)T = {𝐹𝑧B, 𝑀𝑧B , 𝑀𝑥A, 𝑀𝑥B, 𝑀𝑦A , 𝑀𝑦B, 𝑀ωA , 𝑀ωB} (13) 

 

Incremental analysis supposes that a load-deflection path is subdivided into a number of steps or increments. 

This path is usually described using three configurations: the initial or undeformed configuration C0; the last 
calculated equilibrium configuration C1 and current unknown configuration C2. Adopting co-rotational 

formulation, all system quantities should be referred to configuration C2. Applying the virtual work principle 

and neglecting the body forces, the equilibrium of a finite element can be expressed as: 
 

 δ𝑈 = δ𝑊 (14) 

 

in which U is potential energy of internal forces, W is the virtual work of external forces, while δ denotes 
virtual quantities. After making the first variation of Eq. (11), the following incremental equations can be 

obtained: 

 
 δ𝑊 = (δ𝐮𝑒)T 𝐟𝑒 ;  δ𝑈 = (δ𝐮𝑒)T 𝐤T

𝑒  𝐮𝑒 (15) 

 

In Eq. (15), 𝐤T
𝑒  denotes the tangent stiffness matrix of the e-th beam element in the local coordinate system, 

and which is obtained according to the procedure presented in Ref. [21]. Now, the incremental equilibrium 

equation of the element can be written in the following form: 

 
 𝐤T

𝑒  Δ𝐮𝑒 = Δ𝐟𝑒 (16) 
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The three-points Gaussian integration is made in the direction of element length, while the integration over a 

cross-section area is performed by subdividing the cross section into a finite number of monitoring areas, 

Figure 4. 
 

 

 
 

 

  

 
 

Figure 4. Cross-sectional discretization. 

 

In Figure 4, a channel cross-section subdivided into a finite number of monitoring areas Ai =bi ×hi , each 

defined by coordinates xi and yi of the pertaining centroid, is shown. After summing up all the monitoring 

areas, the internal force components of the cross-section at Gaussian points can be obtained as: 

 
 𝐹𝑧(𝑧) = ∑ 𝜎𝑧𝑖  𝛥𝐴𝑖

𝑚

𝑖=1
, 𝑀𝑥(𝑧) = ∑ 𝜎𝑧𝑖  𝑦𝑖  𝛥𝐴𝑖

𝑚

𝑖=1
, 𝑀𝑦(𝑧) = − ∑ 𝜎𝑧𝑖  𝑥 𝛥𝐴𝑖

𝑚

𝑖=1
, 

𝑀𝑧(𝑧) = ∑ 𝜏𝑧𝑠𝑖𝑛𝑖  𝛥𝐴𝑖

𝑚

𝑖=1
,  𝑀𝜔(𝑧) = ∑ 𝜎𝑧𝑖  𝜔𝑖  𝛥𝐴𝑖

𝑚

𝑖=1
,  𝑇𝜎(𝑧) = ∑ 𝜎𝑧𝑖  (𝑥𝑖

2 + 𝑦𝑖
2) 𝛥𝐴𝑖

𝑚

𝑖=1
, 

(17) 

 
where the index m denotes the total number of monitoring areas. 

 

2.4 Local to global system transformation 
 

To transform the tangent stiffness matrix of each beam element into the global coordinate system, the nonlinear 
transformation procedure from Ref. [17], accounting for the large rotation effects, is adopted in this study, i.e. 

 

 𝐤̅T
𝑒 = 𝐭1

𝑒  𝐤T 
𝑒 𝐭1

𝑒 + 𝐭2
𝑒  𝐟𝑒. (18) 

 

In Eq. (18), 𝐭1
𝑒 is a transformation matrix of dimension 14×8, which contains the first derivatives of element 

displacements in the local coordinate system with respect to the global ones, while 𝐭2
𝑒 is a transformation matrix 

of dimension 14×14×8 and contains the second derivatives of element displacements. The matrix 𝐭2
𝑒 occur due 

to the change in structural geometry and reflects its effects on the global forces. The element force vector is 

transformed from the local to global coordinate system as: 
 

 𝐟̅𝑒 = 𝐭1
𝑒  𝐟𝑒. (19) 

 
After performing the standard assembling procedure, the overall incremental equilibrium equations can be 

obtained as: 

 

 𝐊𝐓 𝐔 = 𝐏, 𝐊𝐓 = ∑ 𝐤̄𝐓
𝒆

𝒆 ,  𝐏 = 2𝐏 − 1𝐏. (20) 

 

where 𝐊T is tangential stiffness matrix of a structure, while U and P are the incremental displacement vector 

and the incremental external loads of the structure, respectively. The vectors 2P and 1P denote the external 

loads applied to a structure at the new and last calculated configurations, respectively. 

z

x

y
s

n

Ai

xi

y i
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3 Results and discussion   
 

The nonlinear finite element algorithm presented above is implemented in a computer program called 
Eulam. The generalized displacement control method has been employed as an incremental-iterative solution 

scheme. The updating of nodal coordinates as well as orientations of the cross-sections and axes of each 

element is performed at the end of each iteration. Because of the non-commutative character of large 

incremental nodal orientations, the updating of nodal orientations for a new deformed configuration is 
performed using Rodriguez’ large rotation formula [22]. The effectiveness of the algorithm is validated through 

several test examples. 
 

3.1 Bending and twisting of a console 
 

A channel cantilever of length L = 2 m, shown in Figure 5, is loaded with a transverse force F through the 

centroid of the free end cross-section. The cantilever is modelled with a single finite element. The channel 

cross-section is composed of four layers of S2-glass/epoxy composite with following material characteristics: 

E1 = 48.3 GPa, E2 = 19.8 GPa, G12 = 8.96 GPa and ν12 = 0.27. 

L

F

X

Z

Y

X
5
0

50

3

A B
Y

32,18

 
 

Figure 5. Channel cantilever under a transverse load. 

 

Two cases of laminate stacking were considered: [0]4 and [45/-45]s. Figure 6 shows a comparison of the 
obtained results with those reported by Cardoso et al. [23], who used eight beam finite elements. 

 

 
 

Figure 6. Load vs. twisting of the cantilever free end. 

 
3.2 Lateral-torsional buckling of right-angle frame 

 

Figure 7 shows a simply supported right-angle frame subjected to a single concentrated force F acting in 

the negative Y-axis direction. To initiate the occurrence of lateral-torsional buckling, a horizontal perturbation 

force F=0,001F acting in the positive Z-axis direction is added at the corner B. A rectangular cross-section 
30×0.6 mm is used for the two legs of the frame. Laminate is made of eight plies with stacking sequence [08], 

[ /90]2S and [908]. The material properties E1 = 140 GPa, E2 = 10 GPa, G12 = 5 GPa and ν12 = 0.3 are used. 
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A

B

XZ

Y

C

F

 
 

Figure 7. Simply supported right angle frame. 
 

The lowest lateral-torsional buckling load for all the stacking sequence cases is obtained by an eigenvalue 

analysis in the computer program NASTRAN. Due to symmetry, only the left side of the frame has been 
idealised using 512 shell finite elements, and the lowest buckling mode is shown in Figure 8. 

 

 

X

Z

Y

 
 

Figure 8. First buckling mode – shell model NASTRAN. 

  
The obtained results for the lateral deflection of the corner B in the Z-axis direction are shown in Figure 9. 

  

 
 

Figure 9. Load-deflection curves for different lamina orientation. 
  

3.3 Sway buckling of one-story one-bay space frame 
 

Figure 10 shows a one-story space frame loaded by four vertical forces, each of intensity F. To initiate the 

sway buckling mode, two perturbation forces F = 0,001F acting in positive X-axis direction are added at 

corners A and D. All the frame members are made of two four layered laminates that form a cruciform cross 
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section 200x200x10mm. The configuration of both laminates is [/-]s. Analysed material is graphite-epoxy 
(AS4/3501) with the material properties: E1 = 144 GPa, E2 = 9.65 GPa, G12 = 4.14 GPa and ν12 = 0.26. Each 

frame leg is discretized by four beam finite elements of equal length. 

 

 

F

XZ

Y

F

F F

3,9 m

3
,9

 m

3,9 m

A B

CD

Z

C

X

BA

D

 
 

Figure 10. One-story space frame. 

 
The buckling of the space frame for the fibre orientation in the range from 0° to 60° has been analysed. The 

critical buckling loads with linear shell model in Nastran using 4234 finite elements (Figure 11) have been 

determined. The nonlinear response for different lamina orientation together with critical buckling loads 
obtained by NASTRAN is presented in Figure 12. 

 

  
 

Figure 11. Sway buckling mode. 

 

  
 

Figure 12. Load-deflection curves for different lamina orientation. 
  

 

° 
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4 Conclusion  
 

The co-rotational description has been utilized to develop a finite element formulation for the stability 
analysis of 3D framed structures with thin-walled laminated composite cross-section, which has considered 

the effects of large displacements on the response of space frames subjected to conservative and static external 

loads. This formulation is applicable to any arbitrary laminate cross-section shape and has been derived using 

classical lamination theory for thin fiber-reinforced laminates. The authors have presented verification 
examples to demonstrate the accuracy of the proposed formulation. The formulation has been found to be 

appropriate and efficient in analysing complex structural behaviour under a large rotation regime. Overall, the 

presented formulation and approach can be valuable for engineers and researchers in the field of stability 
analysis and could aid in predicting the load-carrying capacity of composite laminated spatial beams and ensure 

their structural integrity under different loading conditions 
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