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1. Introduction

Recently [1-3] it has been proved that, contrary to the general belief, the usual
transformations of the three-dimensional (3D) vectors of the electric and magnetic
fields, see, e.g., Jackson’s well-known textbook [4], Eqs. (11.148) and (11.149), differ
from the Lorentz transformations (LT) (boosts) of the corresponding 4D quantities
that represent the electric and magnetic fields. The usual transformations will be
called the “apparent” transformations (AT) and the name will be explained in Sec.
4. This new approach [1 – 3, 5, 6] with 4D geometric quantities always agrees with
the principle of relativity and with experiments. This is shown by comparison with
experiments, e.g., the motional emf [2], the Faraday disk [3] and the Trouton-Noble
experiment [5, 6]. On the other hand, this is not the case with the usual approach
in which the electric and magnetic fields are represented by the 3D vectors E and B

that transform according to the AT. The mentioned agreement with experiments is
independent of the chosen reference frame and of the chosen system of coordinates
in it. The main point in the geometric approach [1 – 3, 5, 6] is that the physical
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meaning, both theoretically and experimentally, is attributed to the 4D geometric
quantities, and not, as usual, to the 3D quantities.

In this paper I shall present a simplified version of the proof of the difference
between the LT and the AT that is already given in Secs. 3.3 and 4 in Ref. [2].
The version presented here is better suited for students and teachers than that one
in Ref. [2]. For all mathematical details for the used geometric algebra formalism
readers can consult Refs. [7, 8] and a brief summary in Sec. 2.

As shown in Refs. [2, 3], the electric and magnetic fields can be represented
by different algebraic objects; 1-vectors, bivectors or their combination. The rep-
resentation with 1-vectors E and B is simpler than others and also closer to the
usual expressions with the 3D vectors E and B, but here we shall consider in more
detail the representation with bivectors, while only briefly that one with 1-vectors.
The reason is that the representation with bivectors, as in our Eq. (2), is employed
in Refs. [7, 8] and we want to make comparison with their results. In Subsection
3.1, the Lorentz invariant representation, Ev and Bv, is presented as introduced in
Refs. [2] and [3]. In Subsection 3.2, from these Ev and Bv, we simply derive the
observer-dependent expressions for the electric EH and magnetic BH fields, which
are solely exploited in Refs. [7, 8]. E′

H (and B′
H), which are the LT (the active ones)

of EH (and BH), Eqs. (10) and (11), are derived in Sec. 4 using the fact that every
multivector must transform under the active LT in the same way, i.e., according to
Eq. (9). Furthermore, it is known that any multivector, when written in terms of
components and a basis, must remain unchanged under the passive LT, like some
general bivector in Eq. (14). Hence observers in relatively moving inertial frames S
and S′ will “see” the same 4D geometric quantity, i.e., as in Eq. (15) for EH . These
fundamental achievements for the LT of bivectors EH (and BH) were first obtained
in Ref. [2]. Hestenes [7] and the Cambridge group [8] derived the transformations
for EH and BH (Ref. [7], Space-Time Algebra, Eq. (18.22), New Foundations for
Classical Mechanics, Ch. 9, Eqs. (3.51a,b) and Ref. [8], Sec. 7.1.2, Eq. (7.33)) in
the way that is presented in Sec. 5, Eqs. (16) and (17) for E′

H,at, and Eqs. (18),

(19) and (20) for the components. The transformations for components, Eqs. (19)
and (20), are identical to the usual transformations for components of the 3D E

and B, Ref. [4], Eq. (11.148). Such usual transformations are quoted in every text-
book and paper on relativistic electrodynamics already from the time of Einstein’s
fundamental paper [9], and Lorentz’s [10] and Poincaré’s [11, 12] papers. They are
always considered (including Refs. [7, 8]) to be the LT of the electric and magnetic
fields. However, it is obvious from (16) and (17) that E′

H,at is not obtained by the

active LT from EH , since (16) is drastically different than the correct LT (9) and
(10). Furthermore, as seen from Eq. (21), the relation (14) is not fulfilled, which
means that EH and E′

H,at are not the same physical quantity for relatively moving

observers in S and S′. Again, completely different result than the one obtained by
the correct passive LT, Eq. (15). This shows that neither the usual transformations
of the electric and magnetic fields from Refs. [7, 8] nor the usual transformations for
components, Ref. [4], Eqs. (11.148), are the LT. In Section 6, a short presentation of
the fundamental difference between the LT and the AT when dealing with 1-vectors
E and B is given. The conclusions are given in Sec. 7. Recently, the existence of
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a fundamental difference between the LT and the AT is once again simply proved
and used in the derivations and explanations (tensor formalism, with tensors as 4D
geometric quantities) in my paper in Phys. Rev. Lett., Ref. [13].

2. A brief summary of geometric algebra

Here, for readers’ convenience, we provide a brief summary of the geometric
algebra. Usually Clifford vectors are written in lower case (a) and general multivec-
tors (Clifford aggregates) in upper case (A). The space of multivectors is graded and
multivectors containing elements of a single grade, r, are termed homogeneous and
usually written Ar. The geometric (Clifford) product is written by simply juxta-
posing multivectors AB. A basic operation on multivectors is the degree projection
〈A〉r which selects from the multivector A its r−vector part (0 = scalar, 1 = vector,
2 = bivector ....). The geometric product of a grade-r multivector Ar with a grade-s
multivector Bs decomposes into ArBs = 〈AB〉 r+s + 〈AB〉 r+s−2

... + 〈AB〉 |r−s|.

The inner and outer (or exterior) products are the lowest-grade and the highest-
grade terms, respectively, of the above series; Ar · Bs ≡ 〈AB〉 |r−s| and Ar ∧ Bs ≡

〈AB〉 r+s. For vectors a and b we have: ab = a ·b+a∧b, where a ·b ≡ (1/2)(ab+ba),
a ∧ b ≡ (1/2)(ab − ba).

In this paper, the notation will not be the same as in the above mathematical
presentation. Namely some 1-vectors will be denoted in lower case, like v (the ve-
locity), x (the position 1-vector), while some others in upper case, like the 1-vectors
of the electric and magnetic fields E and B, respectively (in Sec. 5). Bivectors will
be denoted in upper case but without subscript that denotes the grade. Thus the
electromagnetic field F , the electric and magnetic fields, Ev and Bv, EH and BH ,
are all bivectors.

3. Electric and magnetic fields as bivectors

In the geometric approach used in this paper physical quantities will be repre-
sented by 4D geometric quantities, multivectors, that are defined without reference
frames, or, when some basis has been introduced, these quantities are represented
as 4D geometric quantities comprising both components and a basis. Such 4D
geometric quantities that are defined without reference frames will be called the
absolute quantities (AQs), while their representations in some basis will be called
coordinate-based geometric quantities (CBGQs).

For example, in Refs. [7, 8], one introduces the standard basis. The generators
of the spacetime algebra (the Clifford algebra generated by Minkowski spacetime)
are taken to be four basis vectors {γµ} , µ = 0...3, satisfying γµ · γν = ηµν =
diag(+−−−). This basis, the standard basis, is a right-handed orthonormal frame
of vectors in the Minkowski spacetime M4 with γ0 in the forward light cone. The
γk (k = 1, 2, 3) are spacelike vectors. This algebra is often called the Dirac algebra
D and the elements of D are called d−numbers. The basis vectors γµ generate by
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multiplication a complete basis for the spacetime algebra: 1, γµ, γµ ∧ γν , γµγ5, γ5

(16 independent elements). γ5 is the right-handed unit pseudoscalar, γ5 = γ0∧γ1∧
γ2 ∧ γ3. Any multivector can be expressed as a linear combination of these 16 basis
elements of the spacetime algebra. It is worth noting that the standard basis {γµ}
corresponds, in fact, to the specific system of coordinates, i.e., to Einstein’s system
of coordinates. In the Einstein system of coordinates, the Einstein synchronization
[9] of distant clocks and Cartesian space coordinates xi are used in the chosen
inertial frame of reference. However, different systems of coordinates of an inertial
frame of reference are allowed and they are all equivalent in the description of
physical phenomena.

For simplicity and for easier understanding we shall also deal only with the
standard basis, but remembering that the approach with 4D geometric quantities
holds for any choice of basis in M4.

3.1. Lorentz invariant electric and magnetic fields

The electromagnetic field is represented by a bivector-valued function F = F (x)
in the spacetime. As shown in Refs. [2, 3], the observer-independent F can be
decomposed into two bivectors Ev and Bv representing the electric and magnetic
fields and the unit time-like 1-vector v/c as

F = Ev + cIBv, Ev = (1/c2)(F · v) ∧ v = (1/2c2)(F − vFv),

IBv = (1/c3)(F ∧ v) · v = (1/2c3)(F + vFv), (1)

where I is the unit pseudoscalar and v is the velocity (1-vector) of a family of
observers who measures Ev and Bv fields. Observe that Ev and Bv depend not
only on F but on v as well. All quantities F , Ev, Bv, I and v are defined without
reference frames, i.e., they are AQs (I is defined algebraically without introducing
any reference frame, as in Ref. [14] Sec. 1.2.) Their representations in some basis
are CBGQs. For example, in the {γµ} basis the AQ Ev from (1) is represented by
the following CBGQ, Ev = (1/c2)Fµνvνvβγµ ∧ γβ

3.2. Electric and magnetic fields in the γ0-frame

For comparison with the usual treatments [7,8], let us choose the frame in which
the observers who measure Ev and Bv are at rest. For them v = cγ0. This frame
will be called the frame of “fiducial” observers or the γ0-frame. In that frame Ev

and Bv from (1) become the observer dependent (γ0-dependent) EH and BH and
instead of Eq. (1), we have

F = EH + cγ5BH , EH = (F · γ0)γ0 = (1/2)(F − γ0Fγ0),

γ5BH = (1/c)(F ∧ γ0)γ0 = (1/2c)(F + γ0Fγ0). (2)
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(The subscript H is for “Hestenes.”) Ev and Bv in the γ0-frame are denoted as
EH and BH since they are identical to 4D quantities used by Hestenes [7] and the
Cambridge group [8] for the representation of the electric and magnetic fields. We
note that such procedure was never used by Hestenes [7] and the Cambridge group
[8] since they deal from the outset only with γ0 and thus with a space-time split in
the γ0-frame, i.e., with the relations (2). This shows that the space-time split and
the corresponding observer-dependent form for the electric and magnetic fields, (2),
which is used in Refs. [7, 8], is simply obtained in our approach going to the frame
of the “fiducial” observers, i.e., replacing some general velocity v in (1) by cγ0.

EH and BH from (2) can be written as CBGQs in the standard basis {γµ}.
They are

EH = F i0γi ∧ γ0, BH = (1/2c)εkli0Fklγi ∧ γ0. (3)

It follows from (3) that the components of EH , BH in the {γµ} basis (i.e., in the
Einstein system of coordinates) give rise to the tensor (components) (EH)µν =
γν · (γµ · EH) = (γν ∧ γµ) · EH , (and the same for (BH)µν) which, written out as
a matrix, have entries

(EH)i0 = F i0 = Ei, (EH)ij = 0,

(BH)i0 = (1/2c)εkli0Fkl = Bi, (BH)ij = 0. (4)

(EH)µν is antisymmetric, i.e., (EH)νµ = −(EH)µν , and the same holds for (BH)µν .
(EH)µν from Eq. (4) can be written in a matrix form as

(EH)µν =




0 −E1 −E2 −E3

E1 = F 10 0 0 0
E2 = F 20 0 0 0
E3 = F 30 0 0 0


 , (5)

and readers can check that the same matrix form is obtained for (BH)µν . ((BH)10 =
(1/c)F 32 = B1.)

Thus from Eqs. (3) and (4) or (5), we see that both bivectors EH and BH are
parallel to γ0,

EH ∧ γ0 = BH ∧ γ0 = 0 , (6a)

and consequently all space-space components of (EH)µν and (BH)µν are zero,

(EH)ij = (BH)ij = 0 . (6b)

In the usual covariant approaches [4], the components of the 3D E and B are
identified with six independent components of Fµν according to the relations

Ei = F i0, Bi = (−1/2c)εiklFkl. (7)
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Such an identification was first given in Einstein’s fundamental paper on general
relativity [15]. In (7) and hereafter the components of the 3D fields E and B are
written with lowered (generic) subscripts, since they are not the spatial components
of the 4D quantities. This refers to the third-rank antisymmetric ε tensor too. The
super- and subscripts are used only on the components of the 4D quantities.

Comparing (4) and (7), we see that they similarly identify the components of
the electric and magnetic fields with six independent components of Fµν . However,
there are important differences between the relations (3), (4) or (5), and (7). In
the usual covariant approaches, e.g., [4], the 3D E and B, as geometric quantities
in the 3D space, are constructed from these six independent components of Fµν

and the unit 3D vectors i, j, k, e.g., E =F 10i + F 20j + F 30k. Observe that the
mapping, i.e., the simple identification, Eq. (7), of the components Ei and Bi with
some components of Fµν (defined on the 4D spacetime) is not a permissible tensor
operation, i.e., it is not a mathematically correct procedure. (A permissible tensor
operation with components of some tensors produces components of a new tensor,
e.g., the summation of components of two tensors gives the components of the sum
of two tensors.) The same holds for the construction of the 3D vectors E and B

in which the components of the 4D quantity Fµν are multiplied with the unit 3D
vectors, see Ref. [3] for the more detailed discussion. On the other hand, as seen
from Eqs. (3), (4) or (5), EH and BH and their components (EH)µν and (BH)µν are
obtained by a correct mathematical procedure from the 4D geometric quantities F
and γµ. The components (EH)µν and (BH)µν are multiplied by the unit bivectors
γi ∧ γ0 (4D quantities) to form the geometric 4D quantities EH and BH . In such
a treatment, the unit 3D vectors i, j, k, (geometric quantities in the 3D space) do
not appear at any point.

Furthermore, it is worth noting that Fµν are only components (numbers) that
are (implicitly) determined in Einstein’s system of coordinates. Components are
frame-dependent numbers (frame-dependent because the basis refers to a specific
frame). Components tell only part of the story, while the basis contains the rest of
the information about the considered physical quantity. These facts are completely
overlooked in all usual covariant approaches and in the above identifications (7) of
Ei and Bi with some components of Fµν .

4. Lorentz transformations of electric and magnetic fields

as bivectors

Let us now apply the active LT (only boosts are considered) to EH and BH

from Eq. (3). In the usual geometric algebra formalism [7, 8], the LT are considered
as active transformations; the components of, e.g., some 1-vector relative to a given
inertial frame of reference (with the standard basis {γµ}) are transformed into the
components of a new 1-vector relative to the same frame (the basis {γµ} is not

changed). Furthermore, the LT are described with rotors R, RR̃ = 1, in the usual

way as p → p′ = RpR̃ = p′µγµ. Remember that the reverse R̃ is defined by the
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ivezić: lorentz and “apparent” transformations of the electric and . . .

operation of reversion according to which ÃB = B̃Ã, ã = a, for any vector a, and
it reverses the order of vectors in any given expression. Every rotor in spacetime
can be written in terms of a bivector as R = eθ/2. For boosts in arbitrary direction
the rotor R is

R = eθ/2 = (1 + γ + γβγ0n)/(2(1 + γ))1/2, (8)

θ = αγ0n, β is the scalar velocity in units of c, γ = (1 − β2)−1/2, or in terms of
an ‘angle’ α we have tanh α = β, cosh α = γ, sinhα = βγ, and n is not the basis
vector but any unit space-like vector orthogonal to γ0; eθ = cosh α + γ0n sinh α.
One can also express the relationship between two relatively moving frames S and

S′ in terms of the rotor as γ′
µ = RγµR̃. For boosts in the direction γ1, the rotor

R is given by the relation (8) with γ1 replacing n (all in the standard basis {γµ}).
For simplicity we shall only consider boosts in the direction γ1.

As written in Sec. IV in Hestenes’ paper [7] in AJP, Lorentz rotations preserve
the geometric product. This implies that any multivector M transforms by the
active LT in the same way as mentioned above for the 1-vector p, i.e.,

M → M ′ = RMR̃, (9)

see, e.g., Eq. (69) in Hestenes’ paper [7] in AJP. M in Eq. (9) can be a simple blade
or a Clifford aggregate. Also it can be a function of some other multivectors.

Hence, according to (9), under the active LT EH from (2) must transform in
the following way

E′
H = R[(1/2)(F − γ0Fγ0)]R̃ = (1/2)[F ′ − γ′

0F
′γ′

0] = (F ′ · γ′
0)γ

′
0, (10)

where F ′ = RFR̃ and γ′
0 = Rγ0R̃. However, as will be shown in Sec. 4, it is

surprising that neither Hestenes [7] nor the Cambridge group [8] transform EH in
the way in which all other multivectors are transformed, i.e., according to (9) and
(10).

When the active LT are applied to EH from (3), thus when EH is written as a
CBGQ, then E′

H becomes

E′
H = R[Eiγi ∧ γ0]R̃ = E1γ1 ∧ γ0 + γ(E2γ2 ∧ γ0

+E3γ3 ∧ γ0) − βγ(E2γ2 ∧ γ1 + E3γ3 ∧ γ1). (11)

(We have denoted, as in Eq. (4), Ei = F i0.) The components (E′
H)µν ((E′

H)νµ =
−(E′

H)µν) can be written in a matrix form as

(E′
H)µν =




0 −E1 −γE2 −γE3

E1 0 βγE2 βγE3

γE2 −βγE2 0 0
γE3 −βγE3 0 0


 . (12)
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The same form can be easily found for B′
H and its components (B′

H)µν . (This is
left to readers.) Eq. (11) is the familiar form for the active LT of a bivector, here
EH , but written as a CBGQ.

(For some general bivector N , the components transform by the LT as the
components of a second-rank tensor

N ′ 23 = N23, N ′ 31 = γ(N31 − βN30), N ′ 12 = γ(N12 + βN20),

N ′ 10 = N10, N ′ 20 = γ(N20 + βN12), N ′ 30 = γ(N30 + βN13). (13)

From (13) one easily find (E′
H)µν (12) taking into account that the components

(EH)µν are determined by Eq. (5).)

It is important to note that

(i) E′
H and B′

H , in contrast to EH and BH (see Eqs. (6)), are not parallel to γ0,
i.e., both E′

H ∧ γ0 /=0 and B′
H ∧ γ0 /=0, which means that there are the space-space

components, (E′
H)ij /=0 and (B′

H)ij /=0. Furthermore,

(ii) the components (EH)µν ((BH)µν) transform upon the active LT again to
the components (E′

H)µν ((B′
H)µν); there is no mixing of components. Under the

active LT EH transforms to E′
H and BH to B′

H . Actually, as already said, this is
the way in which every bivector transforms under the active LT.

Instead of using the active LT, we can deal with the passive LT. The essential
difference relative to the usual covariant picture is the presence of a basis in a
CBGQ. The existence of the basis causes that every 4D CBGQ is invariant under
the passive LT; the components transform by the LT and the basis by the inverse LT
leaving the whole 4D CBGQ unchanged. This means that such CBGQ represents
the same physical quantity for relatively moving 4D observers. For some general
bivector N , the components transform according to (13), whereas the basis γ′

µ ∧γ′
ν

transforms by the inverse LT giving that the whole N is unchanged

N = (1/2)Nµνγµ ∧ γν = (1/2)N
′µνγ′

µ ∧ γ′
ν , (14)

where all primed quantities are the Lorentz transforms of the unprimed ones. It
can be checked by the use of (5) and (12) that (14) holds for EH , i.e., that

EH = (1/2)(EH)µνγµ ∧ γν = (1/2)(E′
H)µνγ′

µ ∧ γ′
ν , (15)

and the same is valid for BH .

It is worth noting that one can find the expression for Ev as a CBGQ in the
S′ frame and in the

{
γ′

µ

}
basis directly from (1). Namely, in the S′, frame the

“fiducial” observers (that are at rest in the S frame) are moving with velocity v
whose components are v′µ = (γc,−γβc, 0, 0). Of course, for the whole CBGQ v it
holds that v = v′µγ′

µ = vµγµ, where the components vµ from S are vµ = (c, 0, 0, 0).

Then Ev, as a CBGQ in S′, becomes Ev = F ′ 10γ′
1∧γ′

0 +γ2(F ′ 20 +βF ′ 21)γ′
2∧γ′

0 +
γ2(F ′ 30 + βF ′ 31)γ′

3 ∧ γ′
0 −βγ2(F ′ 20 + βF ′ 21)γ′

2 ∧ γ′
1 − βγ2(F ′ 30 + βF ′31)γ′

3 ∧ γ′
1) .

If the components F ′µν are expressed in terms of Fµν from S using (13) then the
same components are obtained as in (12).
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5. Apparent transformations of electric and magnetic

fields as bivectors

In contrast to the LT of EH (and BH), Eqs. (10) and (11), it is accepted in
the usual geometric algebra formalism that EH (and BH) do not transform in the
same way as all other multivectors, but that they transform as

E′
H,at = (1/2)[F ′ − γ0F

′γ0] = (F ′ · γ0)γ0, (16)

where F ′ = RFR̃. (The subscript “at” is for AT.) It is seen from (16) that only
F is transformed while γ0 is not transformed. The transformation (16) is nothing
else than the usual transformation of the electric field that is given in Ref. [7],
Space-Time Algebra, Eq. (18.22), New Foundations for Classical Mechanics, Ch. 9,
Eqs. (3.51a,b) and Ref. [8], Sec. 7.1.2, Eq. (7.33).

When (16) is written with CBGQs, then instead of the LT (11) we find the AT

E′
H,at = F ′i0γi ∧ γ0 = E1γ1 ∧ γ0

+γ(E2 − βcB3)γ2 ∧ γ0 + γ(E3 + βcB2)γ3 ∧ γ0, (17)

In (17) we have used (4), i.e., that F i0 = Ei and (1/2c)εkli0Fkl = Bi. When the
transformed components (E′

H,at)
µν , ((E′

H,at)
µν = γν · (γµ · E′

H,at)) from (17) are
written in a matrix form they are

(E′
H,at)

µν =




0 −E′1
at −E′2

at −E′3
at

E′1
at = F ′10 0 0 0

E′2
at = F ′20 0 0 0

E′3
at = F ′30 0 0 0


 , (18)

where

E′1
at = E1, E′2

at = γ(E2 − βcB3), E′3
at = γ(E3 + βcB2). (19)

The same matrix form can be obtained for (B′
H,at)

µν with

B′1
at = B1, B′2

at = γ(B2 + βE3/c), B′3
at = γ(B3 − βE2/c). (20)

Observe that the transformations (19) and (20) are exactly the familiar expressions
for the usual transformations of the components of the 3D E and B, Ref. [4], Eq.
(11.148), which are quoted in every textbook and paper on relativistic electrody-
namics from the time of Lorentz [10], Poincaré [11, 12] and Einstein [9].

We see from (16), (17), (18), (19) and (20) that

(i′) E′
H,at and B′

H,at, in the same way as EH and BH (see Eqs. (6)), are parallel

to γ0, i.e., E′
H,at ∧ γ0 = B′

H,at ∧ γ0 = 0, whence it again holds that the space-space
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components are zero, (E′
H,at)

ij = (B′
H,at)

ij = 0. Furthermore, it is seen from the

relations (17), (19) and (20) that

(ii′) in contrast to the LT of EH and BH , Eq. (11), the components E′i
at of the

transformed E′
H,at are expressed by the mixture of components Ei and Bi, and the

same holds for B′
H,at.

In all geometric algebra formalisms, e.g., [7, 8], the AT (17) for E′
H,at (and

similarly for B′
H,at) are considered to be the LT of EH (BH). However, contrary to

the generally accepted opinion, the transformations (16), (17), (18), (19) and (20)
are not the LT. The LT cannot transform the matrix (5) with (EH)ij = 0 to the
matrix (18) with (E′

H,at)
ij = 0. Furthermore Eq. (14) is not fulfilled,

(1/2)(E′
H,at)

µνγ′
µ ∧ γ′

ν /=(1/2)(EH)µνγµ ∧ γν , (21)

which means that these two quantities are not connected by the LT, and conse-
quently they do not refer to the same 4D quantity for relatively moving observers.
As far as relativity is concerned, these quantities are not related to one another.
The fact that they are measured by two observers (γ0 - and γ′

0 - observers) does
not mean that relativity has something to do with the problem. The reason is that
observers in the γ0-frame and in the γ′

0-frame are not looking at the same physical
quantity but at two different quantities. Every observer makes measurement on its
own quantity and such measurements are not related by the LT. The LT of EH

are correctly given by Eqs. (10), (11) and (12). Therefore, we call the transforma-
tions (16) and (17) for geometric quantities, and (19) and (20) for components, the
“apparent” transformations, the AT.

The same name was introduced by Rohrlich [16] for the Lorentz contraction;
the Lorentz contracted length and the rest length are not connected by the LT and
consequently they do not refer to the same 4D quantity. Similar ideas about the
Lorentz contraction were also raised by Gamba [17]. Rohrlich’s and Gamba’s ideas
are generalized and properly formulated in geometric terms in Refs. [18, 19], where
it is shown that not only the Lorentz contraction but the time dilatation is the AT
as well. In Ref. [19], some of the well-known experiments: the ”muon” experiment,
the Michelson-Morley type experiments, the Kennedy-Thorndike type experiments
and the Ives-Stilwell type experiments are analyzed using Einstein’s formulation
of special relativity with the Lorentz contraction and the time dilatation and the
new one which exclusively deals with 4D AQs and 4D CBGQs. It is shown that,
contrary to the general belief, all the experiments are in a complete agreement with
the geometric formulation but not always with the usual formulation of special
relativity.

In the usual covariant approaches [4], the components of the 3D E′ and B′ are
identified in the same way as in (7), with six independent components of F ′µν , E′

i =
F ′i0, B′

i = (1/2c)εiklF
′
lk. Such procedure then leads to the AT (19) and (20). The

3D E′ and B′, as geometric quantities in the 3D space, are constructed multiplying
the components E′

i and B′
i by the unit 3D vectors i′, j′, k′. The important objections

to such usual construction of E′ and B′ are the following: First, the components E′
i
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and B′
i are determined by the AT (19) and (20) and not by the LT. Second, there

is no transformation which transforms the unit 3D vectors i, j, k into the unit 3D
vectors i′, j′, k′. Hence, it is not true that, e.g., the 3D vector E′=E′

1i
′+E′

2j
′+E′

3k
′

is obtained by the LT from the 3D vector E =E1i+E2j+E3k. Consequently, the 3D
vectors E′ and E are not the same quantity for relatively moving inertial observers,
E′ /=E. Thus, although it is possible to identify the components of the 3D E and
B with the components of F (according to Eq. (7)) in an arbitrarily chosen γ0-
frame with the {γµ} basis such an identification is meaningless for the Lorentz
transformed F ′.

6. E and B as 1-vectors

It is worth noting that the whole consideration is much clearer when using 1-
vectors E and B, as in Refs. [2, 3], for the representation of the electric and magnetic
fields. Then,

F = (1/c)E ∧ v + (IB) · v,

E = (1/c)F · v, B = −(1/c2)I(F ∧ v). (22)

Here we shall only briefly consider the electric field. (Similar results hold for the
magnetic field.) In the frame of ”fiducial” observers, E = F ·γ0, E = Eiγi = F i0γi.
By the active LT, the electric field E transforms again to the electric field (according

to (9)) E′ = R(F · γ0)R̃ = F ′ · γ′
0, i.e., E′ = E′µγµ = −βγE1γ0 + γE1γ1 +

E2γ2 + E3γ, which now contains the temporal component E′0 = −βγE1. This
is the way in which any 1-vector transforms. Generally, for components, E′ 0 =
γ(E0 − βE1), E′ 1 = γ(E1 − βE0), E′ 2,3 = E2,3. (In the usual covariant approach,
these transformations are the LT of a 4-vector.) For the passive LT, it holds that
E = Eµγµ = E′µγ′

µ; E is the same quantity for relatively moving observers.

On the other hand, the AT (19) for components are obtained taking that E′
at =

F ′ · γ0, only F is transformed but not γ0, i.e., E′
at = 0γ0 + E′i

atγi, E′
at = E1γ1 +

γ(E2 − βcB3)γ2 + γ(E3 + βcB2)γ3, and obviously E and E′
at are not the same

quantity for relatively moving observers, Eiγi /=E′ i
atγi. It is visible that all results

with 1-vectors E and B are the same as those with bivectors Ev and Bv, but
the procedure is much simpler and closer to the usual formulation with the 3D E

and B. However, there is already extensive literature, e.g., Refs. [7, 8], in which
the bivectors EH and BH are employed. Therefore, in this paper, the elaboration
of the fundamental difference between the AT and the LT is mainly given using
bivectors and not 1-vectors.

Additionally, the relations (1), (2) and (22) indicate that the electromagnetic
field F (x) (bivector) can be taken as the primary quantity for the whole electromag-
netism from which the 4D geometric quantities, the electric and magnetic fields,
are simply derived. Such a formulation was recently presented in Ref. [5], where a
complete formulation of electromagnetism is developed from only one axiom, the
field equation for the bivector field F .
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7. Conclusions

The main conclusion that can be drawn from this paper, and Refs. [1 – 3], is
that the usual transformations of the electric and magnetic fields are not the LT.
It is believed in Refs. [7, 8], and many others, that the LT of the matrix of compo-
nents (EH)µν , Eq. (5), for which the space-space components (EH)ij are zero and
(EH)i0 = Ei, transform that matrix to the matrix (E′

H,at)
µν , Eq. (18), in which

again the space-space components (E′
H,at)

ij are zero and the time-space compo-

nents (E′
H,at)

i0 = E′ i
at are given by the usual transformations for the components

of the 3D vector E, Eq. (19); the transformed components E′ i
at are expressed by the

mixture of Ei and Bi components. (This statement is equivalent to saying that the
transformations (19) and (20) are the LT of the components of the 3D E and B.)
However, according to the correct mathematical procedure, the LT of the matrix
of components (EH)µν , Eq. (5), transform that matrix to the matrix (E′

H)µν , Eq.
(12), with (E′

H)ij /=0. As seen from (12), all transformed components (E′
H)µν of

the electric field are determined only by three components Ei of the electric field;
there is no mixture with three components Bi of the magnetic field.

These results will be very surprising for all physicists since we are all, and
always, taught that the transformations (19) and (20) are the LT of the components
of the 3D E and B. The whole physics community everyday deals with these AT
considering that they are the correct relativistic transformations, i.e., the LT. But,
the common belief is one thing and clear mathematical facts are a quite different
thing. The true agreement of these new results with electrodynamic experiments,
as shown in Refs. [2, 3] and Refs. [5, 6], substantially support the validity of the
results from Refs. [1 – 3] and Refs. [5, 6]. It can be concluded that these results say
that the Lorentz invariant 4D geometric quantities are physical ones, and not, as
usually accepted, the 3D geometric quantities.
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LORENTZOVE I “PRIVIDNE” PRETVORBE ELEKTRIČNIH I
MAGNETSKIH POLJA

Primjenom tenzorskog formalizma i Cliffordove, tj. geometrijske, algebre nedavno
je utvrd–eno da se uobičajene pretvorbe trodimenzijskih (3D) vektora električnih i
magnetskih polja razlikuju od Lorentzovih pretvorbi odgovarajućih 4D veličina koje
predstavljaju električna i magnetska polja. Primjenom formalizma geometrijske
algebre, u ovom se radu istražuje ta osnovna razlika, predstavljajući električna i
magnetska polja kao bivektore i 1-vektore.
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