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In Bell’s “spaceship” experiment, two spaceships that are initially at rest in some
common inertial reference frame, are connected by a taut string. At time zero in the
common inertial frame, both spaceships start accelerating, with a constant proper
acceleration a as measured by an on-board accelerometer. Question: does the string
break, i.e. does the distance between the two spaceships increase? We will present
two treatments, one that uses only Minkowski spacetime diagrams and a second
approach that uses the equations of accelerated motion in special relativity. The
latter approach allows the calculation of the distance between rockets as well as
the strain force in the string as a function of proper time. For simplicity, through-
out the paper, all objects (string, rockets) are considered as being Born-rigid, thus
neglecting the very minor effects on the length of the objects during the acceler-
ated motion. The subject of the Bell paradox is encountered frequently in relativity
graduate courses, but a complete, realistic solution has not been published to date.

PACS numbers: 03.30.+p UDC 531.18:530.12
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1. Analysis in current literature

In a simpler variant of Bell’s thought experiment [1], both spaceships stop ac-
celerating after a certain period of time previously agreed upon. The captain of
each ship shuts off his engine after this time period has passed, as measured by
an ideal clock carried on board of his ship. This allows comparisons before and
after acceleration in suitable inertial reference frames in the sense of elementary
special relativity. According to discussions by Dewan and Beran [2], in the space-
ship launcher’s reference system (ground frame), the distance between the ships
will remain constant while the elastic limit of the string is length contracted, so
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that at a certain point in time the string should break. In this paragraph we will
treat the spaceships as point masses and only consider the length of the string.
This restriction will be removed in the next paragraph. We will analyze the variant
case previously mentioned, where both spaceships shut of their engines after some
time period T . The world lines (navy blue curves) of two observers A and B, who
accelerate in the same direction with the same constant magnitude acceleration,
are shown in Fig. 1. At A’ and B’, the observers stop accelerating. The dotted
lines are “lines of simultaneity” for observer A. Is the space-like line segment A’B”

longer than the space-like line segment AB? According to the discussions by Dewan
and Beran [2], in the “spaceship-launcher’s” reference frame S (i.e. in the ground
frame), the distance L between the spaceships (A and B) must remain constant “by
definition”. Referring to the space-time diagram, we can see that both spaceships
will stop accelerating at events A’ and B’, which are simultaneous in the launching
frame S. From the previous argument, we can say that the length of the line seg-
ment A’B’ equals the length of the line segment AB, which is equal to the initial
distance L between spaceships before they started accelerating. We can also say
that the velocities of A and B in frame S, after the end of the acceleration phase,
are equal to v. Finally, we can say that the proper distance between spaceships A
and B after the end of the acceleration phase in a co-moving frame is equal to the
Lorentz length of the line segment A’B”. The line A’B” is defined to be a line
of constant t′, where t′ is the time coordinate in the co-moving frame S’, a time
coordinate which can be computed from the coordinates in frame S via the Lorentz
transform. Transformed into a frame co-moving with the spaceships, the line A’B”

is a line of constant t′ by definition and represents a line between the two ships “at
the same time” as simultaneity is defined in the co-moving frame S’.

Fig. 1. Minkowski diagram for Bell’s spaceship experiment.

Because the Lorentz interval is a geometric quantity that is independent of the
choice of frame, we can compute its value in any frame which is computationally
convenient, in this case frame S. Mathematically, in terms of the coordinates in
frame S, we can represent the above statements by the following equations:

tB′ = tA′ , (1)
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xA − xB = xA′ − xB′ = L . (2)

In frame S′, t′B′′ = t′A′ , so

tB′′ −

v

c2
xB′′ = tA′ −

v

c2
xA′ . (3)

Thus

tB′′ − tA′ =
v

c2
(xB′′ − xA′) , (4)

A′B′′ =
√

(xB′′ − xA′)2 − c2((tB′′ − tA′) = (xB′′ − xA′)

√

1−
v2

c2
. (5)

Past B’ the rockets movement is uniform,

xB′′ − xB′ = v(tB′′ − tB′) = v(tB′′ − tA′) =
v2

c2
(xB′′ − xA′) , (6)

xB′′ − xA′ = (xB′′ − xB′) + (xB′ − xA′) =
v2

c2
(xB′′ − xA′) + L , (7)

xB′′ − xA′ =
L

1− v2/c2
. (8)

Inserting (8) into (5), we obtain

A′B′′ =
L

√

1− v2/c2
. (9)

Thus, the distance between the spaceships has increased by the relativistic factor
γ = 1/

√

1− v2/c2. It is interesting to note that we could have arrived to the same
result by using the equations of length contraction derived for accelerated frames
from the excellent Nikolić paper [3].

Objections and counter-objections have been published to the above analysis.
For example, Paul Nawrocki [4] suggests that the string should not break, while
Dewan [5] defends his original analysis from these objections in his reply. Bell [1]
reported that he encountered much skepticism from “a distinguished experimental-
ist” when he presented the paradox. To attempt to resolve the dispute, an informal
and non-systematic canvas was made of the CERN theory division. According to
Bell, a “clear consensus” of the CERN theory division arrived at the answer that
the string would not break. Bell further adds “Of course, many people who get the
wrong answer at first get the right answer on further reflection” [1]. Later, Matsuda
and Kinoshita [6] reported receiving much criticism after publishing an article on
their independently rediscovered version of the paradox in a Japanese journal.
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2. Hyperbolic motion treatment

We will now consider a more complex variant of the problem: find the distance
between the rockets and the strain force in the connecting string as a function of
time for uniformly accelerated rockets. The first part of the problem is best solved
by using the equations of hyperbolic motion [7]. The second part of the problem is
a complex issue that relates to a covariant formulation of the Hooke law [8]. The
hyperbolic motion equation for the leading rocket as a function of the proper time
τ and the proper acceleration a is

xleading = d cosh
aτ

c
,

tleading =
d

c
sinh

aτ

c
, (10)

d =
c2

a
.

The leading end of the string describes the same trajectory as xleading. The trailing
end describes the trajectory:

xstring = (d− L) cosh
aτ

c
,

tstring =
(d− L)

c
sinh

aτ

c
, (11)

where L is the length of the string and also the rocket separation in the launcher
frame S. If we consider the event A (xtrailing, ttrailing) the location of the tip of the
trailing rocket at coordinate time ttrailing, then we can write the hyperbolic motion
equation

x2
trailing − c2t2trailing = d2 . (12)

Since the distance between rockets in frame S is L, the corresponding point on the
trajectory of the leading rocket (and the leading end of the string) at the same
coordinate time ttrailing is (see Fig. 2)

(xtrailing + L)2 − c2t2trailing = d2 . (13)

Since

cttrailing = xtrailing tanh
aτ

c
, (14)

it follows immediately that

(xtrailing + L)2 − d2 = x2
trailing tanh

2 aτ

c
. (15)
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Fig. 2. Accelerated rocket’s path.

The above equation gives the value for xtrailing as a function of the proper time
τ

xtrailing =

√

d2 + L2 sinh2
aτ

c
cosh

aτ

c
− L cosh2

aτ

c
. (16)

The string stretch is expressed by the distance between the trailing end of the
string and the tip of the trailing rocket (see Fig. 3),

Fig. 3. The stretching of the string.

∆x =
√

(xstring − xtrailing)2 − c2(tstring − ttrailing)2

=

√

(xstring − xtrailing)2(1− tanh2(aτ/c)) =
xstring − xtrailing

cosh(aτ/c)
, (17)
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xstring − xtrailing =

(

d− L−

√

d2 + L2 sinh
aτ

c

)

cosh
aτ

c
+ L cosh2

aτ

c
. (18)

So,

∆x = d− L−

√

d2 + L2 sinh2
aτ

c
+ L cosh

aτ

c
. (19)

Formula (19) gives the amount of string stretch as a function of proper time
∆x = ∆x(τ). Using it, we can determine the time elapsed after launch when the
string will break. The string will break when

∆x =
Fmax

k
, (20)

where k is Young modulus. In the present paper, we have decided to use the New-
tonian form of the Hooke law rather than resorting to the more modern covariant
formulation [8]. There are two reasons for this: one, the present paper is a didactical

paper, rather than a research in a new domain. The second, and more important
reason, is that in the process of researching the subject we have discovered the Gron
paper to be in error and we had to rework the covariant formulation of the Hooke
law through a lengthy computation [9] that is beyond the scope of the current pa-
per. Either way, at spaceship speeds significantly less than c, expression (20) holds
with a very high precision.

Fmax

k
− d+ L = −

√

d2 + L2 sinh
aτ

c
+ L cosh

aτ

c
. (21)

Using the notation

A = Fmax − d+ L , (22)

we obtain immediately the proper time when the string breaks as

τ =
c

a
Ar cosh

(

A2 + L2
− d2

2AL

)

. (23)

By using the equations of hyperbolic motion, we derived the variable distance
between rockets as a function of proper time as well the time elapsed between
rocket takeoff and string breaking.

3. Conclusions

We have produced a very simple and comprehensive solution for the Bell thought
experiment. As we have demonstrated, using the equations of hyperbolic motion
that we can easily derive the distance between rockets as a function of time as well
the time elapsed between rocket takeoff and string breaking. The author expresses
his gratitude for the valuable suggestions received from the two referees.
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ANALIZA BELLOVOG POKUSA S DVA BRODA HIPERBOLNIM GIBANJEM

U Bellovom zamǐsljenom “svemirskom” pokusu, dva su broda početno u mirovanju
u zajedničkom inercijskom sustavu i povezani su napetim užetom. U nultom tre-
nutku u tom sustavu, oba se broda počnu ubrzavati s jednakim stalnim vlastitim
ubrzavanjem a, mjereno mjeračima ubrzanja na tim brodovima. Pita se: hoće
li se uže prekinuti, tj., povećava li se razmak brodova? Predstavljamo dva pris-
tupa, jedan s Minkowskijevim prostorno-vremenskim dijagramima, i drugi prim-
jenom jednadžbi za ubrzano gibanje specijalne teorije relativnosti. Drugi pristup
omogućuje računanje razmaka brodova kao i napregnutost užeta kao funkciju vlasti-
tog vremena. Radi jednostavnosti, u ovom se razmatranju pretpostavlja da su
brodovi i uže potpuno kruti, kako bi se izbjegli mali učinci na njihove duljine
tijekom ubrzanja. Tema ovog Bellovog paradoksa često se nalazi u udžbenicima o
teoriji relativnosti, ali potpuno i stvarno rješenje još nije objavljeno.
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