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1. Introduction

In isotropic liquids, light scattering is caused by fluctuations of the optical
dielectric constant and are mainly due to density fluctuations, which in turn are
caused by fluctuations in temperature. Light scattering in chiral nematic liquid
crystals is of the order 106 times greater than in ordinary isotropic liquids. The
order parameter can be represented by a linear combination of five structural modes,
all of which fluctuate about their equilibrium position and hence scatter light.
These structural modes m = 0, ±1, ±2 represent the achiral, conical spiral and
planar spiral modes, respectively [1, 2]. Even though the average value of the order
parameter is zero in the isotropic phase, the mean square value of the fluctuations
is non zero and dependent on both the temperature and the scattering wave vector.
This leads to scattering in the isotropic phase.

Highly chiral nematic liquid crystals form the blue phases (BPs) and show
complex pretransitional behaviour. Up to three zero-field blue phases, BPI, BPII
and BPIII, occur in a narrow temperature range just below the isotropic clearing
point transition. When the isotropic blue-phase transition is approached by cooling,
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thermodynamic fluctuations of the isotropic phase becomes correlated and this
results in a sharp increase in the intensity of scattered light.

One of the most direct ways to investigate the fluctuations in the isotropic phase
of a liquid crystal is to perform light-scattering experiments. These experiments are
exceedingly powerful, since the wavelength of the light and the scattering geometry
used can probe a unique value of the wave vector ~q. Furthermore, the polariza-
tions of the incident and scattered light couple with the five modes in various ways,
allowing the required mode to be investigated [3, 4]. Light is scattered from a com-
bination of the five structural modes of the order parameter. However, it is possible
to explore a single mode by employing the backscattering of circularly polarized
light (we designate LCPL (RCPL) the left (right) circularly polarized light). If both
incident and backscattered beams are LCPL (RCPL), the m = 2 (m = −2) mode
is excited and the m = ±1 modes make no contribution to the light scattering. If
the incident beam is LCPL (RCPL) and the backscattered beam is RCPL (LCPL),
only fluctuations of the m = 0 mode are measured.

Hornreich and Shtrikman [5] have derived a general scattering matrix in terms
of the amplitudes of the five modes and the scattering angle for chiral nematic
systems. In this approach, the input and output beams are expressed as 4 × 1
column vectors. The connection between the two vectors can be expressed as a
linear transformation whose sixteen components form the 4 × 4 Mueller matrix
from which the properties of the sample can be determined. However, we choose
instead to use the scattering cross section to study the scattering of light in liquid
crystal systems. The scattered intensity of light is proportional to the scattering
cross section. This method is more general than the Mueller matrix approach since
it can be used directly to study the scattering of light in any liquid crystalline
system, e.g, smectic liquid crystals, once the dielectric tensor of the fluctuations
is known. The Mueller matrix approach of Hornreich and Shtrikman [5] is mainly
applicable to chiral nematic systems. It is the intention of this article to give detailed
theoretical calculations and experimental insight to advanced undergraduate and
graduate students in liquid crystal research.

2. Theory

The theory of light scattering in the isotropic phase of chiral nematic liquid
crystals can be described in terms of the Landau–de Gennes theory. The order
parameter, Qαβ(~r), associated with phase transitions of chiral nematics is taken to
be the anisotropic part of the dielectric tensor, Qd

αβ(~r), where

Qαβ(~r) = Qd
αβ(~r) − 1

3
Tr(Qd)δαβ . (1)

Qαβ(~r) is symmetric and traceless with five independent structural modes (m =
0, ±1, ±2). The Landau–de Gennes free energy, up to the second order, is given by
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[1]

F2 =
1

2

∫

d~r
[

aQ2
αβ + b(∂γQαβ)2 + c∂αQαγ∂βQβγ − 2d eαβγQαδ∂γQβδ

]

, (2)

where ∂α ≡ ∂/∂rα, a = a0(T − T ∗), a0, b, c, d are all temperature independent
coefficients and eαβγ is the Levi-Cevita anti-symmetric rank-two tensor. The last
term in F2, −2d eαβγQαδ∂γQβδ, violates parity and is hence responsible for the
formation of a helical ground state. If the free energy is written in terms of the
anisotropic part of the dielectric tensor, and terms up to the second order are
retained, the free energy can be written as

F2 =
1

2

∑

m

d3~q
[

a − mdq +
(

b +
c

6
(4 − m2)

)

q2

]

|σm(~q)|2 , (3)

where m labels the mode, ~q is the wave vector of light and σm(~q) is the amplitude
of the mode. Following the approach of Brazovskii et al.[1] and Hunte et al. [6] for
fluctuations above the isotropic-BPIII phase transition, correlation functions

〈Qαβ(~r)Qστ (~r ′)〉 =
1

V

∑

~q

Gστ
αβ(~q)ei~q·~r (4)

are obtained by inverting the functional matrix in the quadratic form of F2, where
Gστ

αβ is the correlation function of thermal fluctuations. In momentum representa-
tion, Qαβ is expanded as a Fourier series to give

Qαβ(~r) = V −1/2
∑

~q

Qαβei~q·~r , (5)

and F2 takes the form

F2 =
1

2

∑

~q

tγα(~q)δδ
βQαβ(~q)Qγδ(−~q) , (6)

where

tγα(~q) = (a + bq2)δγ
α + cqαqγ + 2dqJγ

α(~q) (7)

and

Jγ
α(~q) = ieαγν q̂ν , q = |~q| . (8)

More symmetrically, tγαδδ
β can be replaced by

4T γδ
αβ = tγαδδ

β+tγβδδ
α+tδαδγ

β+tδβδγ
α−

2

3
(tαβ+tβα)δγδ− 2

3
(tγδ+tδγ)δαβ+

4

9
tννδαβδγδ (9)
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where T γδ
αβ(~q) is a Hermitian operator acting in the five-dimensional space of the

symmetric traceless tensors Qαβ . This is done by symmetrizing and then subtract-
ing the trace over each pair of indices α, β and γ, δ [1, 6, 7].

This inversion problem thus reduces to the solution of

Tµν
αβ (~q)Gγδ

µν(~q) = Iγδ
αβ , (10)

where the unit matrix, Iγδ
αβ , has the form

Iγδ
αβ =

1

2

(

δγ
αδδ

β + δδ
αδγ

β

)

− 1

3
δαβδγδ . (11)

The correlation function, Gγδ
αβ(~q), is now constructed [1, 6, 7] from the polariza-

tion tensors, σm
αβ(q), which diagonalize

T γδ
αβ(~q)σm

γδ(q̂) = τm(q)σm
αβ(q̂) . (12)

The labels m are chosen to measure the polarization along the momentum direction
q̂ ≡ ~q/|~q|,

(Jq̂)σm
αβ(q̂) = mσm

αβ(q̂) (13)

The solution to this equation is found in terms of a local orthornormal triad of
vectors oriented along q̂: ϑ1(q̂), ϑ2(q̂), ϑ3(q̂) ≡ q̂. The spherical unit vectors

ϑ+(q̂) ≡ ~l(q̂) ≡ (ϑ1 + iϑ2)/
√

2 ,

ϑ−(q̂) ≡ ~l∗(q̂) ≡ (ϑ1 − iϑ2)/
√

2 ,

ϑ0(q̂) ≡ ϑ3(q̂) ≡ q̂

(14)

give representations of helicity ±1, 0, respectively. Thus

σ2
αβ(q̂) = ϑ+

α ϑ+

β = lαlβ ≡ σ−2

αβ (q̂)∗ ,

σ1
αβ(q̂) = 1√

2

(

ϑ+
α ϑ0

β + ϑ0
αϑ+

β

)

= 1√
2

(

lαq̂β + lβ q̂α

)

≡ σ−1

αβ (q̂)∗ ,

σ0
αβ(q̂) = ϑ0

αϑ0
β =

√

3

2

(

q̂αq̂β − 1

3
δαβ

)

.

(15)

Here, lα is a complex vector transverse to ~q with ϑ1, ϑ2, ~q being unit vectors
forming a right-handed triad of vectors. The eigenvalues τm(q) are determined by
substituting the expressions into Eq. (7) to give

τ±2(q) = a + bq2 ± 2dq ,

τ±1(q) = a + (b + c)q2 ± 2dq ,

τ0(q) = a +

(

b +
4

3
c

)

q2 .

(16)
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The correlation function Gγδ
αβ(~(q)) can now be calculated as follows. The partition

function, Z, is given by

Z =
∑

~q

e
−

F2

kBT (17)

Thus

Z =
∑

σm

exp







− 1

kBT

∑

~q,m

τm(q)σm
αβ(~q)σm∗

γδ (−~q)







(18)

and

〈Qαβ(~q)Qγδ(−~q)〉 = δ~q,−~q

∑

m

kBT
σm

αβ(q̂)σm∗

γδ (−q̂)

τm
(19)

The correlation function is hence written as

Gγδ
αβ(~q) = kBT

∑

m

σm
αβ(q̂)σm∗

γδ (−q̂)

τm(q)
(20)

Let ~Ein be the incident field with wave number ~kin, frequency ω, and polariza-

tion ~εin, and ~Eout be the scattered field with wave number ~kout and polarization
~εout. The eigenvalues τm(q) of the correlation function are directly measurable by
the angular dependence of the scattered light. The scattering cross-section is given
by

dΘ

dΩ
=

ω4

2(4πc2)2
Gγδ

αβ(~q)~εin~εout~ε
∗

in~ε ∗
out (21)

which can be written as

dΘ

dΩ
=

ω4

2(4πc2)2

∑

m

1

τm(~q)
|ε ∗

outσ
m(q̂)εin|2 (22)

The complex conjugation of the polarization vectors in Eq. (21) is necessary for
the correct handling of circular polarization. Figure 1 shows the light scattering
geometry. The incoming beam propagates in the z direction, with the outgoing
beam being rotated by an angle θ towards the x-axis.

Here
~kin = k(0, 0, 1) (23)

~kout = k(sin θ, 0, cos θ) (24)
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Fig. 1. Light scattering geometry.

and

~q = q

(

− cos
θ

2
, 0, sin

θ

2

)

(25)

From the scattering geometry, l can be written as

l =
1√
2
(i sin

θ

2
, 1, i cos

θ

2
) (26)

Thus from Eq. (15)

σ2
αβ(~q) = lαlβ =

1

2









− sin2( 1

2
θ) +i sin(1

2
θ) − sin(1

2
θ) cos( 1

2
θ)

i sin(1

2
θ) 1 i cos( 1

2
θ)

− sin(1

2
θ) cos( 1

2
θ) i cos( 1

2
θ) − cos2( 1

2
θ)









(27)

σ1
αβ(~q) =

1√
2
(lαq̂β + lβ q̂α) =

1

2









0 − cos( 1

2
θ) 0

− cos( 1

2
θ) 0 sin(1

2
θ)

0 sin(1

2
θ) 0









(28)

σ0
αβ(~q)=

√
3

2
(q̂αq̂β−

1

3
δαβ)=

√
3

2









cos2( 1

2
θ)− 1

3
0 −cos( 1

2
θ) sin(1

2
θ)

0 − 1

3
0

− cos( 1

2
θ) sin(1

2
θ) 0 sin2( 1

2
θ) − 1

3









(29)

Note that these matrices are all traceless and symmetric.
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3. Scattering with linearly polarized light

For any input linear polarization εin, the output polarization εout can be written
as

εout = (− sin φ cos θ, cos φ, sinφ sin θ)

Thus, for an input beam with horizontal polarization, εin =





1
0
0



, the scalar

products are easily calculated as follows:

ε∗out · σ±2

αβ (~q) · εin = (− sin φ cos θ, cos φ, sinφ sin θ)

×1

2









− sin2( 1

2
θ) +i sin(1

2
θ) − sin(1

2
θ) cos( 1

2
θ)

+i sin(1

2
θ) 1 +i cos( 1

2
θ)

− sin(1

2
θ) cos( 1

2
θ) +i cos( 1

2
θ) − cos2( 1

2
θ)













1
0
0



 (30)

i.e.,

ε∗out · σ±2

αβ (~q) · εin =
1

2
sin

θ

2

(

±i cos φ − sinφ sin
θ

2

)

. (31)

Similarly

ε∗out · σ±1

αβ (~q) · εin = −1

2
cos φ cos

θ

2
(32)

and

ε∗out · σ0
αβ(~q) · εin = − 1√

6
sinφ

(

1 + cos2
θ

2

)

(33)

For an input beam with vertical polarization, εin =





0
1
0



, and

ε∗out · σ±2

αβ (~q) · εin =
1

2

(

cos φ ± i sin φ sin
θ

2

)

ε∗out · σ±1

αβ (~q) · εin =
1

2
sin φ cos

θ

2
(34)

ε∗out · σ0
αβ(~q) · εin = − 1√

6
cos φ
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Hence

dΘ

dΩ

∣

∣

∣

∣

H

=
ω4

(4πc2)2
kBT

2

{

sin2 φ

(

1 + cos2
θ

2

)2
1

6τ0(~q)
(35)

+
1

4
cos2 φ cos2

θ

2

(

1

τ1(~q)
+

1

τ−1(~q)

)

+
1

4
sin2 θ

2

(

1−sin2 φ cos2
θ

2

)(

1

τ2(~q)
+

1

τ−2(~q)

)}

and
dΘ

dΩ

∣

∣

∣

∣

V

=
ω4

(4πc2)2
kBT

2

{

cos2 φ
1

6τ0(~q)
(36)

+
1

4
sin2 φ cos2

θ

2

(

1

τ1(~q)
+

1

τ−1(~q)

)

+
1

4

(

cos2 φ + sin2 φ sin2 θ

2

) (

1

τ2(~q)
+

1

τ−2(~q)

)}

For horizontally polarized light incident on the sample and detected at the detector,

dΘ

dΩ

∣

∣

∣

H→H
=

ω4

(4πc2)2
kBT

2

{(

1+cos2
θ

2

)

1

6τ0(~q)
+

1

4
sin2 θ

2

(

1−cos2
θ

2

)(

1

τ2(~q)
+

1

τ−2(~q)

)}

(37)
For vertically polarized light incident on the sample and detected at the detector,

∣

∣

∣

∣

dΘ

dΩ

∣

∣

∣

∣

V →V

=
ω4

(4πc2)2
kBT

2

{

1

6τ0(~q)
+

1

4

(

1

τ2(~q)
+

1

τ−2(~q)

)}

(38)

independent of the scattering angle.

For horizontally polarized light incident on the sample and vertically polarized
light detected at the detector, we set φ = 0 in Eq. (35) to give

dΘ

dΩ

∣

∣

∣

H→V
=

ω4

(4πc2)2
kBT

2

{

1

4
cos2

θ

2

(

1

τ1(~q)
+

1

τ−1(~q)

)

+
1

4
sin2 θ

2

(

1

τ2(~q)
+

1

τ−2(~q)

)}

(39)
In the back scattering configuration, θ = 180◦, we get

dΘ

dΩ

∣

∣

∣

H→V
=

ω4

(4πc2)2
kBT

2

{

1

4

(

1

τ2(~q)
+

1

τ−2(~q)

)}

(40)

and only coupled fluctuations due to the m = ±2 modes are measured. For vertically
polarized light incident on the sample and horizontally polarized light detected at
the detector, we set φ = 90◦ in Eq. (36) to get

dΘ

dΩ

∣

∣

∣

H→V
=

ω4

(4πc2)2
kBT

2

{

1

4
cos2

θ

2

(

1

τ1(~q)
+

1

τ−1(~q)

)

+
1

4
sin2 θ

2

(

1

τ2(~q)
+

1

τ−2(~q)

)}

(41)
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and again only coupled fluctuations due to the m = ±2 modes are measured in
the backscattering configuration. Hence, with linearly polarized light, we cannot
measure independently the contributions from the m = 0, m = −2, and m = 2
modes. Near to the transition temperature T ∗, the coherence length increases and
the ~q dependence can be observed. The eigenvalues, τm~q, can be written as

τm(~q) = a +
[

b +
c

6

(

4 − m2
)

]

q2

which can be written as

τm~q = a

{

1 +

[

ξ2
1 +

1

6
(4 − m2)ξ2

2

]}

(42)

where

ξ1(T ) =

√

bT ∗

a
=

√

b

a0

(

T ∗

T − T ∗

)

(43)

and

ξ2(T ) =

√

cT ∗

a
=

√

c

a0

(

T ∗

T − T ∗

)

(44)

are the correlation lengths of the m = 1 and m = 2 modes respectively. Up to the
first order in the term (ξq)2, 1/τm(~q) can be expanded to give

1

τm(~q
) ≈ 1

a

{

1 −
[

ξ2
1 +

1

6
(4 − m2)ξ2

2

]}

(45)

Hence
dΘ

dΩ

∣

∣

∣

∣

V →V

≈ 1

6

[

1 −
(

ξ2
1 +

2

3
ξ2
2

)

q2

]

+
1

2

[

1 − (ξ1q)
2
]

(46)

dΘ

dΩ

∣

∣

∣

∣

H→V

≈ 1

4

[

1 −
(

ξ2
1 +

2

3
ξ2
2

)

q2

]

+
1

4

[

1 − (ξ1q)
2
]

(47)

Hence, near to the transition temperature, the depolarisation ratio is given by

dΘ/dΩ|H→V

dΘ/dΩ|V →V

=
3

4

(

1 − 1

12
ξ2
2q2 + . . .

)

(48)

Far from the transition, T ≫ T ∗, the q dependence disappears and we get

dΘ/dΩ|H→V

dΘ/dΩ|V →V

=
3

4
(49)
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4. Scattering with circularly polarized light

Another useful experimental configuration is to have circularly polarized light

incident on the sample and detect circularly polarized light. Here εin =





1
±i
0



.

The + sign refers to left-circularly polarized light and the sign – refers to right-
circularly polarized light. The output circular polarization is found by multiplying
the input circular polarization vector by R(φ)R(θ), i.e,

εout =





cos φ sinφ 0
− sin φ cos φ 0

0 0 1



 (50)

×





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ





1√
2





1
±i
0



 =
1√
2





cos φ cos θ ± i sin φ
− sin φ cos θ ± i cos φ

− sin θ





Consider the in-plane polarization φ = 90◦. For LCPL incident on the sample and
detected at the detector,

dΘ

dΩ

∣

∣

∣

LCPL→LCPL
=

ω4

(4πc2)2
kBT

2

{

cos4 θ
2

6τ0
+

(1 + sin θ
2
)4

4τ2(~q)
+

(1 − sin θ
2
)4

4τ−2(~q)

}

(51)

For RCPL incident on the sample and detected at the detector

dΘ

dΩ

∣

∣

∣

RCPL→RCPL
=

ω4

(4πc2)2
kBT

2

{

cos4 θ
2

6τ0
+

(1 − sin θ
2
)4

4τ2(~q)
+

(1 + sin θ
2
)4

4τ−2(~q)

}

(52)

For LCPL (RCPL) incident on the sample and RCPL (LCPL) detected at the
detector

dΘ

dΩ

∣

∣

∣

RCPL→ LCPL

LCPL→ RCPL

=
ω4

(4πc2)2
kBT

2
(53)

×
{

(

2 + cos2 θ
2

)

6τ0(~q)
+

(

2 cos
θ

2

)2 (

1

4τ1
− 1

4τ−1

)

+

(

cos4
θ

2

)(

1

4τ2
− 1

4τ−2

)

}

Thus, using circularly polarized light and detecting only circularly polarized
light, one can measure independently the contributions from the m = 0, m =
−2 and m = 2 modes in the backscattering configuration (θ = 180◦). Note that
contributions from the m = ±1 modes are not measured in the backscattering
configuration.

As the transition temperature is approached from above by cooling, the
scattered intensity increases as 1/a ∼ 1/(T − T ∗) due to the increasing
fluctuations. Thus, the theory predicts that, in the isotropic phase, the
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scattered intensity can be modelled by the equation I = A + B/(T − T ∗) where A
and B are constants.

5. Experiment

In static light scattering experiments, the time averaged intensity of the scat-
tered light is measured, and for liquid crystalline samples is related to the time
averaged mean-square excess polarizability, which in turn is related to the time-
averaged mean-square concentration fluctuation. The scattering intensity is calcu-
lated from the absolute photon count.

Attaining a scattering angle of 180◦ is practically unrealizable. For the scattering
angle used in this experiment, 175◦, the coefficients of the first and second terms
in Eq. (44) are 1.5× 10−8 and 5× 10−14 times that of the third term, respectively.
Thus, for a left-handed system, the contribution of the m = 2 mode is expected to
be much larger than that of either m = −2 or m = 0. For a right-handed system,
the m = −2 mode will be the dominant contributor to the scattering.

The samples used in this study were mixtures of the chiral compound
(S) –(+)– 4– (2–methyl-butyl) phenyl 4-decyloxybenzoate, CE6, and its racemate
CE6R obtained from Merck Ltd., UK. The structure of CE6 is shown in Fig. 2.
Mixing CE6 and its optical isomer CE6R ensures that only the chirality of the
samples is changed throughout the experiments.

Fig. 2. Chemical structure of (S)-(+)-4-(2-methyl-butyl) phenyl 4-decyloxybenzoate,
CE6. The asterix (*) indicates the chiral carbon atom.

The experimental light scattering arrangement is shown in Fig. 3. Horizontally
polarized light (λ = 632.8 nm) passed through a quarter-wave plate (λ/4) with
its fast axis oriented at −45◦ to the x-axis, which converts the linearly polarized
light into left-circularly polarized light (LCPL). The light was focused onto the
sample by a long-focal-length lens. The scattered light was focused onto another
quarter-wave plate with the same orientation as the first. LCPL was then detected
by passing the light through a horizontal polarizer. This configuration ensures that
only left-circularly polarized light was incident on the sample and detected at the
photomultiplier tube. The scattered beam consists of both left-circularly polarized
(LCPL) and right-circularly polarized (RCPL) light. Particular configurations of
the quarter-wave plate and polarizer were chosen so that either LCPL or RCPL was
detected at the detector. The other sense was detected by rotating the quarter-wave
plate appropriately.
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Fig. 3. Light scattering arrangement: LS – light source, P – polaroid, λ/4 Plate –
quarter–wave plate, L – lens, F – filter), D – detector), MC – microcomputer, TC
– temperature controller), S – sample, PD – photodiode.

The signal from the photomultiplier tube was fed into a BIC 9600AT correla-
tor board mounted in microcomputer 1 (MC1) where correlation functions were
recorded. Microcomputer 2 (MC2) controlled the rotation of the two quarter-wave
plates and, along with the Instec MK1 temperature controller, controlled the tem-
perature of the sample. A photodiode and a digital multimeter (TES 2730 Model)
connected to microcomputer 2 were used to measure the transmitted intensity.
Microcomputers 1 (MC1) and 2 (MC2) were interfaced for data acquisition.

6. The procedure

The sample was heated to about 25◦C above the transition temperature and
allowed to equilibrate for two to three hours. A background count of the scattered
intensity was taken at this temperature and subtracted from each recorded reading.
The sample was then allowed to cool to 15◦C above the transition temperature and
then to equilibrate for further three hours. Readings of scattered intensity and
temperature were recorded at 0.05◦C intervals. The cooling rate was 0.6◦C/hour.
The experiment was repeated with different compositions of sample, and readings
for LCPL (RCPL) incident on the sample and LCPL (RCPL) detected at the
detector were recorded.

7. Results

Figure 4 shows the plots of scattered intensity with temperature for the mix-
tures used in this study. The data follow the expected (T −T ∗

2 )−1 dependence. The
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Fig. 4. Scattering intensity versus temperature for CE6-CE6R mixtures. The circles
represent the m = −2 data and the diamonds represent the m = 2 data. The lines
are least-squares fit to the data.

greatest scattered intensity detected was for the 100% CE6 and decreased with
decreasing concentration of CE6. A better way to display the data is to plot the
scattered intensity against inverse temperature as shown in Fig. 5. These plots are
straight lines whose intercept on the temperature axis gives the second-order tran-
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Fig. 5. Inverse scattering intensity versus temperature for CE6-CE6R mixtures.
The circles represent the m = −2 data and the diamonds represent the m = 2
data. The straight lines are least-squares fit to the data.

sition temperatures T ∗
±2. Theory predicts that the difference T ∗

2 − T ∗
−2 = 4bqq0/a0

should increase with increasing chirality, i.e., increasing concentration of CE6. This
is indeed the case as shown in Table 1. This difference is proportional to the re-
ciprocal of the pitch of the chiral nematic helix (q0 = 2π/Pitch). The contribution
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from the m = −2 mode to the scattering is much greater that that of the m =
mode.

Note however that the difference in the most widely spaced second-order tem-
peratures is not linear with q0 as is theoretically predicted for a chiral racemic
system. This observation has been reported before by Wyse and Collings [4]. The
system used in their study was not a chiral racemic one, so the lack of linearity
could have been attributed to changing material parameters other that q0. The chi-
rality in these mixtures is proportional to the wt.% of the chiral component. The
fact that this non-linearity was observed in this study of a chiral racemic system
points to an intrinsic disagreement between the theory and experiment.

TABLE 1. Second-order transition temperatures for various concentrations by
weight of CE6.

Weight % CE6 100 80 60 40 20

T ∗
2 ± 0.01◦C 44.27 44.41 44.58 44.74 44.82

T ∗
−2 ± 0.01◦C 44.72 44.75 44.82 44.91 44.93

T ∗
−2 − T ∗

2 0.45 0.35 0.24 0.17 0.13

8. Conclusion

By calculating the differential scattering cross sections, closed-form expressions
for the scattering intensities in the isotropic phase of chiral nematic liquid crystals
have been derived. It is shown that by using circularly polarized light as the probe,
fluctuations of individual modes can be measured independently. This article con-
tains detailed calculations of scattering intensities, which should be of assistance to
researchers involved in liquid crystals research. An experimental setup is presented
which can be used to measure the scattering intensities in any liquid crystalline
system.

Emphasis is paid to scattering in the isotropic phase of chiral nematic liquid
crystals. This method can be easily extended to calculate scattering intensities in
other phases of chiral nematics as well as other liquid crystal systems, e.g., smectic
liquid crystal systems, once the fluctuations of the order parameter is known.
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TEORIJSKO ISTRAŽIVANJE RASPRŠENJA SVJETLA U KIRALNIM
NEMATSKIM TEKUĆIM KRISTALIMA

Primjenom Landau–de Gennesove teorije za kratkodosežni red za usmjerivost izo-
tropne faze izveli smo izričite izraze za temperaturnu ovisnost raspršenja svjetlosti
u kiralnim nematskim tekućim kristalima. Daju se podrobnosti računa a ishodi su
izraženi tako da se mogu lako eksperimentalno provjeriti.
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