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1. Introduction

The theory of nonlinear evolution equations is an ongoing topic of research for
decades [1 – 20]. This paper is going to study one of the classical nonlinear evolution
equations that is known as the Kawahara equation (KE). The dimensionless form
of the KE is given by

qt + qqx + qxxx − qxxxxx = 0. (1)

This dispersive equation was proposed by Kawahara in 1972 as an important dis-
persive equation that arises in the context of shallow water waves [3].

The KE given by (1) is not integrable by the classical method of inverse scat-
tering transform as this equation will fail the Painleve test of integrability [1].
However, in the last few years, very powerful methods of integrability of nonlinear
evolution equations of this type were developed. They include the Wadati trace
method, pseudo-spectral method, tanh-sech method, sine-cosine method and the
Riccati equation expansion method [7]. It is to be noted that one of the major dis-
advantage of these modern methods of integrability is that one can obtain only the
one-soliton solution of such a nonlinear evolution equation and not a multi-soliton

FIZIKA A (Zagreb) 17 (2008) 3, 103–108 103



biswas and zerrad: soliton perturbation theory for the kawahara equation

solution. Also, these methods are unable to compute a closed form solution for the
soliton radiation. Using the sine-cosine method, the one-soliton solution of (1) is
given by [14 – 16]

q(x, t) =
A

cosh4B(x− x̄)
, (2)

where

A =
105

169
(3)

and

B =
2

√
13
. (4)

Here A represents the amplitude of the soliton, B is the inverse width of the soliton
and x̄ represents the center position of the soliton. Therefore, the velocity of the
soliton is given by

v =
dx̄

dt
. (5)

In this paper, the interest will be focused on the one-soliton solution although it
is possible to obtain the multi-soliton solution by means of the Hirota’s bilinear
method.

2. Mathematical properties

Equation (1) has at least two integrals of motion [1] that are known as linear
momentum (M) and energy (E). These are, respectively, given by

M =

∞
∫

−∞

qdx =
4A

3B
(6)

and

E =

∞
∫

−∞

q2dx =
32A2

35B
. (7)

These conserved quantities are calculated by using the one-soliton solution given
by (2). The center of the soliton x̄ is given by the definition

x̄ =

∞
∫

−∞

xq(x, t)dx

∞
∫

−∞

q(x, t)dx

=

∞
∫

−∞

xq(x, t)dx

M

, (8)

104 FIZIKA A (Zagreb) 17 (2008) 3, 103–108



biswas and zerrad: soliton perturbation theory for the kawahara equation

where M is defined in (6). Thus, the velocity of the soliton is given by

v =
dx̄

dt
=

∞
∫

−∞

xqtdx

∞
∫

−∞

qdx

=

∞
∫

−∞

xqtdx

M
(9)

On using (1) and (9), the velocity of the soliton reduces to

v =
36

169
. (10)

3. Perturbation terms

The perturbed KE that will be studied in this paper is given by

qt + qqx + qxxx − qxxxxx = ǫR , (11)

where ǫ is the perturbation parameter, 0 < ǫ ≪ 1 [1, 2, 12], while R gives the
perturbation terms. In the presence of perturbation terms, the momentum and
the energy of the soliton do not stay conserved. Instead, they undergo adiabatic
changes that lead to the adiabatic deformation of the soliton amplitude, width and
a slow change in the velocity [1, 2, 12]. Using (7), the law of adiabatic deformation
of the soliton energy is given by [1, 2]

dE

dt
= 2ǫ

∞
∫

−∞

xRdx , (12)

while the adiabatic law of change of the velocity of the soliton is given by [12]

v =
36

169
+

ǫ

M

∞
∫

−∞

xRdx . (13)

4. Examples

In this paper, the perturbation terms that are going to be considered are

R = αq + βqxx + γqxqxx + δqmqx + λqxxx + νqqxqxx + σq3
x

+ ξqxqxxxx

+ηqxxqxxx + ρqxxxx + ψqxxxxx + κqqxxxxx . (14)
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So, the perturbed Kawahara equation is

qt + qqx + qxxx − qxxxxx (15)

= ǫ
[

αq + βqxx + γqxqxx + δqmqx + λqxxx + νqqxqxx + σq3
x

+ ξqxqxxxx

+ηqxxqxxx + ρqxxxx + ψqxxxxx + κqqxxxxx

]

.

The perturbation terms due to αq appears due to the shoaling and βqxx is a
dissipative term [5]. The term δqmqx is due to higher nonlinear dispersion while
ψqxxxxx represents the higher spatial dispersion. In (14), m is a positive integer and
1 ≤ m ≤ 4. The term ρqxxxx will provide the higher stabilizing term and must,
therefore, be taken into account. The remaining coefficients appear in the context
of the Whitham hierarchy [13].

5. Applications

In the presence of the above perturbation terms, the adiabatic variation of the
energy of the soliton is given by

dE

dt
= −

64ǫA2

35B

(

68608

429
κ− α+

16

9
βB2 −

1024

99
ρB4

)

. (16)

The expression for the velocity after the inclusion of the perturbation terms given
in (14) is

v =
36

169
+

4ǫ
√
π

(17)

×
[

δAm

3(m+1)

Γ(2m+2)

Γ(2m+ 5

2
)
+

64AB2

315

{

11(γ−2λ)−64B2(3ξ−η)
}

+
1024A2B2

189189
(ν−38σ)

]

.

It is to be noted that in order to compute the adiabatic variation of the energy
of the soliton as well as the change of the velocity of the soliton, the one-soliton
solution given by (2) is used. This is the trend that is used in soliton perturbation
theory [1]. However, it is possible to obtain the one-soliton solution of the perturbed
Kawahara equation given by (15) by the aid of multiple-scale perturbation theory or
by the homotopy perturbation theory, just as in the case of KdV equation, modified
KdV equation and higher order KdV equation that was done in 1981 [12] and the
nonlinear Schrödinger’s equation that was done in 2003 [2]. In this context some
other relevant references are [3, 5, 10].

6. Conclusions

In this paper, soliton perturbation theory is used to study the Kawahara equa-
tion. This theory gives the ability to compute the adiabatic variation of the soliton
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energy and hence the adiabatic variation of the soliton amplitude. This finally
leads to the computation of the long-term behaviour of the soliton energy. Also, it
is shown that the velocity undergoes a slow change due to the perturbation terms.

In the future, the integration of the perturbed Kawahara equation will be carried
out by the aid of multiple-scale perturbation analysis. Thus the quasi-stationary
soliton, in the presence of such perturbation terms, will be obtained. These results
will be reported in a future publication.
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SOLITONSKA TEORIJA SMETNJE ZA KAWAHARA-OVU JEDNADŽBU

Proučavamo Kawahara-ovu jednadžbu s članovima smetnje. Izveli smo adijabatsku
dinamiku solitonske amplitude i brzinu solitona primjenom solitonske teorije smet-
nje.
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