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Landau damping of ion-acoustic waves is theoretically studied in a dope plasma of a
light inert gas like helium in the presence of plasma of a heavy inert gas like argon,
considering both fluid model and kinetic model. Damping rates of the ion-acoustic
waves in dope plasma are different for the two models which may be experimen-
tally investigated by imposing some conditions. Other cases of Landau damping
in Vlasov plasma are also considered. The study is intended to be in support of
the experimental investigation of Landau damping free from the influence of other
non-collisional as well as collisional damping.
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1. Introduction

Linear and nonlinear propagation of electrostatic and electromagnetic waves has
been theoretically and experimentally investigated by many authors considering
different kinds of plasma [1 – 8]. In a partially ionized plasma, some atoms remain
neutral, but their valence electrons are weakly bound to their respective nuclei.
The nonlinear distortion of orbits of bound electrons contributes to the optical
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properties of atoms excited by strong electromagnetic radiation [9]. The electrons
of neutral atoms are considered as harmonically bound to their respective nuclei. In
the presence of the applied electric wave field, the charged constituents of a plasma
experience wave-induced displacements. The stationary orbits of bound electrons
are also distorted by the wave field. In laser produced plasma, consisting of multiply-
ionized ions and highly charged heavy ions, atoms capture many electrons in their
high-lying loosely bound orbitals. When the number of bound electrons becomes
large, the line spectra may become very complex. The classical study of particle
dynamics of bound electrons explains the nonlinear effects.

Assuming the existence of bound electrons in the background of free electrons
in plasma, Chakraborty et al. [10], and other authors [11,12] theoretically studied
the nonlinearly induced precessional rotation, magnetic moment field etc. However,
they did not consider the collective effects of bound electrons, free electrons and
free ions for their studies on the propagation of waves in plasma. Chakraborty et al.
[13] have first considered the collective effects of the plasma species for study of the
propagation of transverse waves in a Vlasov plasma consisting of a mixture of free
electrons, weakly bound electrons, free static ions and static ions associated with
the bound electrons, maintaining macroscopic charge neutralization. The depen-
dence on temperature of the phase velocity, group velocity and Thomson scattering
cross section have been investigated. They have discussed the Lagrangian and the
Hamiltonian of a compressible plasma having bound electrons in the fluid mixture
approximation. Chakraborty et al. [14] have investigated the collective behaviour
of a plasma when the plasma is considered to be as mixture of compressible fluids
of free electrons, free ions, weakly bound electrons and neutral atoms. They have
developed a classical theory for understanding the dynamical behaviour of such
a plasma. It is found that the Poynting theorem for energy conservation and the
Maxwell stress elements have some new terms. The particle dynamical analysis and
the energy exchange aspects of free electrons and bound electrons have also been
considered. Kinetic and kinematical aspects of this model and other models have
been discussed briefly. Recently, Paul et al. [15] have evaluated (i) the zero-harmonic
magnetic moment (ii) the damping factor and cut-off frequency and (iii) the col-
lisional energy absorption for an elliptically polarized wave, assuming a plasma to
be fluid-like, compressible mixture of populations of weakly bound electrons, free
electrons and ions. The characteristics of propagation of small-amplitude waves in
such a cold plasma have also been studied. They have discussed the relative roles
of bound electrons, the characteristic frequency of free electrons, the characteristic
frequency of bound electrons, the resonance condition and the cut-off frequency.

In this paper, we have developed the theory for a modification of Landau damp-
ing and dispersion of ion acoustic waves in a plasma having a population of bound
electrons in addition to a population of free electrons and ions for neutralization.
Since, the phase velocity of ion-acoustic waves is independent of the plasma density,
it is convenient to perform experiments with ion waves in partially ionized plasma.
Damping of waves in the absence of collisions is found to be more interesting than
that in the presence of collisions. In fact, damping in a non-collisional plasma was
first considered by Landau [16], and this damping is known as Landau damping
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of waves. Researchers have tackled the problem of Landau damping in plasma in
various ways and still this subject is being studied by many researchers [16 – 20].
Ott and Sudan [21,22] considered the effects of Landau damping on the ion acoustic
solitary waves in plasma. In a relativistic plasma, nonlinear propagation of waves in
the presence of Landau damping has been studied by Roychowdhury et al. [23] and
others. Alexeff et al. [24] measured Landau damping length of ion acoustic waves
in a dope plasma of light inert gas without the help of an ambient magnetic field
along the direction of wave propagation. To eliminate the influence of collissional
and other losses of damping, these authors first produced a plasma of a heavy inert
gas like argon and xenon, at wave phase velocity greater than the average ion ther-
mal velocity. Landau damping of ion acoustic wave is not possible in this plasma.
Actually, the direct measurement of Landau damping by a wave at phase velocity
equal to ion thermal velocity is not possible because this noncollissional damping
can not be separated from collissional and other losses. So, Alexeff et al. [24] intro-
duced a small amount of a dope (helium or neon) in plasma. As the dope ions are
much lighter, they move at higher velocities and so the waves are Landau damped.
If the concentration of dope is increased considerably, this Landau damping will not
occur because the phase velocity of the wave then exceeds the ion thermal velocity
of light gas.

In our present investigation, we have studied Landau damping in a dope plasma
considering the motion for both the electrons and ions. The damping rates in both
cases have been numerically estimated and graphically discussed. It is found that
the damping rate in the fluid model is lower than when electrons are represented
by the Boltzmann distribution function.

2. Formulation

To study Landau damping for the ion acoustic waves, we consider a collissionless,
partially ionized, unmagnetized dope plasma with two inert gases, one heavy (say
argon) and one light (say helium). We assume that the dynamics of electrons and
ions are represented by fluid motion and distribution function, respectively. All
electrons are considered to belong to the non-thermal fluid and bound loosely to
their inner cores of positive charges. The distribution functions of time, velocity
components and position coordinates for ions of a heavy inert gas and a light inert
gas are:

fih(r, v, t) and fil(r, v, t) . (1)

The applied electric field for longitudinal wave is

E(z, t) = E0 cos θ, θ = kz − ωt (2)

where, k and ω are the wave number and frequency of the wave. The normalized
equilibrium velocity distribution functions of ions of the heavy and light gases are
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the Maxwellians

f0
ih(v2) =

(

Mh

2πKBTih

)1/2

exp

(−Mhv2

2KBTih

)

, (3)

f0
il(v

2) =

(

Ml

2πKBTil

)1/2

exp

(−Mlv
2

2KBTil

)

, (4)

where,Mh and Ml are the masses, Tih and Til are the temperatures of heavy and
light ions. KB is the Boltzmann constant.

The perturbed state distribution functions are expressed as

fih(r, v, t) = Nihf0
ih(v2) + fih(z, v, t) . (5)

fil(r, v, t) = Nilf
0
il(v

2) + fil(z, v, t) . (6)

where

|fih(r, v, t)| >> |fih(z, v, t)|, etc., (7)

and Nih and Nil are number densities in the equilibrium state.

The infinitesimally small perturbation in the distribution functions are

fih(z, v, t) and fil(z, v, t) . (8)

In the case of electron, the perturbed number densities can be written as

neh = Neh + n
(1)
eh , (9)

nel = Nel + n
(1)
el , (10)

where

| Neh |≫| n
(1)
eh , Nel |≫| n

(1)
el | (11)

Neh and Nel are number densities in the equilibrium state and small perturbations

number densities are n
(1)
eh and n

(1)
el .

The guiding equations for the four species plasma are

- for ions of argon plasma

∂fih

∂t
+ v

∂

∂z
fih + Nih

qih

Mh
E

∂f0
ih

∂v
= 0 , (12)
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- for ions of helium plasma

∂fil

∂t
+ v

∂

∂z
fil + Nil

qil

Ml
E

∂f0
il

∂v
= 0 , (13)

- for electrons of argon plasma

ξ̈eh = −qeh

m
E − ω2

ohξeh − νξ̇eh , (14)

- for electrons of helium plasma

ξ̈el = −qel

m
E − ω2

olξel − νξ̇el , (15)

where qih, qil, qeh, qel are the per particle charge of the four species. ξel and ξeh are
wave field induced displacement of the bound electrons of the light element and
heavy element, respectively, and the frequencies of their oscillations are ωol and
ωoh, respectively, m is the mass of an electron and ν is the collisional frequency.

Now, the Gauss’s divergence law gives

∇ · E = 4π(ρih + ρil + ρeh + ρel) (16a)

or,

∂E

∂z
= 4π

[∫

(qihfih + qilfil)dv + qehn
(1)
eh + qeln

(1)
el

]

(16b)

where, ρih, ρil, ρeh, ρel are the charge densities of the four species in the plasma.

The prefield macroscopic charge neutrality ensures that

qilNil + qihNih + qelNel + qehNeh = 0 . (17)

Time derivatives of ξl and ξh give the field induced average velocities vl and vh. So

ξ̇il =
1

Nil

∫

vfildv, ξ̇ih =
1

Nih

∫

vfihdv . (18)

Using Eqs. (2) and (18) in Eq. (12) we find that

fih(z, v, t) = − iqihNih

Mh
E

f01
ih (v2)

kv − ω
, (19)

fil(z, v, t) = − iqilNil

Ml
E

f01
il (v2)

kv − ω
, (20)

where

f01
ih = df0

ih/dv, etc.
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The solutions of Eqs (14) and (15) are

ξeh =
qehE/m

(ω2 − ω2
oh + iνω)

, (21)

ξel =
qelE/m

(ω2 − ω2
ol + iνω)

. (22)

Using the continuity equations

∂(nel)

∂t
+ ∇ · (nelvel) = 0 , (23)

one obtains

n
(1)
el = − iNelqelkE

m(ω2 − ω2
ol + iνω)

. (24)

Similarly,

n
(1)
eh = − iNehqehkE

m(ω2 − ω2
oh + iνω)

. (25)

Then Eq. (16) becomes the wave evolution equation

k=ω2
ih

∫

f01
ih (v2)dv

(kv − ω)
+ ω2

il

∫

v
f01
il (v2)dv

(kv−ω)
+

ω2
ehk

(ω2−ω2
oh)+iνω

+
ω2

elk

(ω2−ω2
ol)+iνω

, (26)

where ω2
ih = 4πq2

ihNih/Mh, etc.

Now, carrying out the contour integration over the singularity, we obtain

k = ω2
ihP

∫

f01
ih (v2)dv

(kv − ω)
± ω2

ih

k
πif01

ih (v2
p) + ω2

ilP

∫

f01
il (v2)dv

(kv − ω)

±ω2
il

k
πif01

il (v2
p) +

ω2
ehk

(ω2 − ω2
oh) + iνω

+
ω2

elk

(ω2 − ω2
ol) + iνω

, (27)

where P stands for the principal value of the singular integral and vp(= ω/k) is the
phase velocity.

For ions of the heavy gas v < vp, the residue physically vanishes and the factor
(kv − ω)−1 is expanded in positive integral powers of kv/ω. For ions of the light
gas, since v ≤ ω/k, in the singular integro differential equation, the principal value
of the integral of fil(z, v, t) containing (kv − ω)−1 is determined after expanding
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this factor in positive integral powers of kv/ω. Also the residue of this integral is
evaluated at the wave phase velocity vp. Then

k = −ω2
ih

ω

(

− k

ω
− 3k2C2

ih

ω3

)

− ω2
il

ω

(

− k

ω
− 3k2C2

il

ω3

)

± πi
ω2

il

k
f01
il (v2

p)

+
ω2

ehk

(ω2 − ω2
oh) + iνω

+
ω2

elk

(ω2 − ω2
ol) + iνω

, (28)

where Cih = KBTih/Mh, Cil = KBTil/Ml

For finding the damping rate, we write ω = ω + iγ where γ << ω. Then from
Eq. (28) one obtains the damping rate

γ

ω
=

QP1 + P2

(XP1 − Y Q + Z)ω
, (29)

where

Q = π
ω2

ilvp

k2C3
il

√
2π

exp

(

−
v2

p

2C2
il

)

and

P1 =
[

(ω2−ω2
ol)

2(ω2−ω2
oh)2+ ω2ν2

{

2ω4−2ω2(ω2
oh+ω2

ol)−(ω4
oh+ω4

ol)
}

+ω4ν4
]

,

P2 = ω3ν3(ω2
eh + ω2

el) −
{

(ω2 − ω2
oh)2ω2

el + (ω2 − ω2
ol)

2ω2
eh

}

ων ,

X =

[

2

ω3
(ω2

ih + ω2
il) +

12k2

ω5
(ω2

ihC2
ih + ω2

ilC
2
il)

]

,

Y = [−2(ω2 − ω2
ol)(ω

2 − ω2
oh)(ω2

oh − ω2
ol)ν + 2(ω2

oh + ω2
ol)ν

3ω2

+4
{

(ω2 − ω2
ol)

2 + (ω2 − ω2
oh)2

}

ω2ν + 8ω4ν3] ,

Z =ωω2
eh

[

2(ω2−ω2
ol)(ω

2−ω2
ol−ν2)+6ω2ν2

]

+ωω2
el

[

2(ω2−ω2
oh)(ω2−ω2

oh−ν2)+6ω2ν2
]

.

Case I : Neglecting collision terms

γ

ω
=

√

π

8

ω2
ilω

2vp

k2C3
il

exp

(

−
v2

p

2C2
il

)

(ω2
ih + ω2

il)

[

1 +
ω4

(ω2
ih + ω2

il)

{

ω2
eh

(ω2 − ω2
oh)2

+
ω2

el

(ω2 − ω2
ol)

2

}] .

(30)
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Case II : If ω >> ωoh, ωol, and neglecting collision term we have

γ

ω
=

√

π

8

ω2
ilω

2vp

k2C3
il

exp

(

−
v2

p

2C2
il

)

(ω2
ih + ω2

il)

[

1 +
ω2

eh + ω2
el

(ω2
ih + ω2

il)

] . (31)

For finding the Landau damping distance, we replace k by k+i/d. Then we have

d =

√
2πω2

ilvp exp

(

−
v2

p

2C2
il

)

k3C3
il

[

ω2
ih + ω2

il

ω2
+

ω2
eh(ω2 − ω2

oh)

(ω2 − ω2
oh)2 + ν2ω2

+
ω2

el(ω
2 − ω2

ol)

(ω2 − ω2
ol)

2 + ν2ω2

] . (32)

Case III : Neglecting collision terms, since ω > ωoh, ωol, we obtain

d =

√
2πω2

ilvp exp

(

−
v2

p

2C2
il

)

k3C3
il

[

ω2
ih + ω2

il

ω2
+

ω2
eh + ω2

el

ω2

] . (33)

If we now consider that both electrons and ions follow the Boltzmann-Vlasov
equation for the distribution functions instead of the fluid model for the electron
motion, then the four distribution functions of time, velocity components, position
coordinates for electrons and ions of the heavy inert gas and the light inert gas will
be

fih(r, v, t), fil(r, v, t), feh(r, v, t) and fel(r, v, t) . (34)

The normalized equilibrium velocity distribution functions of electrons are the
Maxwellians

f0
eh(v2) =

(

m

2πKBTeh

)1/2

exp

(

mv2

2KBTeh

)

, etc. (35)

The perturbed state of distribution functions for electrons are expressed as

feh(r, v, t) = Nehf0
eh(v2) + feh(z, v, t) , (36)

etc., where

|feh(r, v, t)| >> |feh(z, v, t)|, etc. (37)

The number densities in the equilibrium state and the per particle charge of the
four species are Neh, Nel, Nih, Nil, qeh, qel, qih, qil.
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The infinitesimally small perturbations in the distribution functions are

feh(z, v, t), fel(z, v, t), fih(z, v, t) and fil(z, v, t) . (38)

In the linearized approximation, the Boltzmann-Vlasov equations for the four
species of plasma are: Eq. (12) for ions of argon plasma and Eq. (13) for the ions
of helium plasma. For the electrons of the above plasma, Eqs. (14) and (15) will be
replaced by

∂feh

∂t
+ v

∂

∂z
feh + Neh

(qeh

m
E + ω2

ohξh

) ∂f0
eh

∂v
= 0 , (39)

(for electrons of argon plasma)

and
∂fel

∂t
+ v

∂

∂z
fel + Nel

(qel

m
E + ω2

olξl

) ∂f0
el

∂v
= 0 , (40)

(for electrons of helium plasma)

Moreover, Gauss’s divergence law gives

∂E

∂z
= 4π

∫

(qihfih + qilfil + qehfeh + qelfel)dv . (41)

The time derivatives of ξl and ξh are given by the field induced average velocities
vl and vh

ξ̇l =
1

Nel

∫

v

vfeldv, ξ̇h =
1

Neh

∫

v

vfehdv . (42)

Using Eqs. (2) and (42) in Eq. (39), we obtain

feh(z, v, t) = −iNeh





qeh

m
E +

iω2
eh

ωNeh

∫

v

vfehdv





f01
eh (v2)

kv − ω
, (43)

where f01
eh = df0

eh/dv, etc.

Hence, the integral
∫

v

vfehdv is given by

∫

v

vfehdv =

−iNeh
qeh

m

ω

k
E

∫

v

f01
eh (v2)dv

kv − ω

1 − ω2
oh

k

∫

v

f01
eh dv

kv − ω

. (44)
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Using this integral in Eq. (43) gives

feh(z, v, t) = −
iqeh

m
NehE

f01
eh (v2)

kv − ω

1 − ω2
oh

k

∫

v

f01
eh (v2)dv

kv − ω

. (45)

Similarly, proceeding for fel we obtain

fel(z, v, t) = −
iqel

m
NelE

f01
el (v2)

kv − ω

1 − ω2
ol

k

∫

v

f01
el (v2)dv

kv − ω

. (46)

Eqs. (45) and (46) represent fih and fil, respectively.

Then Eq. (41) becomes the wave evolution equation

k = ω2
ih

∫

f01
ih (v2)dv

(kv − ω)
+ ω2

il

∫

f01
il (v2)dv

(kv − ω)

+

ω2
eh

∫

f01
eh (v2)dv

kv − ω

1 − ω2
oh

k

∫

v

f01
eh (v2)dv

kv − ω

+

ω2
el

∫

f01
el (v2)dv

kv − ω

1 − ω2
ol

k

∫

v

f01
el (v2)dv

kv − ω

. (47)

Carrying out the contour integral over the singularity, we obtain

k = ω2
ihP

∫

f01
ih (v2)dv

(kv − ω)
± ω2

ih

k
πif01

ih (v2
p) + ω2

ilP

∫

f01
il (v2)dv

(kv − ω)

±ω2
il

k
πif01

il (v2
p) +

ω2
ehP

∫

v

f01
eh (v2)dv

kv − ω
± πi

ω2
eh

k
f01
eh (v2

p)

1 − ω2
oh

k
P

∫

v

f01
eh (v2)dv

kv − ω
± πi

ω2
eh

k
f01
eh (v2

p)

+

ω2
elP

∫

v

f01
el (v2)dv

kv − ω
± πi

ω2
el

k
f01
el (v2

p)

1 − ω2
ol

k
P

∫

v

f01
el (v2)dv

kv − ω
± πi

ω2
el

k
f01
el (v2

p)

. (48)
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If the wave is introduced in the plasma of the heavy inert gas at the wave phase
velocity vp greater than its ion thermal velocity Ci, the Landau damping of ion
acoustic waves is not possible. So, a trace of the dope plasma of a light inert gas is
introduced, the ion thermal velocity of which is more than the thermal velocity of
the ions of the heavy gas. The dope ions are Landau damped in this mixture of two
plasmas. For electrons of argon and helium Cel > vp, Cil > vp, so physically, v > vp,
and v /=0 is not physically possible. For ions of the heavy gas v < vp, the residue
physically vanishes and the factor (kv−ω)−1 is expanded in positive integral powers
of kv/ω. For ions of the light gas, since v ≤ ω/k, in the singular integro-differential
equation, the principal value of the integral of fil(z, v, t) containing (kv − ω)−1 is
determined after expanding this factor in positive integral powers of kv/ω. Also the
residue of this integral is evaluated at the wave phase velocity vp. Then Eq. (48)
becomes

k = −ω2
ih

ω

(

− k

ω
− 3k2C2

ih

ω3

)

− ω2
il

ω

(

− k

ω
− 3k2C2

il

ω3

)

± πi
ω2

il

k
f01
il (v2

p)

+

ω2
eh

k

∫

v /=0

1

v
(1 +

ω

kv
+

ω2

k2v2
)f01

eh (v2)dv

1 − ω2
oh

k2

∫

v /=0

1

v
(1 +

ω

kv
+

ω2

k2v2
)f01

eh (v2)dv

+

ω2
el

k

∫

v /=0

1

v
(1 +

ω

kv
+

ω2

k2v2
)f01

el (v2)dv

1 − ω2
ol

k2

∫

v /=0

1

v
(1 +

ω

kv
+

ω2

k2v2
)f01

el (v2)dv

. (49)

So, the damping rate for the ion-acoustic wave in a dope plasma when the
distribution functions of both the electrons and ions are represented by Boltzmann-
Vlasov equations, become

γ

ω
=

Q

ω[X + L − R]
, (50)

where

L =

2ωω2
eh

(

1

C2
eh

+
2ω2

C2
e1h

)

(

1 +
1

C2
eh

)

k2C2
e1h

(

1 +
ω2

C2
eh

+
ω4

C2
e1h

) +
2ω2

eh

k2C2
e1h

(

1 +
ω2

C2
eh

+
ω4

C2
e1h

)
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R =
2ω2

eh

ω3

(

1 +
ω2

ol

k2C2
e1l

)[

1 +
ω2ω2

ol

k4C4
e1l

(

1 +
ω2

ol

k2C2
e1l

)

]

+

2ωω2
olω

2
el/

(

1 +
ω2

ol

k2C2
e1l

)

k4C4
e1l

(

1 +
ω2

ol

k2C2
e1l

)[

1 +
ω2ω2

ol

k4C4
e1l

(

1 +
ω2

ol

k2C2
e1l

)

]{

1 +
ω2ω2

ol

k4C4
e1l

(

1 +
ω2

ol

k2C2
e1l

)

}

and
1

C2
c1l

=

−vp
∫

−∞

+

∞
∫

−vp

1

v2
f01
el (v2)dv,

1

C2
c1h

=

−vp
∫

−∞

+

∞
∫

−vp

1

v2
f01
eh (v2)dv .

Since ω2
e/C2

e = ω2
i /C2

s , where C2
s = KBTe/M , and M is the nuclear mass, Eq. (50)

becomes

γ

ω
=

√

π

8

ω2
ilω

2vp

k2C3
il

exp

(

−
v2

p

2C2
il

)

(ω2
ih + ω2

il)
. (51)

For finding the Landau damping at the distance d, we obtain

6k

ω4d
(C2

ihω2
ih + C2

ilω
2
il) ±

√

π

2

ω2
ilvp

k2C3
il

exp

(

−
v2

p

2C2
il

)

=
2kC2

e1hω2
ihC2

eh

C2
shd(k4C2

ehC2
e1h + k2ω2

ohC2
e1h + ω2ω2

oh)

+
2kC2

e1lω
2
ilC

2
s1

C2
s1d(k4C2

elC
2
e1l + k2ω2

elC
2
e1l + ω2ω2

ol)

−
ω2

ihC2
ehω2(4k3C2

e1h + 2kω2
oh)

C2
sh(A2 + B2)d

−ω2
ilC

2
elω

2(4k3C2
sh + 2kω2

oh)

C2
sl(C

2 + D2)d
, (52)
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A = k4C2
ehC2

e1h + k2ω2
ohC2

e1h + ω2ω2
oh,

B =

(

2k

d

)

{

2k2C2
ehC2

e1h + ω2
ohC2

e1h

}

,

C = k4C2
elC

2
e1l + k2ω2C2

e1l + ω2ω2
ol,

D =

(

2k

d

)

{

2k2C2
elC

2
e1l + ω2

olC
2
e1l

}

.

3. Results and discussion

From the expressions of Eqs. (29) and (51) we see that the growth rates for the
Landau damping of ion acoustic waves are different when we consider the distribu-
tion function of both electrons and ions, and also when electron are in fluid motion
and ion motion are represented by distribution function. To find the growth rates
we consider a model plasma for which the plasma parameters are: ω = 106, ωil =
107, ωih = 108, vp = 109, ωeh = 108, wel = 107, k = 10−3, ω0h = 103, ω0l = 103

we calculate the damping rate (γ/ω) for different models plasma. Fig. 1 shows the
variation of log(γ/ω) with Cil/vp for different values of collision. Fig. 1 shows the

Fig. 1. Plot of γ/ω (I) for the kinetic model and (II) for the fluid model.
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Fig. 2. Variation of damping length with thermal velocity 〈Cil〉 of helium ions.

damping rate for kinetic theory models is greater than the fluid models. This is
because kinetic theory provides more information than the fluid models. Fig. 1 also
shows that damping rate is very low for fluid models plasma if we consider the
collisional effects in the plasma. In Fig. 2, we observed that the damping length
increases with Cil, i.e. the ion-thermal velocity of light nuclei when fluid model is
considered for the motion of electrons.

4. Concluding remarks

A theory has been developed for the study of Landau damping of the ion-
acoustic waves in a dope plasma in a light inert gas (helium) in the presence of
plasma of a heavy inert gas (argon) considering (i) the motion of electrons and ions
are represented by fluid motion and distribution function respectively, (ii) both the
motion of the electrons and ions are represented by distribution function. Damping
rates of the ion-acoustic waves in dope plasma are different for the two models
which may be experimentally investigated by imposing the basic conditions. This
theory can be further generalized for the study of the Landau damping of various
types of longitudinal waves (e.g. electro-acoustic wave) in multicomponent Vlasov
plasma considering the collisional effects.
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PROUČAVANJE LANDAUOVOG PRIGUŠENJA IONSKO-ZVUČNIH VALOVA
U PUNJENOJ PLAZMI

Proučavamo teorijski Landauovo prigušenje ionsko-zvučnih valova u plazmi teških
inertnih iona, npr. argonskoj, punjenoj lakim inertnim ionima, npr. helijevim, raz-
matrajući fluidni i kinetički model. Prigušenje ionsko-zvučnih valova u punjenoj
plazmi je različito za ta dva modela, što se u nekim uvjetima može eksperimen-
talno proučavati. Razmatraju se i drugi slučajevi Landauovog prigušenja u Vlasovoj
plazmi. Ovim se radom želi potaknuti eksperimentalno istraživanje Landauovog
prigušenja s isključenjem utjecaja drugih sudarnih prigušenja i sudarnih prigušenja.
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