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We present a more general description of the technique of Tsallis and co-workers,
to study the behaviour of dynamical systems. We enlarge to any dimension the
power-law generalization of the classical Lyapunov exponents, that was introduced
by Tsallis and co-workers in one dimension. We apply the new generalization to
the two-dimensional Hénon map and consider some cases.
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1. Introduction

To study the behaviour of dynamical systems, there is an important tool: the
Lyapunov exponents. For a particular case of one-dimensional systems, the meaning
of these numbers is the following: let f : I → I be an interval map. A discrete-time
dynamical system can be presented by setting

x(n + 1) = f(x(n)) , (1)
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and the separation after time N is evaluated by

x1(N) − x2(N) = f ′(c)[x1(0) − x2(0)] . (2)

The growing rate of the separation obeys the exponential law

Dx(0)(f
n(δx(0))) ∼ eλn, λ ∈ R , (3)

The number λ is the Lyapunov exponent for the dynamical system (1). An
indicator for the occurrence of chaotic behaviour is the “sensitive dependence on
initial conditions”, i.e. there is an ǫ > 0, such that for every neighborhood U
of a point x, there is a y ∈ U with |fN (x) − fN (y)| > ǫ, for some integer N .
Therefore, if the Lyapunov exponent is positive, chaotic behaviour occurs. In fact,
we consider a change x(0) → x(0)+δx(0), for a variation of the time t, and we have
δx(t) ∼ δx(0)eλt, so λ > 0 indicates a sensitive dependence on initial conditions.

In an arbitrary dimension d, the Lyapunov exponents for a differentiable map
f : R

d → R
d are defined as follows: let L be a map defined on R

d which takes
values in the space of linear transformations of R

d in R
d (or equivalently in the

space d × d matrices). The map L can be taken, for instance, in such a way that
for any x ∈ R

d, Lx ≡ L(x) : R
d → R

d be the linear approximation (the differential
map) of f in x. We denote

Ln
x ≡ Lfn−1(x) . . . Lf(x) ,

where the dots are understood as products of matrices. For x, v ∈ R
d, let

λ(x) = λ(x, v, f) = lim
n→∞

1

n
log ||Ln

xv|| (4)

if the limit exists, where for x = (x1, x2, . . . , xd) we take ||x|| =
√

∑d
i=1 x2

i .

The number λ(x) = λ(x, v, f) is called the Lyapunov exponent with respect to
L = L(f) in (x, v).

For a real number λ and x ∈ R
d, we denote

Eλ(x) = {v ∈ R
d : λ(x, v, f) ≤ λ} .

Notice that if λ1 ≥ λ2, then Eλ1
(x) ⊃ Eλ2

(x). Furthermore, if x ∈ R
d, there exists

an integer m(x) ≤ d, such that there is a collection of numbers λ1, λ2, . . .λm(x)

and linear subspaces R
d = Eλ1

(x), Eλ2
(x), . . . Eλm(x)

(x) = {0}, with

λ1(x) > λ2(x) > . . . λm(x)(x) ,

Eλ1
(x) ⊃ Eλ2

(x) ⊃ . . . ⊃ Eλm(x)
(x) .
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If v ∈ Eλi
(x) − Eλi+1

(x), then λ(x, v) = λi(x). The Lyapunov spectrum is now
defined as

Spx(L, f) = {λi(x) : i = 1, 2 . . . ,m(x)} .

If it is considered a f−invariant ergodic measure µ, the functions x → m(x),
x → Eλi

(x) and x → λi(x) are constant except for µ–null sets. For more details
about this subject and for the demonstrations of the facts mentioned above see,
e.g., Refs. [1] or [2].

Tsallis et al. [3] proposed a power-law generalization of the Lyapunov exponents
associated to one-dimensional discrete dynamical systems in order to study the
behaviour at the edge of chaos, or, more generally, at critical values of control
parameters of this kind of systems. They have been presented in the form

x(n + 1) = fα(x(n)) , (5)

with fα a family of interval maps depending on a bifurcation parameter α. Of
course, there is a dependence of the exponent on the parameter and for the critical
values αc, i.e. those for which λ(αc) = 0, the description of the system in these
points could not be well understood. Thus in Ref. [3], a one-parameter family {λq}
has been introduced, such that the Lyapunov λ is contained as one of its members,
specifically when q → 1. From now on, we will refer to λq=1(x) as λ(x), where q = 1
actually means q → 1. The aim of the above mentioned paper is to get a parameter
q such that λq(αc) /= 0 when λ(αc) = 0. The results of the above quoted paper of
Tsallis et al. have raised many developments in several directions, (see Ref. [4]). In
the preset article, we propose to formulate a presentation of the techniques from
Ref. [3] for dynamical systems with any number of dimensions.

It should be remarked that the dependence is not continuous in general, and
this fact causes problems in the physical context. Taking into account that Lya-
punov exponents measure the stability of the system, it would be good that in an
experiment they cannot be modified substantially by perturbations of the inter-
nal parameters of the system. In a purely experimental situation, the quantities
measured for predictions could be “smoothed” by instrumental procedures.

Another feature to observe is the following: in the case of having, at least in
a neighborhood of αc, a continuous dependence on the bifurcation parameter, we
would have eventually a transition λ(αc − ǫ) → λ(αc + ǫ) from chaotic to stable (or
stable to chaotic) state, and αc is a threshold of chaos. In general, this situation
is not expected, and so we could not ensure by a numerical computation that
transition occurs (even for a small ǫ), i.e., that αc is a genuine threshold of chaos.
We shall use the term “possible threshold of chaos”.

In this article we treat dynamical systems in discrete time, hence we denote
them by

x(n + 1) = fΛ(x(n)) , (6)

where Λ is a bifurcation parameter set (α1, α2, . . . αd), i.e., the behaviour of the
system can change by varying some αi. The technique proposed in Ref. [3] for the
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one-dimensional systems is applied in our context when the Lyapunov spectrum is
such that for q = 1, one of the exponents vanishes and the others are negative. So
the behaviour for the vanishing one is not well described.

In the study of chaotic behaviour, we frequently find invariant sets with a com-
plex mathematical structure. The multifractal analysis essentially deals with de-
compositions of these kind of sets. One of the main problems is to evaluate some
dimensions, e.g. the Hausdorff dimension, correlation dimension. In this article, we
estimate some of these dimensions. Herein we treat discrete dynamical systems, and
for the continuos case the considered dynamics are of the flows {ϕt}t∈R. Lyapunov
exponents λ ({ϕt}) for the flow {ϕt} are calculated as λ (ϕt=1).

The scheme and goals of this article are: in Sec. 2 we present a power-law
generalization in the spirit of Tsallis et al. for abstract dynamical systems and
illustrate this procedure for the two-dimensional Hénon map.

2. Power-law generalizations

In Ref. [3], the authors proposed the following power-law generalization of the
Lyapunov exponents

∣

∣

∣

∣

∆x(t)

∆x(0)

∣

∣

∣

∣

∼ [(1 − q)λq]
1/(1−q) × t1/(1−q) .

Let f : R
d → R

d be a differentiable map and as in the introduction, Lx ≡ L(x) :
R

d → R
d is the linear approximation of f in x. Inspired in the above formula for

the one-dimensional case, we set

λq(x) = λq(x, v, f) = lim
n→∞

[

(1/n)
(

1 − ||Ln
xv||(1−q)

)

q − 1

]

, for q /=1 . (7)

Now we have a power law: ||Ln
xv|| ∼ [(1 − q)λq]

1/(1−q) × n1/(1−q), therefore
||Ln

xv|| and n1/(1−q) change asymptotically in the same way.

To compare the notations with those in the paper of Tsallis et al.: ||Ln
xv||

corresponds to |∆x(t)/∆x(0)| and n to the “time” t.

We insist that the objective is try to describe the behaviour of dynamical sys-
tems for which in the Lyapunov spectrum occurs when λ1(Λc) vanish at a critical
value Λc and the other λ1(Λc) are negative. The proposed power-law generalization
enables us to find an optimal qop such that λqop

(Λc) /= 0, and so the behaviour of
the system can be described.

Remark: λ mean the numbers obtained by taking the limit q → 1 in Eq. (7),
i.e. the classical Lyapunov exponents.

The parameter q may be fitted in the case when the boundary of the possibly
fractal set (n, ||Lx,Λc

||) has a shape that can be fitted with a straight line. It is
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hoped that this fractality “decreases” as the bifurcation set is moved away from
Λc. Here Lx,Λc

means the linear approximation of f restricted to the set Λc.

We illustrate these ideas in the two-dimensional discrete Hénon map,







x(n + 1) = y(n) + 1 − α(x(n))2,

y(n + 1) = βx(n) .
(8)

where we set Λ = (α, β). Some features about this map are well known: for the
special values α = 1.4, β = 0.3, there is positive Lyapunov exponent λ1(α, β), and
the other one is λ2 = log |J | − λ1, where J is the Jacobian of the map, |J | = β.
Numerically it is known that λ1(1.4, 0.3) ≃ 0.42, and so λ2(1.4, 0.3) ≃ 1.62 [5].

We fix now β = 0.3 and sweep α in order to find a critical value Λc = (αc, 0.3),
such that λ1(αc, 0.3 = 0).

In Fig. 1 we see a plot of λ1 versus α for β fixed at 0.3 and 0.0 ≤ α ≤ 1.4.
The first positive λ1 value occurs at α = 1.058047982596 . . .. To the right of this
α, although many λ1 > 0 appear, one also finds a scattering of subintervals on
which λ1 < 0, and each such λ1 corresponds to a periodic attractor. The fact that
a period 7 attractor occurs for α = 1.3 had been already noticed [6].

Fig. 1. Lyapunov exponents for the Hénon map, with β = 0.3, vs. α ∈ [0, 1.4].

We shall focus our attention at the values αc = 1.058047982596 . . . and αc =
1.26182278611 . . . which yield values of λ1 = 0.95 × 10−10 and λ1 = 0.43 × 10−10,
respectively.

Recall that ||Ln
x || =

∏n−1
i=0 ||Lfi−1(x)||, thus we consider the estimation

L(n) = log ||Ln
(x(n),y(n))Λc

v|| =

n−1
∑

i=0

log ||Lfi−1(x(i),y(i))Λc
v|| , (9)
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with the initial coordinate values x(0) = y(0) = 0 and the initial vector v0 = (1, 0).
However, the same result is obtained with different unitary vectors, e.g. (0, 1),
(

1/
√

2, 1/
√

2
)

, etc.

Fig. 2. log-log of
∥

∥Ln
xΛc

∥

∥ vs. the number of iterations n, for x(0) = y(0) = 0,
α = αc = 1.26182278611.

A plot of L(n) vs. log n (Fig. 2) with n = 8000 and αc = 1.26182278611 . . .,
reveals the fractal nature of this set, as expected, and besides that the points for
large values of n are placed on a line with the slope m; it suggests that the optimal
choice for the parameter q, taking into account the asymptotic behaviour expressed
below Eq. (7), is

1

1 − qop
= m ≃ 1.4 . (10)

which leads to qop ≃ 0.285714, and therefore λ
qop

1 = 0.035 . . ., which indicates that
there is a chaotic behaviour, and Λc is a possible threshold of chaos.

In Fig. 3 is shown how the fractality “decreases” as the bifurcation parameter
is moved away from the threshold of chaos, i.e. the value αc = 1.26182278611 . . ..
Indeed this is a genuine threshold of chaos, at least locally. Investigations about the
behaviour of Lyapunov exponents of the two-dimensional Hénon map, were done
by Feit [6].
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Fig. 3. log-log of
∥

∥Ln
xΛc

∥

∥ vs the number of iterations n, for x(0) = y(0) = 0,

αc = 1.26182278611; (a) α = αc + 10−3; (b) α = αc + 10−5;(c) α = αc − 10−5; (d)
α = αc − 10−3.

With a similar procedure applied to αc = 1.058047982596 . . . (Fig. 4), we ob-
tained

1

1 − qop
= m ≃ −4.285 .

which leads to qop ≃ 1.23333 and λ
qop

1 (Λc) = −0.000909 . . ., which indicates non-
chaotic behaviour. In Fig. 5 we observe the same behaviour as in Fig. 3 while one
moves away from the threshold of chaos.

In the last two columns of the tables above, we calculate the Hausdorff dimension
(d) and the correlation dimension (ν) [7] for the fractal set in Fig. 2.

The Hausdorff dimension d is a purely geometric measure, because it is indepen-
dent of the frequency with which a trajectory visits various parts of the attractor.
The correlation dimension ν is obtained from the correlations between random
points on the attractor. As it can be observed, ν < d for all values of the α param-
eter.
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Fig. 4. log-log of
∥

∥Ln
xΛc

∥

∥ vs the number of iterations n, for x(0) = y(0) = 0,
α = αc = 1.058047982596.

Fig. 5. log-log of
∥

∥Ln
xΛc

∥

∥ vs the number of iterations n, for x(0) = y(0) = 0,

αc = 1.058047982596; (a) α = αc + 10−3; (b) α = αc + 10−5;(c) α = αc − 10−5; (d)
α = αc − 10−3.
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TABLE 1. Characteristic dimensions for the fractal set of Fig. 2 with αc =
1.2618.....

limn→∞ ||Ln
xv||

Hénon 2D
x(0) = 0
y(0) = 0

Hausdorff
dimension

Correlation
dimension

λ1 > 0 eλ1n α = αc + 10−5 0.58424 0.53737

λ1 < 0 eλ1n α = αc − 10−5 0.52221 0.45721

λ1 = 0
λ1

q > 0

[

(1 − q)λ1
q n

]1/(1−q) αc = 1.2618...
q ∼= 0.285714

0.53861 0.50034

TABLE 2. Characteristic dimensions for the fractal set of Fig. 2 with αc = 1.05904.

limn→∞ ||Ln
xv||

Hénon 2D
x(0) = 0
y(0) = 0

Hausdorff
dimension

Correlation
dimension

λ1 > 0 eλ1n α = αc + 10−5 0.59302 0.55878

λ1 < 0 eλ1n α = αc − 10−5 0.41428 0.40987

λ1 = 0
λ1

q > 0

[

(1 − q)λ1
q n

]1/(1−q) αc = 1.05804...
q ∼= 1.23333

0.44412 0.44400

Fig. 6. log-log of
∥

∥Ln
xΛc

∥

∥ vs the number of iterations n, for x(0) = y(0) = 0,
α = αc = 1.06328909597577.

Another interesting value of the parameter α for which λ1(α, 0.3) ≃ 0 is α ≃
1.063289095. For this value we calculate λ1

qop
(Λc) = 0.66× 10−9 (Fig. 6). It can be

numerically shown that period-doubling can occur, leading to the onset of chaos
[8].
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3. Conclusion

The results for the model studied here show that the techniques introduced by
Tsallis can be applied to analyze chaotic behaviour in dynamical systems with any
number of dimensions.
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POOPĆENJE POTENCIJSKOG ZAKONA ZA PROUČAVANJE DINAMIČKIH
SUSTAVA

Izlažemo poopćen opis metode Tsallisa i sur. za proučavanje svojstava dinamičkih
sustava. Proširujemo poopćenje potencijskog zakona klasičnih Lyapunovih ekspo-
nenata na proizvoljan broj dimenzija po uzoru na poopćenje koje su uveli Tsallis i
sur. za jednu dimenziju. Primjenjujemo to poopćenje na dvodimenzijsku Hénonovu
mapu i razmatramo neke slučajeve.
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