
Printed ISSN 1330–0008

Online ISSN 1333–9125

CD ISSN 1333–8390

CODEN FIZAE4

NEW EXACT SOLUTIONS TO THE GENERALIZED NONLINEAR
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1. Introduction

In order to study waves in nonlinear media, important objects are the travelling-
wave solutions which describe the waves moving at a constant velocity. Particularly,
we are interested in three types of travelling waves. The first are the solitary waves,
which are localized travelling waves tending asymptotically to zero at large dis-
tances, the second are the periodic waves and the third are the kink waves, which
rise or descend from one asymptotic state to another.

As for such solutions, there are many methods for finding special solutions to
nonlinear partial differential equations. Some of the most fundamental methods
are the Backlund transforms (see Refs. [1], [2] and [3]), the algebraic method (see
Ref. [4]), the tanh method (see Refs. [5] and [6]), the balance method (see Ref. [7]),
the Jacobi elliptic-functions method and its extensions (see Refs. [8], [9] and [10]),
and so on.
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As for the Jacobi elliptic-functions method for solutions of nonlinear partial
differential equations, we are interested in exact periodic wave solutions. As is
known, there are three basic Jacobi elliptic functions, sn ξ = sn (ξ/m), cn ξ =
cn (ξ/m), and dn ξ = dn (ξ/m), when m = 1 and m is the modulus of the elliptic
functions. Jacobi elliptic functions satisfy the following relations:

sn2ξ + cn2ξ = 1, dn2ξ + m2sn2ξ = 1, (sn ξ)′ = cn ξ dn ξ,

(cn ξ)′ = −sn ξ dn ξ, (dn ξ)′ = −m2sn ξ cn ξ .

Especially, when m → 1, the Jacobi elliptic functions degenerate to the following
functions:

sn ξ → tanh ξ, cn ξ → sech ξ, dn ξ → sech ξ ,

and when m → 0, the Jacobi elliptic functions degenerate to the following func-
tions:

sn ξ → sin ξ, cn ξ → cos ξ, dn ξ → 1 .

Recently, the Jacobi elliptic function solutions of the nonlinear Schrödinger
equations have been derived by the modified mapping method (see Ref. [11]). In
Ref. [11], a mapping method and its extensions have been successfully used to
obtain various Jacobi elliptic function solutions.

In this paper, we consider the following equation

iut + uxx + α|u|2u + i
[

γ1uxxx + γ2|u|2ux + γ3(|u2|)xu
]

= 0 . (1)

This equation has important application in physics and we can obtain its exact
solutions under some conditions.

2. Exact solutions to the generalized nonlinear

Schrödinger equation

We seek travelling-wave solution to Eq. (1) in the following form,

u(x, t) = φ(ξ) exp(i(Kx − Ωt)), ξ = k(x − ct) . (2)

By virtue of (1) and (2), we get

i
(

γ1k
3φ′′′ − 3γ1K

2kφ′ + γ2kφ2φ′ + 2γ3kφ2φ′ − ckφ′ + 2Kkφ′

)

+
(

Ωφ + k2φ′′ − K2φ + αφ3 + 3γ1Kk2φ′′ + γ1K
3φ − γ2Kφ3

)

= 0 . (3)
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where γi (i = 1, 2, 3), α and k are positive constants and the prime means differ-
entiation with respect to ξ.

Then we have the two following equations

γ1k
2φ′′′ +

(

2K − c − 3γ1K
2

)

φ′ + γ2φ
2φ′ + 2γ3φ

2φ′ = 0 , (4)

k2

(

1 − 3γ1K
)

φ′′ +
(

Ω − K2 + γ1K
3

)

φ +
(

α − γ2K
)

φ3 = 0 . (5)

Integrating Eq. (4) and taking zero be the integration constant, we have

γ1k
2φ′′ + (2K − c − 3γ1K

2)φ +

(

1

3
γ2 +

2

3
γ3

)

φ3 = 0 . (6)

Equations (5) and (6) have the same solution. So, we have the following equation

γ1k
2

(1 − 3γ1K)k2
=

2K − c − 3γ1K
2

Ω − K2 + γ1K3
=

1

3
γ2 + 2

3
γ3

α − γ2K
. (7)

From Eq. (7), we obtain

K =
C − αγ1

3Cγ1 − γ1γ2

, Ω =
(α − γ2K)(2K − c − 3γ1K

2)

C
+ K2 − γ1K

3. (8)

We assume that

A = γ1k
2, B = 2K − c − 3γ1K

2, C =
1

3
γ2 +

2

3
γ3 . (9)

So, Eq. (6) is transformed into the following form,

A′′ + Bφ + Cφ3 = 0 . (10)

According to the modified mapping method, we assume that Eq. (10) has the
solution of the form

φ(ξ),= A0 + A1f + B1f
−1 , (11)

where Ai and Bi are constants to be determined and f satisfies the following equa-
tion,

f ′2 = pf2 +
1

2
qf4 + r , (12)

where p, q and r are constants to be determined.

Due to Eqs. (10), (11) and (12), we get the following equations,
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2rAB1 + CB3

1
= 0 ,

3CB2

1
A0 = 0 ,

pAB1 + BB1 + 3CB1A
2

0
+ 3CB2

1
A1 = 0 ,

BA0 + CA3

0
+ 6CB1A0A1 = 0 ,

pAA1 + BA1 + 3CA2

0
A1 + 3CB1A

2

1
= 0 ,

3CA0A1 = 0 ,

qAA1 + CA3

1
= 0 .

(13)

From Eqs. (13), we obtain

A0 = 0, A1 = ±
√

−qA

C
, B1 = ±

√

−rA

C
, pA + B + 3CA1B1 = 0 . (14)

From Eqs. (12), (8) and (14), we obtain the new exact solutions of Eq. (6),

u =

[

±
√

−3qγ1

γ2 + 2γ3

kf(ξ) ±
√

−6rγ1

γ2 + 2γ3

kf−1(ξ)

]

exp(i(Kx − Ωt)) , (15)

where f satisfies Eq. (13). From Eqs. (8) and (15), we derive

ξ =

√

c + 3γ1K2 − 2K

γ1(p ± 3
√

2qr )
(x − ct) .

In the following, we discuss specific expressions for f given by Eq. (12) as
example. There are three cases we consider.

Case 1: p = 2, q = 2, r = 1. Eq. (12) has solution f(ξ) = tanh ξ. So, we have
the new solitary-wave solution, which is also the solution of (1),

u =
{

± tanh[k(x − ct)] ± coth[k(x − ct)]
}

√

−6rγ1

γ2 + 2γ3

k exp(i(Kx − Ωt)) ,

where k =

√

c + 3γ1K
2 − 2K

2γ1

or k =

√

−(c + 3γ1K
2 − 2K)

γ1

.

Case 2: p = 1 + m2, q = 2m2, r = 1. Eq. (12) has the solution f(ξ) = sn ξ or
f(ξ) = cd ξ, and we obtain the periodic-wave solution of Eq. (1),

u =
{

± m sn[k(x − ct)] ± ns[k(x − ct)]
}

√

−6rγ1

γ2 + 2γ3

k exp(i(Kx − Ωt)) , (16)

or

u =
{

± m cd[k(x − ct)] ± dc[k(x − ct)]
}

√

−6rγ1

γ2 + 2γ3

k exp(i(Kx − Ωt)) , (17)
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where

k =

√

c + 3γ1K2 − 2K

γ1(1 + m2 ± 2m)
,

and as m → 1, Eq. (17) degenerates to Eq. (16).

Case 3: p = 2 − m2, q = −2 and r = −(1 − m2). Eq. (12) has the solution
f(ξ) = dn ξ. The periodic-wave solution of Eq. (1) has the following form,

u =
{

±dn[k(x−ct)]±
√

1 − m2 nd[k(x−ct)]
}

√

−6rγ1

γ2 + 2γ3

k exp(i(Kx−Ωt)) , (18)

where

k =

√

c + 3γ1K2 − 2K

γ1(2 − m2 ± 6
√

1 − m2)
,

and as m → 1, Eq. (18) degenerates to

u = ±sech[k(x − ct)]

√

−6γ1

γ2 + 2γ3

k exp(i(Kx − Ωt)) ,

where

k =

√

c + 3γ1K2 − 2K

γ1

.

Case 4: p = 2 − m2, q = 2(1 − m2) and r = 1. From Eq. (12), we get the
solution f(ξ) = sc ξ. So, we obtain the solution of (1) in the following form,

u =
{

±
√

1 − m2 sc[k(x− ct)]± cs[k(x− ct)]
}

√

−6γ1

γ2 + 2γ3

k exp(i(Kx−Ωt)) , (19)

where

k =

√

c + 3γ1K2 − 2K

γ1(2 − m2 ± 6
√

1 − m2)
,

and as m → 1, Eq. (19) degenerates to

u = ±cs[k(x − ct)]

√

−6γ1

γ2 + 2γ3

k exp(i(Kx − Ωt)) ,

where

k =

√

c + 3γ1K2 − 2K

γ1

.
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Furthermore, using the extended mapping method, we obtain new exact solu-
tions of Eq. (1). We assume that Eq. (11) has the solution of the form,

φ(ξ) = A0 + A1f + B1g , (20)

where Ai and Bi are constants to be determined and f and g satisfy the following
equations,

f ′2 = pf2 +
1

2
qf4 + r , (21)

g′′ = g(c1 + c2f
2) , g2 = c3 + c4f

2 .

By [12], we have the following equations:

f0 : BA0 + C(A3

0
+ 3c3A0B

2

1
) = 0 ,

g : c1AB1 + BB1 + C(3A2

0
B1 + c3B

3

1
) = 0 ,

f : pAA1 + BA1 + C(3A2

0
A1 + 3c3A1B

2

1
) = 0 ,

fg : 6CA0A1B1 = 0 ,

f2 : C(3A0A
2

1
+ 3c4A0B

2

1
) = 0 ,

f2g : c2AB1 + 3CA2

1
B1 + c4CB3

1
= 0 ,

(22)

From Eq. (21), we find that

A0 = 0 , A1 = ±
√

(c4p − c3q)A + c4B

c3C
,

B1 = ±
√

−(pA + B)

3c3C
,

(3c4p − 3c3q − c1c4 + c2c3)A + 2c4B = 0 ,

(3c1 − p)A + 2B = 0 .

(23)

By Eqs. (20) and (22), we obtain the new exact solution of Eq. (1) and it reads

u =

[

±
√

3(2K − c − 3γ1K2)(3c1c4 + 2c3q − 3c4p)

(γ2 + 2γ3)c3(3c1 − p)
f(ξ)

±
√

3(2K − c − 3γ1K2)c1

(γ2 + 2γ3)c3(3c1 − p)
g(ξ)

]

exp(i(Kx − Ωt)) ,

where f and g satisfy Eq. (20) and

ξ =

√

−2(2K − c − 3γ1K2)

γ1(3c1 − p)
(x − ct) .
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Next, we discuss the specific expressions for f and g according to Eq. (20) as
examples, and there are three cases we consider.

Case 1: p = −(1 − m2), q = 2, r = m2.

(i): c1 = −m2, c2 = 2, c3 = −1, c4 = 1; Eq. (20) has the solutions f(ξ) = ns ξ,
g(ξ) = cs ξ. So, we have the new periodic wave solution of Eq. (1),

u =

[

±
√

3(2K − c − 3γ1K2)

(γ2 + 2γ3)(1 − 2m2)
ns[k(x − ct)]

±
√

3(2K − c − 3γ1K2)m2

(γ2 + 2γ3)(1 − 2m2)
g(ξ)

]

exp(i(Kx − Ωt)) , (24)

where

k =

√

3(2K − c − 3γ1K2)m2

(γ2 + 2γ3)(1 − 2m2)
.

As m → 0 and m → 1, Eq. (24) degenerates to

u = ±
√

3(2K − c − 3γ1K2)

(γ2 + 2γ3)(1 − 2m2)
ns[k(x − ct)] exp(i(Kx − Ωt)) ,

where

k =

√

−2(2K − c − 3γ1K2)m2

γ1

,

and

u = ±
√

−3(2K − c − 3γ1K2)

(γ2 + 2γ3)

{

ns[k(x − ct)] + cs[k(x − ct)]
}

exp(i(Kx − Ωt)) ,

where

k =

√

2(2K − c − 3γ1K2)m2

γ1

.

(ii): c1 = −1, c2 = 2, c3 = −m2, c4 = 1. Eq. (20) has the solutions f(ξ) = ns ξ,
g(ξ) = ds ξ. So, we have the new periodic wave solution of Eq. (1),

u =

[

±
√

3(2K − c − 3γ1K2)

(γ2 + 2γ3)(m2 − 2)
ns[k(x − ct)]
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±
√

3(2K − c − 3γ1K2)

(γ2 + 2γ3)m2(m2 − 2)
ds[k(x − ct)]

]

exp(i(Kx − Ωt)) , (24)

where

k =

√

3(2K − c − 3γ1K2)

(γ2 + 2γ3)(m2 − 2)
.

(iii): c1 = −1, c2 = 2, c3 = −m2/(1 − m2), c4 = 1/(1 − m2), and

(iv): c1 = −m2, c2 = 2, c3 = −1/(1 − m2), c4 = 1/(1 − m2),

are cases for which one can easily express the solutions of Eq. (1.1). So, we omit
them here.

Case 2: p = 2m2−1, q = −2m2, r = 1−m2, c1 = m2, c2 = −2m2, c3 = 1−m2,
c4 = m2. In this case, we have f(ξ) = cn ξ, g(ξ) = dn ξ. So, we have the new
periodic wave solution of Eq. (1),

u =

[

±
√

−3(2K − c − 3γ1K2)m2

(γ2 + 2γ3)(m2 + 1)
cn[k(x − ct)]

±
√

3(2K − c − 3γ1K2)m2

(γ2 + 2γ3)(1 − m2)(m2 + 1)
dn[k(x − ct)]

]

exp(i(Kx − Ωt)) ,

where

k =

√

−2(2K − c − 3γ1K2)

(γ2 + 2γ3)(m2 + 1)
.

Case 3: p = 2m2 − 1, q = −2(m2 − 1), r = −m2, c1 = m2, c2 = 1 − 2m2,
c3 = −1, c4 = 1. In this case, we have f(ξ) = nc ξ, g(ξ) = sc ξ. So, we have the
new periodic wave solution of Eq. (1),

u =

[

±
√

−3(2K − c − 3γ1K2)(m2 − 1)

(γ2 + 2γ3)(m2 + 1)
nc[k(x − ct)]

±
√

−3(2K − c − 3γ1K2)m2

(γ2 + 2γ3)(m2 + 1)
sc[k(x − ct)]

]

exp(i(Kx − Ωt)) , (25)

where

k =

√

m2(2K − c − 3γ1K2)

γ1(m2 + 1)
.
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As m → 1, Eq. (23) degenerates to

u = ±1

2

√

−3(2K − c − 3γ1K2)

γ2 + 2γ3

sc[k(x − ct)] exp(i(Kx − Ωt)) ,

where

k =

√

(2K − c − 3γ1K2)

2γ1

.

3. Conclusion

In summary, we obtained some new exact travelling-wave solutions of the gen-
eralized nonlinear Schrödinger equation via the Jacobi elliptic-functions method,
which was used to find new exact travelling-wave solutions of nonlinear partial dif-
ferential equations (NPDEs). As some special examples, these new exact travelling-
wave solutions can degenerate into the kink-type solitary wave solutions. So, with
the suggested Jacobi elliptic-functions method one can obtain easily the general-
ized soliton solutions, kink-type solitary solutions and travelling wave solutions for
NDDEs.
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NOVA EGZAKTNA RJEŠENJA POOPĆENE NELINEARNE
SCHRÖDINGEROVE JEDNADŽBE

Izvodimo neka nova egzaktna rješenja poopćene nelinearne Schrödingerove jed-
nadžbe primjenom izmijenjene i proširene pridružne metode. Rješenja su linear-
ni sastavci dviju Jacobijevih eliptičkih funkcija. Razmatramo takod–er granična
rješenja.
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