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The computation of the phonon dispersion curves (PDC) and the related properties
of three Mg-based metallic glasses, viz. Mg70Zn30, Mg84Ni16 and Mg85.5Cu14.5, are
made using the well recognized model potential of Gajjar et al. The pseudo-alloy
atom model is applied for the first time instead of the Vegard’s law. The three
theoretical approaches given by Hubbard-Beeby, Takeno-Goda and Bhatia-Singh
are used in the present study to compute the PDC of the systems. Five local-field
correction functions proposed by Hartree, Taylor, Ichimaru-Utsumi, Farid et al.
and Sarkar et al. are employed for the first time to see the effects of exchange and
correlation. The thermodynamic and elastic properties are computed from the elas-
tic limits of the PDC and found to be in qualitative agreement with the available
theoretical or experimental data. The present findings for the PDC of Mg70Zn30

alloy are found in fair agreement with available theoretical and experimental data.
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1. Introduction

In the last several decades, considerable theoretical development has taken place
in the field of disordered condensed matter physics. Generally, in this field the dis-
order means periodic random structure. The few examples of such systems are the
crystals with impurities, liquid metals, binary alloys, metallic glasses etc. The dis-
ordered materials are also known as non-crystalline materials. The metallic glasses
play an important role in the field of materials science and engineering, which opens
the door of research for both theoreticians and experimentalists. Such solids have
electronic properties normally associated with the metals, but the atomic arrange-
ments are not periodic. Most of the binary metallic glasses are made up of two metal
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components, which are interesting systems for theoretical investigations. Based on
the knowledge of interatomic interactions, we can understand the thermodynamic,
mechanical and electronic transport properties of amorphous solids. Such investi-
gations involve measurements of the collective density waves at larger momenta.
For a few metallic glasses, it is possible to measure the dynamical structure factors
up to very large wave vectors [1 – 4].

Keeping all this in mind, the theoretical computation of the phonon dynamics
of three Mg-based metallic glasses, viz. Mg70Zn30, Mg84Ni16 and Mg85.5Cu14.5, are
reported in the present article. Three main theoretical approaches, proposed by
Hubbard-Beeby (HB) [5], Takeno-Goda (TG) [6] and Bhatia-Singh (BS) [7, 8] are
used to compute the phonon frequencies of these metallic glasses.

The homovalent Mg70Zn30 glass is one of the most important candidates among
simple metallic glasses. The dynamical properties of Mg70Zn30 glass have been re-
ported theoretically by von Heimendl [9] using the equation of motion method, by
Tomanek [10] using a model calculation, by Saxena et al. [11, 12] using the effective
pair potential with TG approach, by Agarwal et al. [13] using BS and by Agarwal-
Kachhava [13] using TG as well as BS approaches. Recently, Vora et al. [2, 3] and
Thakore et al. [4] and have computed phonon dynamics of Mg70Zn30 glass with ef-
fective atom model with HB, TG and BS approaches. Experimentally, the PDC of
Mg70Zn30 glass was studied by Suck et al. [15] for a few wave vector transfers near
qP = 2.61 Å−1, at which the first peak is found in the static structure factor calcu-
lation. Hafner-Jaswal [16] and Hafner et al. [17] studied the atomic and electronic
structure of Mg70Zn30 glass by using ab initio pseudopotential technique. Benmore
et al. [18, 19] reported longitudinal excitations of the glass within the first pseudo-
Brillouin zone using the neutron Brillouin zone technique at room temperature. The
temperature dependence of the dispersion and damping coefficients of transverse
excitations was studied by Bryk and Mryglod [20] using the method of generalized
collective modes. The two-component Mg84Ni16 and Mg85.5Cu14.5 glasses are the
candidates for the transition metal-simple metal group. The structural analysis of
Mg84Ni16 glass has been studied by Nassif et al. [21], while the structural analysis
of Mg85.5Cu14.5 glass has been reported by Nassif et al. [22]. A literature survey
indicated that no one has reported the experimental or theoretical work related to
phonon dynamics of Mg84Ni16 and Mg85.5Cu14.5 glasses.

In most of the above studies, the pseudopotential parameter is evaluated so that
it generates a pair-correlation function or PDC, which is in good agreement with
experimental data. Also, the Vegard’s law [11, 12] was used to explain electron-ion
interaction for binary metallic glasses. But it is well known that pseudo-alloy-atom
(PAA) is a more meaningful approach to explain such kind of interactions in binary
alloys and metallic glasses [1 – 4]. Hence, in the present article the PAA model is
used to investigate the phonon dynamics of the binary glassy systems.

In the present computations, the three theoretical approaches, viz. HB, TG
and BS, are adopted with the well recognized model potential of Gajjar et al. [1 –
3]. Five local-field correction functions due to Hartree (H) [23], Taylor (T) [24],
Ichimaru-Utsumi (IU) [25], Farid et al. (F) [26] and Sarkar et al. (S) [27] are used
for the first time in the present study of the screening influence on the aforesaid
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properties. Besides, the thermodynamical properties, such as longitudinal sound
velocity vL, transverse sound velocity vT , Debye temperature ΘD, low temperature
specific heat capacity CV and some elastic properties, viz. the isothermal bulk
modulus BT , modulus of rigidity G, Poissons ratio σ and Youngs modulus Y are
also calculated from the elastic limit of the PDC. Finally, the comparisons are made
between the computed results and available theoretical as well as experimental data.

2. Computational methodology

The pair potential V (r) is calculated from the relation given by [1 – 4],

V (r) =

(

Z2e2

r

)

+
Ω0

π2

∫

F (q)

[

sin(qr)

qr

]

q2dq , (1)

where Z and Ω0 are the valence and atomic volume of the glassy alloy, respectively.

The energy-wave number characteristics appearing in Eq. (1) are written as
[1 – 4]

F (q) =
−Ω0q

2

16π
|WB(q)|2

εH(q) − 1

1 + [ε(q) − 1][1 − f(q)]
. (2)

Here WB(q), εH(q) and F (q) are the bare ion model potential, the Hartree dielec-
tric response function and the local field correction functions, respectively. In the
present work, the local field correction functions due to H, T, IU, F and S are
incorporated to see the impact of the exchange and correlation effects.

The well recognized model potential W (q) of Gajjar et al. [1 – 4] in the real
space, used in the present computation of phonon dynamics of binary metallic
glasses, is of the form

W (r) =
−Ze2

r3

C

[

2 − exp

(

1 −
r

rC

)]

r2 , r ≤ rC , (3)

=
−Ze2

r
r ≥ rC .

Here U = qrC . This form has the feature of a Coulombic term outside the core
and varying cancellation due to a repulsive and an attractive contribution to the
potential within the core. Hence, it is assumed that the potential within the core
should neither be zero nor constant, but it should vary as a function of r. Thus
the model potential has the novel feature of representing varying cancellation of
potential within the core over and above its continuity at r = rC and weak nature
[1 – 4].

The theories for computing the phonon dynamics in amorphous solids, ap-
proaches proposed by Hubbard-Beeby (HB) [5], Takeno-Goda (TG) [6] and Bhatia-
Singh (BS) [7, 8], have been employed in the present computation. The expressions
for longitudinal phonon frequency and transverse phonon frequency as per HB, TG
and BS approaches are given in Refs. [5 – 8].
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According to HB, the expressions for the longitudinal phonon frequency ωL and
transverse phonon frequency are [5]

ω2

L(q) = ω2

E

[

1 −
sin(qσ)

qσ
−

6 cos(qσ)

(qσ)2
+

6 sin(qσ)

(qσ)3

]

, (4)

and
ω2

T (q) = ω2

E

[

1 −
3 cos(qσ)

(qσ)2
+

3 sin(qσ)

(qσ)3

]

, (5)

where ω2

E =

(

4πρ

3M

)

∞
∫

0

g(r)V ′′(r)r2dr is the maximum frequency.

Following TG [6], the longitudinal ωL and transverse ωT phonon frequencies are
written as

ω2

L(q) =
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Recently, the BS [7] approach was modified by Shukla and Campnaha [8], they
introduced screening effects. Then, with the above assumptions and modification,
the dispersion equations for an amorphous material can be written as [7, 8]

ω2

L(q) =
2NC

ρq2
(βI0 + δI2) +

kek
2

TF q2|G(qrS)|2

q2 + k 2

TF ε(q)
(8)

and
ω2

T (q) =
2NC

ρq2

(

βI0 +
1

2
δ(I0 − I2)

)

(9)

Here, M and ρ are the atomic mass and the number density of the glassy component,
while V ′(r) and V ′′(r) are the first and second derivatives of the effective pair
potential, respectively. Other constants used in Eqs. (8) and (9) can be found in
Refs. [7, 8].

In the long-wavelength limit of the frequency spectrum, both frequencies, viz.
the longitudinal ωL and the transverse ωT phonon frequencies, are proportional to
the wave vectors and obey the relationships

ωL ∝ q and ωT ∝ q , ∴ ωL = vLq and ωT = vLq . (10)
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where vL and vT are the longitudinal and transverse sound velocities of the glassy
alloys, respectively. In the three approaches of this article, different expressions
were used for the two velocities.

In the HB approach, the two velocities are given as [5]

vL(HB) = ωE

√

3σ2

10
(11)

and

vT (HB) = ωE

√

σ2

10
(12)

In the TG approach, the two velocities are given as [6]

vL(TG) =





(

4πρ

30M

)

∞
∫

0

dr g(r)r3{rV ′′(r) − 4V ′(r)}





1/2

(13)

and

vT (TG) =





(

4πρ

30M

)

∞
∫

0

dr g(r)r3{3rV ′′(r) − 4V ′(r)}





1/2

(14)

The expressions for vL and vT in the BS approach are [7, 8]

vL(BS) =

[

NC

ρ

(

1

3
β +

1

5
δ

)

+
ke

3

]1/2

, (15)

and
vT (BS) =

[

NC

ρ

(

1

3
β +

1

15
δ

)]1/2

. (16)

In the long-wavelength limit of the frequency spectrum, longitudinal, vL, and
transverse, vT , sound velocities are computed. The isothermal bulk modulus BT ,
the modulus of rigidity G, the Poissons ratio σ, the Youngs modulus Y and the
Debye temperature θD were found using the expressions [1 – 4],

BT = ρ

(

v2

L −
4

3
v2

T

)

, (17)

G = ρv2

T , (18)

where ρ is the isotropic number density of the solid.

σ = 1 −
2v2

T /v2

L

2 − 2v2

T /v2

L

, (19)

Y = 2G(σ + 1) , (20)
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θD =
~ωD

kB
=

~

kB
2π

[

9ρ

4π

]1/3 [

1

v3

L

+
2

v3

T

]

−1/3

(21)

where θD is the Debye frequency.

The low temperature specific heat CV is obtained from Kovalenko-Krasny’s
expression [28],

CV =
Ω0~

2

kBT 2

∑

λ=L,T

∫

d3q

(2π)3
ω2

λ(q)
[

exp

(

~ωλ(q)

kBT

)

− 1

] [

1 − exp

(

−
~ωλ(q)

kBT

)] . (22)

The basic feature of temperature dependence of CV is determined by the be-
haviour of ωλ(q).

3. Results and discussion

The input parameters and other constants used in the present computations
are shown in Table 1. The thermodynamic and elastic properties of three Mg-based
metallic glasses are given in Tables 2 – 4. The pair potentials, the phonon dispersion
curves (PDC) and the heat capacities CV of metallic glasses are displayed in Figs. 1 –
12.

TABLE 1. Input parameters and constants.

Glass Z NC
M

(amu)
Ω0

(au)

ρM

(g/cm3)
rC

(au)

Mg70Zn30 2.00 12.00 36.62 138.15 2.9699 1.0343

Mg84Ni16 2.00 12.00 29.81 140.09 2.3837 1.0419

Mg85.5Cu14.5 1.85 12.00 29.99 144.95 2.3182 1.1008

The Mg70Zn30 glass is a special example of simple metallic glasses. The com-
parison of presently computed pair potentials with other such theoretical results
[11, 13] is displayed in Fig. 1. From the figure, it is seen that the first zero of the
pair potentials V (r = r0) due to the H-function occurs at r0 = 10.0 au. But with
the exchange and correlation, this zero shifts to r0 ≤ 4.7 au. The width of the
pair potentials and the Vmin(r) positions are also affected by the behaviour of the
screening. It is also noticed that the well depth of presently computed pair poten-
tials moved towards lower values of r as compared to those of Saxena et al. [11] and
Agarwal-Kachhava [13]. The reported pair potentials [11, 13] show higher potential
well depth, while present results generate lower potential well depth. Also, as we go
from S- to H-screening, the depth positions of the pair potentials are shifted toward
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Fig. 1. Dependence on screen-
ing of pair potentials V (r)
of Mg70Zn30 glass. Legend:
H – Hartree, T – Taylor, IU –
Ichimaru-Utsumi, F – Farid et
al., S – Sarkar et al.

higher r-values. The results of Saxena et al. [11] and Agarwal-Kachhava [13] show
significant oscillations in their pair potentials and their potential energy remains
almost positive in the large r-region. Thus, the Coulomb repulsive potential part
dominates the oscillation due to the ion-electron-ion interactions in their studies.
These types of oscillatory behaviour are also seen in the presently computed pair
potentials.

The pair potentials of Mg84Ni16 glass are shown in Fig. 2. It is observed from
the figure that the nature of the pair potentials is affected largely by the exchange
and correlation effects. The position of the first minimum and first zero V (r = r0)

Fig. 2. Dependence on screen-
ing of pair potentials V (r)
of Mg84Ni16 glass. Legend:
H – Hartree, T – Taylor, IU –
Ichimaru-Utsumi, F – Farid et
al., S – Sarkar et al.
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of the pair potential due to H-function occurs at r0 = 10.1 au, while the inclusion
of the exchange and correlations suppresses this zero to r0 ≤ 4.7 au. The maximum
depth of the pair potentials is obtained for the S-function, and behaviour of the
pair potentials shows significant oscillations in the higher r-region. The computed
pair potentials for Mg85.5Cu14.5 glass are shown in Fig. 3. It is seen from the figure
that the behaviour of the pair potentials is very sensitive to the screening functions,
particularly for the S-screening function. The pair potentials show soft-core nature.
The first zero due to the H-function occurs at 10.5 au, while this zero due to other
screenings occurs at r0 ≤ 4.7 au. The oscillatory behaviour is also seen in the
presently computed pair potentials.

Fig. 3. Dependence on screen-
ing of pair potentials V (r) of
Mg85.5Cu14.5 glass. Legend:
H – Hartree, T – Taylor, IU –
Ichimaru-Utsumi, F – Farid et
al., S – Sarkar et al.

One important feature noted from Figs. 1 – 3 regarding the pair potentials of
the glassy alloys is that when we move from Mg85.5Cu14.5 to Mg70Zn30 glass, the
valence, Z, of the glassy alloys increases and the depth positions shift towards
higher r-values. That shows the strong dependence of the depth positions of pair
potentials on the valence Z of the metallic glasses.

The influence of screening on the phonon frequencies of Mg70Zn30 glass in the
HB approach are displayed in Fig. 4. The first minimum in the longitudinal branch
is seen at q ≈ 1.6 Å−1 for the H-function and at q ≈ 2.6 Å−1 for the T-, IU-
and F-functions, while at q ≈ 2.8 Å−1 for the S-function. At the first peak of the
longitudinal phonon frequencies ωL, the screening influence amounts to 68.88%,
57.58%, 61.12% and 72.76% for the T-, IU-, F- and S-functions, respectively, with
respect to the static H-function. At the q ≈ 1. Å−1 point, such screening variations
on the transverse phonon frequencies ωT due to T-, IU-, F- and S-screening are
31.82%, 23.06%, 25.82% and 25.88%, respectively. The PDC computed from HB,
TG and BS approaches with S-local field correction function are shown in Fig. 5.
From the figure, it is seen that the first minimum in the longitudinal branches
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Fig. 4. Dependence on
screening of phonon disper-
sion curves of Mg70Zn30 glass
using HB approach. Legend:
H – Hartree, T – Taylor, IU –
Ichimaru-Utsumi, F – Farid et
al. l., S – Sarkar et al.

Fig. 5. Phonon disper-
sion curves of Mg70Zn30

glass using HB, TG and
BS approaches with S-
function. Legend: Expt. –
experimental, MD – mol-
ecular dynamics.

occurs at q ≈ 1.8 Å−1 for the BS, q ≈ 2.9 Å−1 for the TG and q ≈ 2.8 Å−1 for
the HB approach. The first crossing points of two-phonon branches ωL and ωT

are observed at q ≈ 2.2 Å−1 in HB, at q ≈ 1.7 Å−1 in TG and at q ≈ 1.7 Å−1

in the BS approach. In comparison to the other reported theoretical [10, 11, 13]
and experimental [15] data, the present results are suppressed but show qualitative
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Fig. 6. Dependence on
screening of phonon disper-
sion curves of Mg84Ni16 glass
using HB approach. Legend:
H – Hartree, T – Taylor, IU –
Ichimaru-Utsumi, F – Farid et
al., S – Sarkar et al.

Fig. 7. Phonon dispersion
curves of Mg84Ni16 glass us-
ing HB, TG and BS approaches
with S-function. Legend: HB –
Hubbard-Beeby, TG – Takeno-
Goda, BS – Bhatia-Singh.

agreement. The phonon frequencies for Mg84Ni16 glass obtained form various local-
field correction functions with HB approach are displayed in Fig. 6. It is seen from
the figure that the first minimum in the longitudinal branches occurs at q ≈ 1.6
Å−1 for the H-function, at q ≈ 2.6 Å−1 for the T-, IU-, F-functions and at q ≈ 2.8
Å−1 for the S-function. At the first maximum, the screening influence on ωL is
62% – 71% with respect to the static H-dielectric function. That influence on ωT at
q ≈ 1.0 Å−1 is 24% – 32%. The PDC due to HB, TG and BS approaches with S-local
field correction function are shown in Fig. 7. It is noticed that the oscillations are
more prominent in the longitudinal phonon modes as compared to the transverse
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modes. The phonon frequencies due to the BS approach are more enhanced than in
the HB and TG approaches. The first minimum in the longitudinal branches occurs
at q ≈ 1.8 Å−1 for BS, q ≈ 2.1 Å−1 for TG and q ≈ 2.8 Å−1 for the HB approach.
The first crossover points of ωL and ωT in the three approaches are observed at
q ≈ 2.2 Å−1, q ≈ 1.7 Å−1 and q ≈ 1.7 Å−1, respectively.

Figure 8 shows, the graphical representation of the PDC of Mg85.5Cu14.5 glass
using HB approach with five screening functions, while Fig. 9 represents the com-

Fig. 8. Dependence on screen-
ing of phonon dispersion
curves of Mg85.5Cu14.5 glass
using HB approach. Legend:
H – Hartree, T – Taylor, IU –
Ichimaru-Utsumi, F – Farid et
al., S – Sarkar et al.

Fig. 9. Phonon dispersion
curves of Mg85.5Cu14.5 glass us-
ing HB, TG and BS approaches
with S-function. Legend: HB –
Hubbard-Beeby, TG – Takeno-
Goda, BS – Bhatia-Singh.
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parative study of PDC generated through the three approaches, HB, TG and BS,
with the S-local field correction function. It is seen from Fig. 8 that the inclusion
of screening functions enhanced phonon frequencies in comparison with the static
H-dielectric function. The first minimum in the longitudinal branches is found at
q ≈ 1.6 Å−1 for H, at q ≈ 2.4 Å−1 for T, at q ≈ 2.6 Å−1 for IU, F and at q ≈ 2.8 Å−1

for the S-screening function. The influence of various local field correction functions
at the first peak of longitudinal modes are 73.82% for T, 82.86% for IU, 84.96% for
F and 121.27% for the S-function with respect to the H-function. Such screening
influence on ωT at the q ≈ 1.7 Å−1 position amounts to 39.43%, 44.84%, 46.52%
and 59.53% for T, IU, F and S-screening functions, respectively. It is apparent from
Fig. 9 that the longitudinal phonon frequencies show stronger oscillatory behaviour
in the large q-region, what means the existence of collective excitations of large
momentum transfer, while transverse modes show hardly any oscillationsin in the
higher q-region, which suggests that transverse phonon behaviour is monotonic.
Moreover, the present results for longitudinal phonon frequencies ωL due to the
BS approach are very much higher than those of the HB and BS approaches. The
first minimum in the longitudinal branch occurs at q ≈ 1.8 Å−1, q ≈ 2.8 Å−1 and
q ≈ 2.8 Å−1 for the BS, TG and HB approaches, respectively. The first crossover
points of two-phonon branches in the HB, TG and BS approaches are observed at
q ≈ 2.2 Å−1, q ≈ 2.2 Å−1 and q ≈ 1.4 Å−1, respectively.

Also, one important feature noted from Figs. 4 – 9 of the PDC of the glassy
alloys, is that when we move from Mg85.5Cu14.5 to Mg70Zn30 glass, valence Z of
the glassy alloys increases and the first peak positions of presently computed PDC
show higher values, which shows strong dependence of the first-peak position of
PDC on valence Z.

The PDC shows the existence of collective excitations at larger momentum
transfer due to longitudinal phonons only and the instability of the transverse
phonons due to the anharmonicity of the atomic vibrations in the metallic systems.
Actually, neutron inelastic scattering (NIS) experiments on Mg70Zn30 glass by Suck
et al. [15] have exposed clearly the low-lying short-wavelength collective density
excitation at wave-vector transfer where the structure factor shows its main peak,
which are called phonon-roton states [15]. The difference in the magnitude of the
minimum around 2kF seems to be due to the fact that the concept of roton has
not been taken into account theoretically.

The anomalous behaviour of the specific heat is shown in Figs. 10 – 12 for
Mg70Zn30, Mg84Ni16 and Mg85.5Cu14.5 metallic glasses, respectively. It is observed
from Fig. 10 for the Mg70Zn30 glass that in the low-temperature region, on increas-
ing the temperature T , the specific heat CV computed from S-local field correc-
tion function shows high bump in all three approaches. For the Mg70Zn30 glass,
the comparison of presently computed results for HB approach gives a qualitative
agreement with the experimental data [15] available in the literature. But for the
TG and BS approaches, the present results are lower for higher temperature. It
is apparent from Fig. 11 that CV for Mg84Ni16 glass is more sensitive to screen-
ing functions. The initial rise of the CV values is observed in the low-temperature re-

198 FIZIKA A (Zagreb) 16 (2007) 4, 187–206



vora: Computation of phonon dispersion in non-crystalline Mg-based alloys

Fig. 10. Low-temperature
specific heat of Mg70Zn30

glass using HB, TG and
BS approaches. Legend:
H – Hartree, T – Taylor,
IU – Ichimaru-Utsumi, F –
Farid et al.., S – Sarkar et
al.

Fig. 11. Low-temperature
specific heat of Mg84Ni16
glass using HB, TG and
BS approaches. Legend:
H – Hartree, T – Taylor,
IU – Ichimaru-Utsumi, F –
Farid et al.., S – Sarkar et
al.
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gion, and for a further increase of the temperature, CV converges. It is noted from
Fig. 12 for the Mg85.5Cu14.5 glass that, as the temperature increases, CV for the
S-screening function shows a high bump in the low-temperature region. The HB
approach produces stronger anomalous behaviour in the CV curve compared to TG
and BS approaches.

Fig. 12. Low-temp-
erature specific heat
of Mg85.5Cu14.5 glass
using HB, TG and
BS approaches. Leg-
end: H – Hartree, T –
Taylor, IU – Ichimaru-
Utsumi, F – Farid et
al.., S – Sarkar et al.

As shown in Figs. 10 – 12, the exchange and correlation functions also affect
the anomalous behaviour (i.e. deviation from the T 3 law) which is observed in
the vibrational part of the specific heat CV . The reason behind the anomalous
behaviour may be due to the low frequency modes which modify the generalized
vibrational density of states of the glass with that of the polycrystal. These modes
are mainly responsible for the difference in the temperature dependence of the
vibrational part of the specific heat which departs from the normal behaviour. The
existence of a portion of the spectrum with ‘softer phonons’ (resembling rotons in
liquid helium) may be the cause of anomalous behaviour of vibrational heat capacity
CV . In the low temperature region, a contribution to CV is made by phonons of the
initial part of the frequency spectrum. When the temperature reaches a value at
which the energy of thermal motion becomes comparable to the minimum of energy
of ‘softer phonons’, an additional contribution to heat capacity appears from the
roton portion of ω(q).
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A quantitative difference between the present calculation and the experimental
results, in spite of good qualitative agreement, can be attributed to the following
reasons: (1) the sampling conditions of the experiments, (2) the scarcity of data in
the long wavelength region and (3) the low or high effectiveness of the local field
correction functions used for the calculation of the pair potential.

From the overall picture of the present study, it can be noticed that the proposed
model potential can be successfully applied to study the phonon dynamics of Mg-
based metallic glasses. The influence of various local field correction functions is
also observed. The experimental or theoretical data of Mg84Ni16 and Mg85.5Cu14.5

metallic glasses are not available in the literature, and the present study is very
useful to form a set of theoretical data of the particular metallic glasses.

In all three approaches, it is very difficult to judge which approximation is the
best for computation of phonon dynamics of Mg-based metallic glasses. The HB
approach is the simplest and old one, it generates consistent results of the phonon
data of these glasses, because the HB approximation needs minimum number of
parameters. It has been found successful for generating the PDC of metallic glasses
up to order of short wavelength density fluctuations. Also, this theory is based on
random phase approximations, which gives a very satisfactory account of collec-
tive and individual particle motion and the interplay between them. However this
approach is only applicable to systems in which the particle positions are not too
highly correlated, a condition which is very poorly satisfied in the solids and not
much better in the liquids. The TG approach is developed on the quasi-crystalline
approximation in which effective force constant depends on the correlation function
for the displacement of atoms, and the correlation function of displacement itself
depends on the phonon frequencies. It is useful to compute the PDC of metallic
glasses in high frequency collective modes. Basically, this theory deals with the
study of phonon-like elementary excitations and the dispersion of this excitations
depends on local order of the atoms by self constituent phonon scheme. The BS
approach assumes a central force effective between the nearest neighbours and a
volume dependence force due to the conduction electrons, hence, the disorderness
of the atoms in the formation of metallic glasses is stronger, which results in a
deviation in the magnitude of the PDC and the related properties. This model is
applicable to most of the materials.

The thermodynamic and elastic properties have been computed from the elastic
limit of the PDC and are reported in Tables 2 – 4. From Table 2, it is noted that the
thermodynamic and elastic properties of Mg70Zn30 glass are not much affected by
considering screening effects as in the cases of Mg84Ni16 and Mg85.5Cu14.5 metallic
glasses. The longitudinal and transverse sound velocities of Mg70Zn30 glass in the
BS approach show good agreement with the reported results [11]. For the Mg84Ni16
glass, calculated values of vL, vT , BT , G, σ, Y and θD are displayed in Table 3. The
results for Mg84Ni16 glass are not available in the literature, hence it is difficult to
draw any remarks at this stage. The present results, computed from BS approach,
show higher values than those of other two theoretical approaches. The calculated
thermodynamic and elastic properties of Mg85.5Cu14.5 glass are shown in Table 4.
It is noted from the table that the inclusion of exchange and correlation effects in the
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TABLE 2. Thermodynamic and elastic properties of Mg70Zn30 metallic glass.

vL vT BT G σ Y θD

App. SCR (km/s) (km/s) (GN/m2) (GN/m2) (GN/m2) (K)

HB H 1.576 0.910 0.410 0.246 0.250 0.615 110.0

T 1.645 0.950 0.446 0.268 0.250 0.670 114.8

IU 1.535 0.886 0.389 0.233 0.250 0.583 107.1

F 1.569 0.906 0.406 0.244 0.250 0.609 109.5

S 1.530 0.883 0.386 0.232 0.250 0.579 106.8

TG H 2.376 1.388 0.914 0.572 0.241 1.420 167.6

T 3.278 1.915 1.738 1.090 0.242 2.704 231.3

IU 3.138 1.869 1.542 1.037 0.225 2.542 225.3

F 3.223 1.917 1.629 1.092 0.226 2.677 231.2

S 3.067 1.796 1.516 0.958 0.239 2.375 216.9

BS H 6.897 3.133 10.240 2.915 0.370 7.986 384.6

T 5.559 1.350 8.455 0.541 0.469 1.590 167.9

IU 5.782 1.704 8.779 0.862 0.453 2.504 211.4

F 5.734 1.716 8.599 0.875 0.451 2.538 213.0

S 5.376 0.886 8.273 0.234 0.486 0.694 110.4

Others [11]
4.7
5.1

2.5
2.6

305.21

static Hartree dielectric function enhanced the longitudinal and transverse sound
velocities in the HB and TG approaches, while for the BS approach suppression of
both velocities is observed. Theoretical and experimental data are not available in
the literature for any comparison for the Mg85.5Cu14.5 glass.

The dielectric function plays an important role in the evaluation of potential due
to the screening of the electron gas. For this purpose, in the present investigations
the local field correction functions due to H, T, IU, F and S are used. The reason
for selecting these functions is that the H-function does not include exchange and
correlation effect and represents only static dielectric function, while T-function
covers the overall features of the various local field correction functions proposed
before 1972. IU, F and S functions are recent ones among the existing functions
and have not been exploited rigorously in such studies. This helps us to study
the relative effects of exchange and correlation in the aforesaid properties. Hence,
the five different local-field correction functions show variations up to an order of
magnitude in the phonon properties.
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TABLE 3. Thermodynamic and elastic properties of Mg84Ni16 metallic glass.

vL vT BT G σ Y θD

App. SCR (km/s) (km/s) (GN/m2) (GN/m2) (GN/m2) (K)

HB H 1.712 0.989 0.388 0.233 0.250 0.582 118.9

T 1.796 1.037 0.427 0.256 0.250 0.641 120.8

IU 1.686 0.973 0.376 0.226 0.250 0.565 117.1

F 1.721 0.993 0.392 0.235 0.250 0.588 119.5

S 1.661 0.959 0.365 0.219 0.250 0.548 115.4

TG H 2.581 1.507 0.866 0.541 0.241 1.344 181.2

T 3.546 2.071 1.634 1.022 0.241 2.537 248.9

IU 3.416 2.034 1.465 0.987 0.225 2.417 244.1

F 3.506 2.087 1.546 1.038 0.226 2.545 250.4

S 3.323 1.948 1.427 0.904 0.238 2.239 234.0

BS H 7.545 3.383 9.933 2.728 0.374 7.498 413.6

T 6.115 1.470 8.227 0.515 0.469 1.513 181.9

IU 6.343 1.853 8.499 0.819 0.453 2.380 229.0

F 6.282 1.857 8.311 0.822 0.452 2.387 229.4

S 5.913 0.994 8.106 0.236 0.486 0.700 123.3

TABLE 4. Thermodynamic and elastic properties of Mg85.5Cu14.5 metallic glass.

vL vT BT G σ Y θD

App. SCR (km/s) (km/s) (GN/m2) (GN/m2) (GN/m2) (K)

HB H 1.264 0.730 0.206 0.123 0.250 0.308 86.8

T 1.371 0.791 0.242 0.145 0.250 0.363 94.2

IU 1.416 0.818 0.258 0.155 0.250 0.387 97.3

F 1.432 0.827 0.264 0.159 0.250 0.396 98.4

S 1.503 0.868 0.291 0.175 0.250 0.436 103.2

TG H 1.859 1.083 0.438 0.272 0.243 0.676 128.8

T 2.609 1.519 0.865 0.535 0.244 1.330 180.5

IU 2.582 1.542 0.810 0.551 0.223 1.348 182.9

F 2.644 1.578 0.851 0.577 0.223 1.413 187.2

S 2.571 1.518 0.820 0.534 0.233 1.316 180.2

BS H 6.959 3.107 8.243 2.237 0.376 6.155 375.6

T 5.828 1.421 7.250 0.468 0.468 1.375 173.9

IU 6.077 1.787 7.575 0.741 0.453 2.152 218.3

F 6.048 1.821 7.454 0.769 0.450 2.229 222.3

S 5.633 1.138 6.955 0.300 0.479 0.888 139.4
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4. Conclusion

The PDC generated form three approaches with five local-field correction func-
tions reproduce all main characteristics of the dispersion curves. The well recognized
model potential with more advanced F and S local-field correction functions gen-
erates consistent results. The experimental and theoretical data for Mg84Ni16 and
Mg85.5Cu14.5 glasses are not available in the literature. Therefore, it is difficult to
draw any special conclusions. However, the present study is very useful to provide
important information regarding the particular glasses. Also, the present compu-
tation confirms the applicability of the model potential in the aforesaid properties
and supports the present approach of PAA. The study on phonon dynamics of other
binary liquid alloys and metallic glasses is in progress.
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RAČUNANJE FONONSKE DISPERZIJE U NEKRISTALNIM
MAGNEZIJEVIM LEGURAMA

Primjenom poznatog potencijala Gajjar-a i sur., izračunali smo fononske disper-
zijske funkcije (FDF) i fizička svojstva triju metalnih stakala na bazi magnezija,
Mg70Zn30, Mg84Ni16 i Mg85.5Cu14.5. Prvi puta primjenjuje se model pseudo-legura-
atom umjesto Vegardovog modela. Primijenili smo tri teorijska pristupa, Hubbard-
Beeby-ev, Takeno-Goda-ov i Bhatia-Singh-ov za izračunavanje FDF. Radi nalaženja
učinaka izmjene i korelacija, prvi smo uveli pet funkcija za popravke lokalnog polja,
prema autorima Hartree-u, Taylor-u, Ichimaru-Utsumi-u, Farid-a i sur. te Sarkar-a
i sur. radi nalaženja učinaka izmjene i korelacija. Izračunali smo termodinamička i
elastična svojstva na osnovi elastične granice FDF i nalazimo dobar sklad s objavl-
jenim teorijskim i eksperimentalnim podacima. Ishodi za FDF legure Mg70Zn30 su
u razumnom skladu s teorijskim i eksperimentalnim podacima.
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