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ABSTRACT
The main practical problems that are faced by portfolio optimisa-
tion under the Markowitz model are (i) its lower out-of-sample
performance than the naive 1=n rule, (ii) the resulting asset
weights with extreme values, and (iii) the high sensitivity of those
asset weights to small changes in the data. In this study, we aim
to overcome these problems by using a computation method
that shifts the smaller eigenvalues of the covariance matrix to the
space that houses the eigenvalue spectrum of a random matrix.
We evaluate this new method using a rolling sample approach.
We obtain portfolios that show both more stable asset weights
and better performance than the 1=n rule. We expect that this
new computation method will be extended to several problems
in portfolio management, thereby improving their consistency
and performance.
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1. Introduction

Portfolio theory, which was developed by Markowitz (1952, 1959), is one of the most
important pillars of financial theory. Part of the popularity of Markowitz’s model,
which is taught in finance courses globally, is due to its simplicity.1 Nevertheless, des-
pite the model’s popularity, investors’ empirical behaviour tends to differ from its
predictions (Benartzi & Thaler, 2001).

Portfolio theory addresses the problem of how investors should invest by spreading
their money across nþ 1 financial assets, where one asset is risk-free and n assets are
risky. This shows that investors can achieve higher than expected returns for a given
level of risk by investing in efficient portfolios. In Figure 1, the efficient portfolios are
shown by the blue line. This theory indicates that all investors should divide their
money between the risk-free asset and a tangent portfolio, which is an efficient port-
folio that includes only risky assets Tobin (1958).
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The set of points that contains this linear combination is called the capital market
line. Investors choose one of these portfolios in the capital market line according to
their degree of risk aversion. To determine the optimal weights of the tangent port-
folio, it is necessary to consider expected returns (~l), the return of the risk-free asset
(rf), and the covariance matrix (R). The optimal weights (w�) are obtained as

w� ¼ R�1ð~l�rf ~enÞ
c

,

where c is the reduction in an investor’s risk aversion. The practical application
depends on obtaining good estimates of ~l and R. However, this approach is not sim-
ple in practice. In fact, Markowitz’s model has received serious criticism, including its
poor out-of-sample performance (Bloomfield et al., 1977; DeMiguel et al., 2009;
Kritzman et al., 2010) and the extreme weights of the resulting optimal portfolios
(Black & Litterman, 1991, 1992; Papp et al., 2005). It has also been criticised because
its optimal portfolio weights are highly sensitive to the dataset that is used to estimate
the parameters, which generates high transaction costs (Best & Grauer, 1991; Chopra,
1993; Jobson & Korkie, 1981).

Several researchers have studied the impact of parameter estimation errors on port-
folio optimisation. For instance, Chopra (1993) states that the major problems of the
mean/variance (MV) framework are the errors associated with the estimation of the
means, variances, and correlations of asset returns, as well as the fact that the optimisa-
tion process that underlies this methodology maximises these errors. In addition,
Chopra and Ziemba (1993) indicate that the estimation errors in means are approxi-
mately 11 times more important than those in variances, and that the estimation errors
in variances are about twice as important as those in covariances. Merton (1980) states
that a long-term series of data is required to estimate expected returns accurately. Ng
et al. (2020) explain the difficulty of improving the accuracy of estimates of the means
of returns—even as the sample size increases. Moreover, Best and Grauer (1991) find
that for an MV-efficient portfolio weight, both means and variances can be extremely
sensitive to changes in asset means; consequently, they have implications for portfolio
management. Researchers have also studied the effect of risk estimation on the per-
formance of the Markowitz rule and the conditions required for good performance.

Figure 1. Capital market line.
Source: Authors.
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For instance, Jobson and Korkie (1981), using Monte Carlo simulations, find that the
mean, variance, and covariance parameters do not lend themselves to making infer-
ences in small samples, even when considering 313months or 26 years to calculate
these parameters. Similarly, Jorion (1986) shows that, like local portfolios, the optimal
asset allocation is sensitive to estimation risk in international cases. Michaud (1989)
states that MV models are highly sensitive to changes in parameters and are hard to
estimate; moreover, they also magnify the effect of estimation errors.

Researchers have consequently proposed amendments to the Markowitz model,
which can be classified into four categories: the Bayesian approach (Barry, 1974;
Black & Litterman, 1991, 1992; Brown, 1979; Jorion, 1986; Klein & Bawa, 1976),
models with moment restrictions (MacKinlay & P�astor, 2000), models with a port-
folio restriction (Best and Grauer, 1992), and the optimal combination of portfolios
(Garlappi et al., 2007; Kan & Zhou, 2007).

The most popular approach to managing the effect of estimation risk is the use of
Bayesian shrinkage estimators, which shrink the sample estimator towards a certain target
under the premise that the resulting shrinkage estimator contains less estimation error
than the sample estimator. For example, Jorion (1986) and Frost and Savarino (1986) use
a shrinkage estimator of the means vector, Ledoit and Wolf (2003, 2004b, 2019, 2020)
and Ollila and Raninen (2019) consider shrinking the covariance matrix, and DeMiguel
et al. (2013) consider different combinations of the shrinkage of the means vector and
covariance matrix. However, these proposed amendments have not eliminated the main
practical drawbacks of the Markowitz model. Despite these amendments, out-of-sample
performance is not superior to the naive 1=n rule and the weights of optimal portfolios
obtained with these amendments remain extremely sensitive.

In this study, we contribute to the literature on this topic by proposing a new
approach that largely overcomes all of these drawbacks. In addition to decreasing the
effect of the estimation risk of the covariance matrix, we focus on reducing the negative
effects of the presence of eigenvalues close to zero in the sample covariance matrix.

Our approach compresses the eigenvalue spectrum of a covariance matrix towards
the eigenvalue spectrum of a diagonal matrix, which only contains the estimated val-
ues of the variances. This diagonal matrix target represents a multivariate process in
which the variables are not correlated. Our approach is based on Ledoit and Wolf
(2004b) and Sch€afer and Strimmer (2005). In particular, the justification for our
approach stems from random matrix theory (RMT). The application of RMT to port-
folio optimisation suggests that the estimation risk of the correlation (or covariance)
matrix plays an important role in this problem. Using these approaches, Laloux et al.
(1999) establish that the smallest eigenvalues of this matrix are sensitive to estimation
risk, whereas it is precisely those eigenvectors that correspond to the smallest eigen-
values that determine (in Markowitz’s theory) the least risky portfolios.

To take advantage of this approach, we must determine the optimal shrinkage
degree of the covariance matrix before choosing the optimal portfolio. Therefore, we
propose a method that makes the smallest eigenvalue of the fitted correlation matrix
larger than the minimum corresponding to a random matrix. Next, we compare the
performance of our proposed method with the Markowitz method without adjust-
ments, the 1=n rule, the Ledoit and Wolf (2003, 2004a, b, 2020) methods, and the
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two methods proposed by Ollila and Raninen (2019). We find that the proposed
method delivers better out-of-sample performance than all of the other methods for
sample sizes larger than 165months and maintains more stable and less volatile
financial asset weights. Our results show that the proposed approach permits the
Markowitz rule to clearly overcome the 1=n rule, which shows a notable decrease in
the extreme values of the optimal portfolio weights and at the same time a significant
decrease in the volatility of the optimal portfolio weights. Moreover, these results are
obtained when using relatively small sample sizes to estimate the parameters.

The traditional corrections to the MV model have typically centred on raising its
performance by improving the estimations of the parameters and diminishing the
risk of the estimation. However, in most of these corrections, the weights of the
resulting portfolios continue to be highly volatile. Unfortunately, this makes the prac-
tical application of the unrestricted model unviable because of the high transaction
costs implied by the extreme changes in the portfolio weights. For example, using the
methodologies of Ledoit and Wolf (2003, 2004a, b, 2020) and Ollila and Raninen
(2019), we show that it is possible to improve the performance of the MV model but
that the high volatility of the optimal weights prevails. The sensitivity of the optimal
weights is only strongly attenuated when near-zero eigenvalues of the covariance
matrix are shifted into the space that those of a random matrix occupy.

The following sections are organised as follows. Section 2 presents the eigenvalue
shrinkage model. Section 3 describes the procedures that we followed to perform the
out-of-sample comparisons of the portfolio selection rules. Section 4 shows the prelimin-
ary results, while highlighting the potential advantages. Section 5 presents the advantages
of applying a new portfolio selection rule and compares the out-of-sample performance
with other covariance matrix shrinkage proposals. Finally, Section 6 concludes.

2. The model

In this section, we will develop a covariance matrix estimate based on the shrinkage
of the eigenvalue spectrum.

2.1. Traditional Markowitz approach

Consider that we have a set of T observations of n financial assets with returns rit for
i ¼ 1, 2, 3 . . . , n, with t ¼ 1, 2, 3, . . .T, and a risk-free asset that investors can lend
and borrow without limit up to the rate rf.

We assume that investors who wish to determine their optimal portfolios use a
fixed sample size of the latest m observations to estimate the parameter values: the
risk premiums of each asset (the average return less the return of a risk-free asset)
li�rf and the covariance matrix R.

Typically, in the portfolio selection model, it is assumed that investors have utility
functions of the following type:

Uðlp,rpÞ ¼ lp�
1
c
r2
p ð1Þ
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where lp is the expected return of the portfolio chosen by the investor, rp is the respect-
ive variance of the portfolio, and c represents the risk aversion of the investor. This the-
ory assumes that investors seek to maximise their utility function, with the restriction
that the invested money is divided among a set of financial assets that contains n risky
assets and one risk-free asset. Hence, lp ¼ wtlþ ð1�wteÞrf , and r2

p ¼ wtRw, where
wt ¼ ½w1,w2,w3 . . .wn� is the weight assigned to each risky asset and e is the column
vector of ones of dimension n. Therefore, the problem for the investor is

maxw wtlþ ð1�wteÞrf� c
2
wtRw

� �
(1)

The solution is

w� ¼ R�1ðl�erf Þ
c

(2)

Investors can invest money in a risk-free asset that has a return of rf, and in n
risky assets that have expected returns l and a covariance matrix R. They can assign
a percentage of their wealth to each risky asset wt ¼ ½w1,w2,w3, . . . wn� and ð1�wteÞ
to the risk-free asset.2 Following this reasoning, Tobin (1958) demonstrates that
investors can achieve optimal portfolios by investing a proportion of their wealth in
the risk-free asset and the remainder in a portfolio that contains only risky assets wT ,
which can be determined as

wT ¼ R�1ðl�erf Þ
etR�1ðl� erf Þ

(3)

Therefore, using this approach to determine how investors have to invest entails
inverting the covariance matrix R and multiplying it by the expected excess returns
of the risky assets over the risk-free asset l�erf : However, it is difficult in practice to
estimate the true value of these parameters given that they are mainly obtained using
limited historical data. Thus, the estimation risk of these parameters sharply affects
the performance of the optimal rule of investment proposed by Markowitz (1952).

If investors consider m preview observations of n assets rit i ¼ 1, 2, . . . , nt ¼
1, 2, . . . ,m, then the means and covariances are estimated using the following expres-
sions:

l̂i ¼
Pm

i¼1rit
m

(4)

and

R̂ij ¼
Pm

i¼1ðrit � l̂iÞðrjt � l̂jÞ
m� 1

(5)
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Consequently, the empirical optimal portfolio weights are determined by

ŵT ¼ R̂
�1 ðl̂�erf Þ

et R̂
�1 ðl̂ � erf Þ

(6)

2.2. Shrinkage estimation of the eigenvalues of the covariance matrix

In this study, we propose a new approach that compresses the eigenvalue spectrum of
a covariance matrix towards the eigenvalue spectrum of a diagonal matrix, which
only contains the estimated values of the variances to move the eigenvalues of the
covariance matrix away from zero. This diagonal matrix target represents a multivari-
ate process in which the variables are not correlated among themselves. This
approach is similar to the approach that was proposed by Ledoit and Wolf (2004b)
and Sch€afer and Strimmer (2005).

The justification for our approach stems from RMT. The application of RMT to
portfolio optimisation suggests that the estimation risk of the correlation (or covari-
ance) matrix plays an important role in this problem. Using this approach, Laloux
et al. (1999) find that the smallest eigenvalues of this matrix are sensitive to estima-
tion risk, whereas it is precisely the eigenvectors corresponding to the smallest eigen-
values that determine (in Markowitz’s theory) the least risky portfolios. Thus, as
stated by Laloux et al. (1999), ‘one should be careful when using this correlation
matrix in applications.’

RMT establishes that for a dataset X that has T observations of n random variables
with dimension n�T, where all its components are independent random variables,
the spectrum of eigenvalues of its covariance matrix [C ¼ XtX

T �~l~lt] will be between a
minimum limit ‘a’ and a maximum limit ‘b’ (see Marchenko & Pastur, 1967), where

a ¼ r2ð1�
ffiffiffiffi
n
T

r
Þ2 , b ¼ r2ð1þ

ffiffiffiffi
n
T

r
Þ2 (7)

As we will show later, the eigenvalues below the lower limit ‘a’ contain problematic
noise that complicates the portfolio optimisation process. Furthermore, smaller eigen-
values determine (in Markowitz’s theory) the least risky portfolios. Eigenvalues
between ‘a’ and ‘b’ are noise belonging to random matrix-type behaviour, whereas
values greater than ‘b’ contain useful information. In this study, we propose an
adjustment of the covariance matrix by shrinking the covariance matrix eigenvalue
spectrum towards a target eigenvalue spectrum. The matrix associated with this target
is a diagonal matrix containing the values of the estimated variances on its diagonal.
This target matrix mimics a random matrix because the covariances between the vari-
ables considered are zero.

This methodology aims to move the part of the eigenvalue spectrum of the covari-
ance matrix that lies between zero and ‘a’ within the eigenvalue spectrum sector given
by RMT; that is, the region (a, b). The benefit of applying this adjustment to the
covariance matrix is the noticeable reduction in the dispersion of the optimal
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portfolio weights without any restrictions on them, which allows us to obtain stable
portfolios that imply low transaction costs for investors and a considerable improvement
in the performance of the Markowitz rule. In fact, the out-of-sample Sharpe ratio sur-
passes the 1=n rule, which permits investors to obtain higher returns for each risk level.

We propose the following correction of the covariance matrix to calculate the opti-
mal weights:

Ŷ ¼ ð1�gÞR̂ þ gŜ (8)

where Ŝ is the diagonal matrix of R̂ and g is an adjustment factor of the shrinkage.
This is the same expression that Sch€afer and Strimmer (2005) employ when two
models are used to estimate the covariance matrix, the first with many free parame-
ters and the second with little bias.

Consequently, the optimal weights are

wMaC ¼ Ŷ
�1 ðl̂�erf Þ

et Ŷ
�1 ðl̂ � erf Þ

(9)

2.2.1. Shrinkage of the eigenvalue spectrum
Each of the n eigenvalues of the covariance matrix R̂, kR, can be estimated by

detðkRðiÞI�R̂Þ ¼ 0 (10)

Furthermore, each of the n eigenvalues of the matrix Ŷ , kY, can be obtained by

detðkYðiÞI�ð1�gÞR̂�gŜÞ ¼ 0 (11)

The eigenvalues of the matrix Ŷ , kY, are those of the matrix X when g¼ 0; as g
increases, they approach those of the diagonal matrix S and for g¼ 1 they are equal

Figure 2. Density of the eigenvalues of the covariance matrix R and of a random matrix.
Source: Authors.
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to those of the S matrix. Consequently, by changing g, we shift the eigenvalues of the
matrix Ŷ :

2.2.2. Eigenvalue spectrum of a typical large covariance matrix
The random matrix eigenvalues have the following distribution3:

k ¼
1

2pxyr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb�xÞðx�aÞ

p
a<x<b

0 otherwise

8<
: (12)

where a and b are given by Eq. (7) and y ¼ n
T :

The red line in Figure 2 shows the theoretical density of the eigenvalues of the
random correlation matrix with dimensions equal to 30. The empirical density func-
tion of the eigenvalues is shown by the blue line of the correlation matrix of the 30
equally weighted industrial portfolios4 considering a sample size of 200 monthly
observations5 In total, the eigenvalues of the 938 correlation matrices are used to con-
struct this density function.

A high proportion of the eigenvalues are below the lower limit of an associated
random matrix. As we will show later, the presence of these eigenvalues in this area
causes serious problems for the Markowitz model.

Although not shown in Figure 2, the empirical function of the density of the
eigenvalues of R reaches values up to 25. According to these observed values and
principal component theory, this means that the highest eigenvalue explains around
83% of the variance, while smaller eigenvalues explain a minimal part of the variance
of the covariance matrix.

According to RMT, the presence of eigenvalues below the lower limit (a¼ 0.3754
for n¼ 30) is highly problematic when determining the optimal portfolio according
to Markowitz (Bai et al., 2009). By contrast, eigenvalues above the upper limit
b¼ 1.7325 contain valuable information, while eigenvalues within these limits ½a, b�
are the products of a random matrix. The proposed approach allows us to move the
spectrum of eigenvalues towards a space in which all of these values are above the
lower limit of the spectrum corresponding to a random matrix.

2.2.3. Another explanation of the optimal weight sensitivity from the spectral
decomposition
A square symmetric matrix such as a covariance matrix can be expressed as

R ¼ UDU�1 (13)

where U is defined as

U ¼ u1, u2, u3, . . . un½ � (14)

Here, ui represent the eigenvectors of the matrix R and D is a diagonal matrix
containing the eigenvalues kR of the matrix R. Therefore, we can express
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R ¼
Xn
i¼1

kiuiu
t
i (15)

where uiuti are matrices with a rank equal to one. In a similar way, we can express
the inverse of a covariance matrix as

R�1 ¼
Xn
i¼1

k�1
i uiu

t
i (16)

Eq. (16) shows that when we invert a matrix, smaller eigenvalues and their corre-
sponding eigenvectors are more important than larger eigenvalues. Furthermore, the
estimation error of the smallest eigenvalue is greater than that of the highest eigen-
value. This shows the sensitivity of the Markowitz model to errors in the assessment
of smaller eigenvalues. Figure 2 shows the eigenvectors associated with eigenvalues
with a mean of 0.06, which determine the inverse matrix of Eq. (16). The eigenvector
associated with the highest eigenvalue, whose value is equal to 25, has min-
imal importance.

Traditional methodologies aim to reduce the effects of risk in the estimation of the
parameters. However, if, after these corrections, the covariance matrix that is finally
used continues to have values close to zero, then the high sensitivity of the optimal
weights will continue. Thus, for the MV method to be viable, it must try to diminish
the estimation risk of the parameters and shift the values of the covariance matrix
itself towards the centre in which those of a random matrix are located.

3. Data and experiment

The data correspond to the 1138 monthly observations of excess returns on the risk-
free asset of 30 industrial portfolios from July 1926 to April 2021. These are the 30
equally weighted industrial portfolio sectors taken from Kenneth French’s website.
We use the series of one-month Treasury bills taken from the Federal Reserve
Economic Data as the risk-free rate.

To compare the relative empirical performance of the Markowitz rule with the shrink-
age of eigenvalues, we use the naive 1=n rule as a benchmark. This investment rule
invests a proportion of 1=n of wealth in each of the n assets available for investing in
each of the rebalancing dates. We use this naive rule as the benchmark because it is easy
to implement given that no parameter estimation is necessary. Hence, this rule has not
been outperformed by more complex optimisation rules when small sample sizes are
used to estimate the parameters.6 Furthermore, this rule does not involve any parameter
estimation or optimisation process and the data do not matter:

w1=n ¼ 1
n

(17)

We use a rolling sample approach that is similar to the one that was used by
DeMiguel et al. (2009). Given a dataset of T¼ 1138 monthly observations, we use
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sample sizes (m) that are equal to 200, 300, 400, and 500 monthly observations. For
the case in which the investor uses a sample size of m, we thus have ðT�mÞ observa-
tions of realised returns obtained using the investment rule suggested by each model.

The observations of out-of-sample returns are used to analyse the performance of
these investment rules. The assumptions of the empirical models are as follows:

1. Investors use the first m observations to estimate the parameter values (mean
and covariance matrix).

2. Using these parameters, investors compute the optimal portfolio weights.
3. Then, they use this asset allocation to build their portfolios.
4. Investors hold their investments in these portfolios for one month.
5. At the end of the month, they calculate their realised returns.
6. At the beginning of the following month, investors choose the last m months to

recalculate the parameters by dropping the earliest return and adding the return
of the following month. In this way, the number of monthly observations that is
used to calculate the parameters is always equal to m.

7. Steps from 2 to 6 are repeated until investors take the last assignation in
month T�m:

As explained earlier, for each sample size of length m, we have ðT�mÞ observa-
tions of realised excess returns, which are calculated as follows:

prealizedðkÞ ¼ ptmþkŵrulek ¼ 1, 2, . . . , ðT�mÞ , (18)

where the value of ŵrule depends on the investment rule used:

1. If we use the Markowitz rule, ŵrule ¼ ŵopt:

2. If we use the Markowitz rule with the proposed adjustment, ŵrule ¼ ŵoptR:

3. If we use the 1=n rule, ŵruleðiÞ ¼ 1=n for i ¼ 1, 2, ::, n:

Thus, we have ðT�mÞ observations of realised excess returns for the three rules.
Using these realised excess returns, we calculate the out-of-sample Sharpe ratio for
the three rules:

paverage ¼
PT�m

i¼1 prealizedðmþ iÞ
ðT �mÞ (19)

raverage ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT�m
i¼1 ðprealizedðmþ iÞ�paverageÞ2

ðT �m� 1Þ

vuut
(20)

Then, we calculate the realised Sharpe ratio

SRðmÞ ¼ paverage
raverage

(21)

ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA 2845



For m¼ 200, we have 938 observations to compute the out-of-sample Sharpe ratio;
for the other extreme (m¼ 500), we have 638 observations. This allows us to assess
the performance of the three investment rules for sample sizes of 200, 300, 400,
and 500months.

Recall that we assume that investors choose their portfolios at the beginning of
each month and then rebalance their portfolios by considering the results obtained
and the new optimal weightings chosen at the end of the month. It would thus be
interesting to explore the optimal length of portfolio rebalancing (e.g. Fahmy, 2020).

4. Preliminary results of the shrinkage estimations

4.1. Results using the 30 equally weighted industrial portfolios

Figure 3 shows the results obtained using a rolling sample size of 200 monthly
observations.

Figure 3 shows the out-of-sample Sharpe ratio for the different investment rules.
The green line shows the Sharpe ratio of the naive rule 1=n and the blue line shows
the out-of-sample modified Markowitz Sharpe ratio for values of g ranging from 0 to
1, with an increment of 0.01. The Markowitz rule without shrinkage corresponds to g
equal to zero. The Sharpe ratio of the Markowitz rule without restriction, for a sam-
ple size of 200, is 0.011. This is well below that obtained using the 1=n rule, which
has an out-of-sample Sharpe ratio of 0.1725. The out-of-sample Sharpe ratio rises by
increasing the value of g until it peaks at 0.1990. This optimal adjustment is obtained
for g equal to 0.81. Moreover, with the optimum shrinkage, the out-of-sample Sharpe
ratio increases from 0.03 to 0.1990 (i.e. an 18-fold increase).

Figure 4 shows the out-of-sample Sharpe ratio for a sample size of 300. The
Sharpe ratio without adjustment is 0.1641, which is higher than that obtained using
the 1=n rule (0.1581). In this case, the optimal adjustment is obtained for g equal to
0.47 with a Sharpe ratio of 0.2117; that is, the out-of-sample Sharpe ratio increases by
29% with respect to the Markowitz rule without adjustment.

Figure 5 shows that the Sharpe ratio without adjustment is 0.1480, which is higher
than that obtained using the 1=n rule (0.1424). In this case, the optimal adjustment is

Figure 3. Out-of-sample Sharpe ratio for different shrinkage levels for a sample size of 200.
Source: Authors.
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obtained for g equal to 0.43, with a Sharpe ratio of 0.1945; that is, the out-of-sample
Sharpe ratio increases by 31% with respect to the Markowitz rule without adjustment.

Figure 6 shows that the Sharpe ratio without adjustment is 0.1412, which is higher
than that obtained using the 1=n rule of 0.1305. In this case, the optimal adjustment
is obtained for g equal to 0.37, with a Sharpe ratio of 0.1889; that is, the out-of-
sample Sharpe ratio increases by 34% with respect to the Markowitz rule with-
out adjustment.

In summary, the compression of the covariance matrix to a random matrix
improves the out-of-sample Sharpe ratio for all of the sample sizes that we consid-
ered. However, its effect is stronger for smaller sample sizes.

4.2. Effects of the optimal weights

Recalling that the low performance of the Markowitz rule is only one of its draw-
backs, we now focus on the second drawback (i.e. its extreme and volatile port-
folio weights).

To illustrate this issue, the following exercise is carried out:

� We calculate the 30 portfolio weights obtained with the Markowitz rule without
adjustment for each of the ðT�mÞ portfolios.

� We calculate the 30 portfolio weights obtained with the Markowitz rule with the
optimal adjustment for each of the ðT�mÞ portfolios.

� We calculate the means and standard deviations of each portfolio weight.

Table 1 shows the means and standard deviations of the optimal weights of the
Markowitz rule with and without the adjustment for each of the 30 equally weighted
industrial portfolios. Columns 2 and 4 show the means of the optimal weights
obtained with the Markowitz rule without adjustment for sample sizes of 200 and
500 monthly observations, and columns 3 and 5 show their respective standard devia-
tions. Similarly, columns 6 and 8 show the means of the optimal weights obtained
using the Markowitz rule when setting the optimum adjustment to the covariance
matrix for sample sizes of 200 and 500 monthly observations, and columns 7 and 9
show their respective standard deviations.

Figure 4. Out-of-sample Sharpe ratio for different shrinkage levels for a sample size of 300.
Source: Authors.
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The observed means and standard deviations of the optimal weights obtained using
the traditional Markowitz rule show that the weights are extremely high and volatile.
For example, for a sample size of 200, the mean of the number 11 portfolio weight of
the industrial portfolio is �1.11. Therefore, investors who want to use this rule would
have to invest taking the short position in this asset by 1.11 times their wealth.
Additionally, the standard deviation of this asset is 5.59 times the value of investors’
wealth, which implies high transaction costs for investors. These facts make it infeas-
ible to use the Markowitz rule under these conditions.

Certainly, these values are the most extreme when the sample size is small.
However, the number of observations considered in the sample size does not elimin-
ate these drawbacks. This is consistent with the findings of Jobson and Korkie (1981),
Chopra and Ziemba (1993); Chopra (1993), and Best and Grauer (1991)

Instead, using the Markowitz rule with the optimum shrinkage of the eigenvalue
spectrum of the covariance matrix, we obtain smaller values with a lower dispersion
for each asset weight. For a sample size of 200 monthly observations, the dispersion
of some of the weights decreases by more than 416 times.

In conclusion, using this approach improves the out-of-sample Sharpe ratio and at
the same time lowers the volatility of the portfolio weights markedly. This could
allow the Markowitz rule to overcome its main practical drawbacks.

Figure 5. Out-of-sample Sharpe ratio for different shrinkage levels for a sample size of 400.
Source: Authors.

Figure 6. Out-of-sample Sharpe ratio for different shrinkage levels for a sample size of 500.
Source: Authors.
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4.3. Effects of the eigenvalues of the covariance matrix

To assess whether the eigenvalue spectrum is affected using this approach, we calcu-
late the eigenvalues ki for all of the samples and determine the percentage of times
that they are within the limits associated with a random matrix. For a sample size of
200 monthly observations, we calculate the 30 eigenvalues of the 938 correlation
matrices with and without shrinkage. Table 2 shows the results, where the values pre-
sented are averages. This shows that the main effect of the adjustment is to reduce
the percentage of times that the eigenvalues are below the minimum limit.

The abundant noise in the estimation of the covariance matrix values triggers the
greater presence of eigenvalues below the lower limit, as established in the spectral
density of Marchenko and Pastur (1967). Larger eigenvalues remain relatively
unaffected by the effect of noise.7 Figure 7 shows that the eigenvalues spectrum
moves towards the right as the compression of the covariance matrix to a random
matrix increases. Initially, a large proportion of eigenvalues are below the lower ran-
dom matrix limit. Meanwhile, as we reach the optimal shrinkage level, no eigenvalues
are below the lower limit.

Table 1. Means and standard deviations of the portfolio weights.
Values of weights

Markowitz rule without adjustment Markowitz rule with optimal Adjustment

Sample size 200 Sample size 500 Sample size 200 Sample size 500

Mean
Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation

1 0.61 4.11 0.29 0.19 0.08 0.06 0.13 0.05
2 �0.58 5.88 �0.15 0.21 0.04 0.16 0.00 0.11
3 0.38 3.72 0.25 0.09 0.10 0.10 0.20 0.04
4 �0.04 1.14 �0.21 0.28 �0.01 0.05 �0.07 0.06
5 0.27 2.87 0.21 0.40 0.03 0.09 0.07 0.11
6 �0.63 1.92 �0.54 0.27 0.00 0.03 �0.07 0.03
7 �0.18 1.89 �0.16 0.26 0.00 0.05 �0.08 0.05
8 �0.24 2.77 0.29 0.17 0.06 0.08 0.15 0.06
9 0.31 1.56 0.24 0.34 0.04 0.06 0.08 0.06
10 �0.21 3.90 �0.16 0.16 �0.01 0.07 �0.10 0.05
11 0.41 5.59 �0.21 0.16 0.01 0.02 �0.04 0.02
12 �1.11 5.06 �0.38 0.21 0.00 0.04 �0.07 0.03
13 0.12 1.30 0.16 0.24 0.02 0.03 0.01 0.03
14 0.44 8.09 �0.09 0.24 0.02 0.05 �0.02 0.04
15 �0.31 3.27 �0.02 0.23 0.00 0.04 �0.05 0.04
16 0.27 1.59 0.26 0.15 0.04 0.06 0.07 0.05
17 0.36 0.88 0.16 0.13 0.03 0.09 0.06 0.05
18 0.15 0.81 0.04 0.12 0.03 0.11 0.03 0.06
19 0.53 3.18 0.12 0.23 0.06 0.12 0.11 0.11
20 �0.19 6.34 0.20 0.17 0.15 0.21 0.28 0.17
21 0.63 7.28 0.31 0.21 0.05 0.09 0.14 0.08
22 0.35 1.03 0.23 0.16 0.04 0.05 0.09 0.06
23 �0.13 3.61 �0.06 0.26 0.03 0.05 0.01 0.04
24 0.37 2.08 0.29 0.26 0.03 0.07 0.07 0.05
25 �0.32 2.59 �0.23 0.10 0.01 0.04 �0.05 0.02
26 �0.29 2.65 �0.16 0.24 0.02 0.06 �0.03 0.05
27 0.20 1.15 0.07 0.18 0.03 0.04 0.02 0.03
28 �0.12 0.74 �0.11 0.15 0.00 0.06 �0.06 0.07
29 0.20 2.03 0.39 0.45 0.07 0.14 0.12 0.11
30 �0.24 4.43 �0.01 0.17 0.03 0.04 0.00 0.03

Source: Authors.
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Figure 7 shows the effect of the shrinkage degree (by increasing g) over the eigen-
value spectrum. Random matrix density is shown in brown for all the figures. As the
value of g increases, the eigenvalue spectrum of the shrinking matrix shifts towards
the interior of a random matrix spectrum. For g ¼ 0:81, the lowest eigenvalues of
the compressed matrix are all inside the random matrix spectrum.

5. Estimating the optimal covariance matrix ex-ante shrinkage level

So far, we have shown that the shrinkage of the covariance matrix can significantly
improve the performance of the Markowitz rule. However, we now want to explore how
effective this method is under more realistic conditions. In practice, an investor must
simultaneously determine both the degree of compression of the covariance matrix and
the portfolio in which they will invest, using only the information available up to that
point. Thus, the investor must determine the ex-ante shrinkage level. A comparison with
other approaches used to shrink the covariance matrix is also required. For example, we
compare our method with the one proposed in Ledoit and Wolf (2004b), followed by a
comparison of the optimal shrinkage with other more recent approaches.

5.1. Ledoit–Wolf approach

The Ledoit and Wolf (2004b) method minimises the estimation risk of a set of parame-
ters by shrinking them to a target set value. The logic of this approach relies on the fact
that the covariance matrix has a high estimation risk due to the presence of many
degrees of freedom. Therefore, this shrinkage to another biased one (with a lower estima-
tion risk and fewer degrees of freedom) reduces the effects of the estimation risk.

Using Ledoit and Wolf (2004b), we estimate the optimal shrinkage for the 938
samples of size 200.

Figure 8 shows the optimal shrinkage values for each one of the 938 considered sam-
ples (of size 200 observations). It shows that the shrinkage degree value decreases when
the samples use more recent data. Using these values, we calculate the Markowitz out-of-
sample Sharpe ratio and obtain a value of 0.0835 compared with 0.1564 for the 1=n rule.
This result shows that although the estimation risk decreases, it is not sufficient to ensure
that the Markowitz rule performs better than the 1=n rule.

5.2. Shrinkage of the eigenvalues of the covariance matrix

Considering this discussion and recalling that the eigenvalues of the covariance
matrix below the lower limit of the eigenvalues of a random matrix are those that

Table 2. The effect of the eigenvalues of the covariance matrix.
Percentage of times

Sample size 200 Sample size 500

Without adjust With optimal adjust Without Adjust With optimal Adjust

Eigenvalues less than inferior limit 77.47% 0.00% 88.00% 0.00%
Eigenvalues higher than superior limit 3.56% 3.33% 3.33% 3.33%

Source: Authors.
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cause greater problems to the Markowitz rule, we propose an alternative shrinkage
approach. This approach consists of moving the smaller eigenvalues within the limits
of the respective random matrix. Specifically, we calculate the eigenvalues ki of the
correlation matrix. We then take the minimal eigenvalue kmin and move it towards
the random matrix spectrum:

g� kmin þ ð1�gÞ � 1 � ð1�
ffiffiffiffi
n
T

r
Þ2 (22)

From equation 22, we choose the shrinkage factor g� as

g� ¼ 1�ð1� ffiffiffi
n
T

p Þ2
1� kmin

(23)

Henceforth, we call this approach the optimal shrinkage of the covariance matrix
eigenvalues (OSME). We calculate the optimal g� for 938 samples and show the

Figure 7. Density of the eigenvalues for different degrees of compression.
Source: Authors.
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result in Figure 9. Thus, for each of the 938 samples with 200 monthly observations,
a new correlation matrix is determined using

Ŷ ¼ ð1�g�ÞR̂ þ g�Ŝ

Figure 9 shows that the shrinkage levels have higher and more stable values than
the Ledoit and Wolf (2004b) approach. Next, we calculate the out-of-sample perform-
ance of the Markowitz rule using this approach. We find that its Sharpe ratio is equal
to 0.1928, which is slightly above that of the 1=n rule (0.1564).

5.3. Comparison between OSME, Ledoit–Wolf, and the 1=n rule

In this subsection, we first compare OSME Ledoit and Wolf (2004a) with the 1=n
rule. Figure 10 shows the Sharpe ratio of the 1=n rule in red, that obtained using the
Ledoit–Wolf method in brown, and that obtained using OSME in blue for the differ-
ent sample sizes. This figure shows that the 1=n rule is higher for sample sizes of less
than 165months. OSME performs better for sample sizes greater than 165months.
The Ledoit–Wolf method begins to be higher than the 1=n rule for sample sizes over
280months. However, it is never superior to OSME.

Table 3 shows the means and standard deviations of the optimal weights obtained
using these three approaches. Although the standard deviation of the weights
decreases, it remains high. The volatility of the optimal weights under the OSME
approach is the lowest. The results show notably better performance for the
Markowitz rule with OSME adjusted with respect to the naive 1=n rule, and not only
for a sample size of 200months. This third approach allows the Markowitz rule to
perform better than the 1=n rule for sample sizes greater than 165 monthly
observations.

5.4. Comparison with other approaches

Finally, to demonstrate the robustness of our results, we compare the proposed
approach with recent approaches related to the shrinkage of covariance matrices. The

Figure 8. Shrinkage for a sample size of 200months.
Source: Authors.
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methods that we consider are those of Ledoit and Wolf (2003, 2004a,b, 2020) and
Ollila and Raninen (2019). All of these methods seek to decrease the estimation error
in the covariance matrix by compressing the traditional matrix into an identity matrix
to decrease the mean squared error. Table 4 shows the out-of-sample performance of
several methods. Two methods developed by Ollila and Raninen (2019) are consid-
ered (Ell1-RSCM and Ell2-RSCM). The table shows that the 1=n rule predominates
for sample sizes less than 200months. Meanwhile, the OSME approach predominates
for sample sizes of 150months and over. The Ledoit–Wolf and Ollila–Raninen meth-
ods exceed the 1=n rule for a sample size greater than 300months. The Sortino ratio
is used as a performance measure to check the robustness of the results (Sortino &
Van Der Meer, 1991). Whereas the Sharpe ratio considers the standard deviation r as
the risk measure, the Sortino ratio considers as risk only the part of r whose values
are below a minimum acceptable return. Table 5 shows the performance measures
using the Sharpe and Sortino ratios for a sample size of 200 monthly observations.
As before, the results continue to show the superior performance of the OSME
method. We use the one-month Treasury bills as the minimum acceptable return to
calculate the Sortino ratio.

Table 6 shows the weights’ standard deviations (for 30 assets) that we obtained
using each method. The last row provides the respective mean values. The OSME
method decreases the mean volatility 43 times compared with the Markowitz rule. In
addition, it decreases mean volatility (on average) by 12.6 times with respect to the
Ledoit and Wolf (2003, 2004a,b, 2020) and Ollila and Raninen (2019) methods. These
results are useful for portfolio managers because a portfolio selection method must
perform well and incur low transaction costs. High volatility in asset weightings
implies high transaction costs when rebalancing portfolios periodically.

Therefore, we recommend that portfolio managers (instead of using traditional
covariance matrix estimates) should shrink these matrices into a diagonal matrix that
only contains the variances of the individual assets. The shrinkage factor must be
chosen so that the smallest eigenvalue lies between the lower and upper bounds of
the random matrix spectrum (the corresponding shrinkage factor can be calculated
by applying equation 23). Consequently, by applying this modified Markowitz rule,
better performance and lower transaction costs could be obtained.

Figure 9. Shrinkage for a sample size of 200months.
Source: Authors.

ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA 2853



6. Conclusions

In the literature, classical methods of covariance matrix shrinkage use a matrix pro-
portional to the identity as a target. In this paper, we propose a modification of the
previous method using a diagonal matrix that is generated by the variances of the
returns as a target. In addition, we shift the eigenvalue spectrum of the compressed

Figure 10. Out of-sample Sharpe ratio versus sample size.
Source: Authors.

Table 3. Means and standard deviations of the portfolio weights.
Weight values

Markowitz Ledoit and Wolf (2004a,b) OSME

Mean
Standard
deviation Mean

Standard
deviation Mean

Standard
deviation

1 0.61 4.11 0.13 0.19 0.08 0.04
2 �0.58 5.88 �0.14 0.43 0.04 0.09
3 0.38 3.72 0.22 0.30 0.10 0.06
4 �0.04 1.14 �0.12 0.16 �0.01 0.03
5 0.27 2.87 0.10 0.25 0.03 0.06
6 �0.64 1.92 �0.14 0.14 0.00 0.02
7 �0.18 1.89 �0.07 0.14 0.00 0.03
8 �0.25 2.77 0.18 0.19 0.06 0.04
9 0.31 1.56 0.08 0.20 0.04 0.03
10 �0.21 3.90 �0.14 0.20 �0.01 0.04
11 0.41 5.59 �0.05 0.11 0.01 0.01
12 �1.11 5.06 �0.16 0.17 0.00 0.02
13 0.12 1.30 0.01 0.10 0.02 0.02
14 0.44 8.09 �0.04 0.20 0.02 0.03
15 �0.32 3.27 �0.05 0.14 0.00 0.03
16 0.28 1.59 0.11 0.17 0.04 0.04
17 0.36 0.88 0.10 0.22 0.03 0.06
18 0.15 0.81 0.08 0.22 0.03 0.07
19 0.53 3.18 0.17 0.29 0.06 0.07
20 �0.19 6.34 0.21 0.46 0.15 0.14
21 0.63 7.28 0.22 0.26 0.05 0.05
22 0.35 1.03 0.10 0.11 0.04 0.03
23 �0.13 3.61 0.04 0.16 0.03 0.03
24 0.37 2.08 0.03 0.21 0.03 0.04
25 �0.32 2.59 �0.08 0.17 0.01 0.02
26 �0.29 2.65 �0.06 0.19 0.02 0.03
27 0.20 1.15 0.04 0.10 0.03 0.02
28 �0.12 0.74 �0.08 0.15 0.00 0.04
29 0.20 2.03 0.23 0.51 0.07 0.09
30 �0.24 443 0.04 0.10 0.03 0.03

Source: Authors.
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covariance matrix such that its lower part is contained within the spectrum of a ran-
dom matrix.

Our results suggest that the poor performance of the Markowitz rule is partly
driven by the presence of eigenvalues close to zero in the covariance matrix. Using
our approach, the corresponding portfolio performance is better than that using the
1=n rule. Additionally, the obtained optimal portfolio weights are more stable.

A further comparison with six other methods shows that our approach delivers
better out-of-sample performance, while decreasing the volatilities of the optimal
weights. Our methodology also works for small sample sizes.

The limitations of this study should be noted. We only used a one-month dataset
of 30 equally weighted portfolios in one industry sector from Kenneth French’s data-
base. The performance of this approach using other datasets was not explored (e.g.
daily and individual asset data). We also assumed a monthly portfolio rebalancing
period with an investment horizon of one month; therefore, different rebalancing and
investment periods should also be explored in the future. However, applying optimal
portfolio selection with different schemes always faces the problem of correctly esti-
mating the covariance matrices. The effects of considering transaction costs on the
out-of-sample performance of this approach should also be explored. This aspect is of
particular importance for emerging economies.

These shrinkage methods decrease the correlations between asset returns in the
covariance matrix. This improves predictability and decreases the volatility of the
optimal portfolio weights, and implies (in part) that the empirical correlations are
overestimated; that is, the data contain spurious correlations that alter the estimation
process. The causes of this phenomenon remain to be explored.

Table 4. Out-of-sample performance.
Out-of-sample performance (Sharpe Ratio)

Sample Size Markowitz Rule 1/n LW 2020 LW 2003 LW 2004 A LW 2004 B 011ila 1 011ila 2 OSME

100 �0.0182 0.1692 �0.0249 �0.0278 0.0333 0.0395 0.0433 0.0152 0.1070
150 0.0356 0.1691 �0.0198 �0.0078 �0.0125 �0.0274 0.0320 0.0038 0.1125
200 0.0011 0.1725 0.0847 0.0835 0.0944 0.0468 0.1086 0.0982 0.1928
250 0.1138 0.1622 0.1250 0.1240 0.1325 0.1171 0.1389 0.1341 0.1890
300 0.1641 0.1581 0.1730 0.1710 0.1797 0.1696 0.1845 0.1800 0.2110
350 0.1525 0.1484 0.1589 0.1558 0.1624 0.1568 0.1675 0.1630 0.2013
400 0.1480 0.1424 0.1553 0.1536 0.1601 0.1574 0.1660 0.1608 0.1942

Source: Authors.

Table 5. Performance measures using the Sharpe and Sortino ratios.

Method Mean
Standard
deviation

Downside
deviation

Sharpe
ratio

Sortino
ratio

Markowitz 0.001 0.740 0.050 0.001 0.016
Rule 1/n 0.009 0.055 0.029 0.172 3.296
LW 2020 0.018 0.214 0.009 0.085 2.047
LW 2003 0.017 0.203 0.085 0.084 1.987
LW 2004 A 0.015 0.158 0.076 0.095 1.957
LW 2004 8 0.030 0.634 0.016 0.047 1.869
011ila 1 0.014 0.129 0.062 0.109 2.259
011ila 2 0.015 0.151 0.073 0.098 2.043
OSME 0.010 0.049 0.027 0.193 3.492

Source: Authors.
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Although these results are specific to the dataset that we used in this study, they
could be considered to be an opportunity to improve the work of portfolio managers,
especially those working with small datasets (e.g. oriented towards emerging markets).

Disclosure statement

No potential conflict of interest was reported by the authors.

Notes

1. In this study, we consider that all individuals are risk averse. However, Markowitz’s model
could incorporate greater flexibility by allowing useful functions that are considered to be
risk-loving individuals. See Georgalos et al. (2021) for a detailed discussion.

2. Here, e is an n-dimensional column vector whose elements consist of ones.
3. See Bai et al. (2009).
4. Taken from Kenneth French’s website.
5. We use the eigenvalues of the correlation matrices as the standardisation criterion

because the sum of the eigenvalues of the correlation matrix, with a range equal to n, is
equal to n.

6. See, for example, DeMiguel et al. (2009, 2013).
7. For details, see Papp et al. (2005).

Table 6. Standard deviations of the optimal weights.
Standard deviations of Markowitz model optimal weights with different methods

Asset Markowitz LW 2003 LW 2004 A LW 200413 LW 2020 011ila 1 011ila 2 OSME

1 4.12 1.08 0.61 2.11 0.94 0.44 0.57 0.06
2 5.89 1.59 1.23 4.36 1.75 0.99 1.18 0.16
3 3.72 0.88 0.66 2.87 1.01 0.52 0.63 0.10
4 1.15 0.47 0.50 0.58 0.54 0.40 0.48 0.05
5 2.87 0.94 0.71 1.88 0.93 0.58 0.69 0.09
6 1.92 1.08 0.62 1.15 0.81 0.46 0.59 0.03
7 1.90 0.50 0.43 0.78 0.53 0.34 0.41 0.05
8 2.78 0.73 0.56 1.07 0.84 0.46 0.54 0.08
9 1.57 0.84 0.60 1.09 0.78 0.47 0.58 0.06
10 3.90 0.97 0.69 2.57 1.06 0.54 0.66 0.07
11 5.59 1.49 0.88 2.35 1.31 0.60 0.83 0.02
12 5.07 1.30 0.91 2.41 1.29 0.66 0.85 0.04
13 1.30 0.67 0.41 0.54 0.59 0.31 0.40 0.03
14 8.09 1.92 1.20 4.09 1.92 0.87 1.12 0.05
15 3.28 0.85 0.54 1.56 0.81 0.41 0.51 0.04
16 1.59 0.42 0.38 1.06 0.50 0.32 0.37 0.06
17 0.89 0.45 0.48 0.73 0.54 0.41 0.47 0.09
18 0.81 0.32 0.33 0.69 0.35 0.30 0.32 0.11
19 3.18 0.82 0.68 2.37 0.97 0.57 0.66 0.12
20 6.34 1.38 1.01 4.70 1.53 0.77 0.96 0.21
21 7.28 1.68 1.20 4.78 1.84 0.90 1.13 0.09
22 1.04 0.41 0.31 0.75 0.42 0.26 0.30 0.05
23 3.61 1.01 0.92 1.56 1.22 0.70 0.88 0.05
24 2.08 0.83 0.63 0.92 0.73 0.49 0.60 0.07
25 2.59 0.76 0.56 2.03 0.84 0.45 0.54 0.04
26 2.65 0.94 0.68 1.64 0.92 0.54 0.65 0.06
27 1.15 0.47 0.33 0.47 0.43 0.26 0.32 0.04
28 0.74 0.35 0.33 0.41 0.39 0.30 0.33 0.06
29 2.03 1.11 0.90 1.39 1.09 0.72 0.87 0.14
30 4.43 0.97 0.56 1.90 0.91 0.38 0.52 0.04
Mean 3.12 0.91 0.66 1.83 0.93 0.51 0.63 0.07

Source: Authors.
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