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1. Introduction

One of the greatest of Newton’s and Leibnitz’s legacies is their introduction
of what later became known as the calculus because it was through calculus that
the laws of physics came to be cast in terms of ordinary and partial differential
equations. These differential equations are normally based on derivatives in space
and time that are of integer order. Fractional dynamics is the study of physical
dynamical systems that can be cast in terms of solutions to differential equations
which are of fractional order to which the fractional calculus can be applied. The
fractional derivatives and integrals describe more accurately the complex physical
systems and at the same time, investigate more about simple dynamical systems.
It is worth-mentioning that fractional calculus has led to many breakthroughs in
theoretical and applied physics. Although fractional calculus has been studied for
over 300 years now, it has been regarded mainly as a mathematical curiosity until
about 1992, when dynamical equations involving fractional derivatives and inte-
grals were pretty much restricted to the realm of mathematics. However, since that
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time, physicists have begun to explore the many applications of fractional calculus
to many problems in physics, including hydrology, viscoelastivity, heat conduction,
polymer physics, chaos and fractals, biophysics and thermodynamics, Brownian
random walks with memory, modelling dispersion and turbulence, oscillating vor-
tex chain, control theory, transfer equation in a medium with fractal geometry,
stochasting modelling for ultraslow diffusion, kinetic theories, far-from equilibrium
statistical models manifesting scale invariance, non-local correlations and extensive
symmetry breaking, plasma physics, modelling mechanical and electrical properties
of real materials, description of rheological properties of rocks, dynamics in complex
media, wave propagation in complex and porous media, astrophysics, cosmology,
quantum field theory, potential theory, and so on [1 – 11]. Further, fractional dif-
ferential equations of different types can be used to describe a range of stochastic
processes that do not conform to conventional statistical models. They are finding
increasing value in modelling processes that are quasi-deterministic, i.e. neither
fully deterministic or fully stochastic, and as such, can be used to analyze systems
for which conventional statistical analysis is inadequate and where deterministic
models become intractable. We refer the reader interested on fractional theory to
the comprehensive book [2].

In reality, dealing with fractional derivatives is not more complex than with
usual differential operators. Fractional derivatives provide an excellent tool for
the description of memory and hereditary properties of various materials and pro-
cesses. This is the main advantage of fractional derivatives in comparison with
classical integer-order models in which such effects are, in fact, neglected. To-
day, there exist many different forms of fractional integral operators, ranging from
divided-difference types to infinite-sum types, including Grunwald-Letnikov frac-
tional derivative, Caputo fractional derivative, etc. The definition of the fractional
order derivative and integral are not unique where several definitions exist, e.g.
Grunwald-Letnikov, Caputo, Weyl, Feller, Erdelyi-Kober, Riesz fractional deriva-
tives, fractional Liouville operators, and so on, but the Riemann-Liouville (RL)
fractional derivatives and integrals are the most recurrently used and have been
popularized when fractional integration is performed in the dynamical system un-
der study [1 – 11].

A subject of current strong research concerns the study of fractional problems
of the calculus of variations (COV) with its corresponding fractional Hamiltonian
formalism and respective Euler-Lagrange type equations [12]. Different forms of
Euler-Lagrange equations were obtained in literature depending on the action and
type of fractional derivative used. The major problem with most of the fractional
approaches treated in the literature is the presence of non-local fractional differen-
tial operators and the adjoint of a fractional differential operator used to describe
the dynamics is not the negative of itself. Further, the derived Euler-Lagrange
equations depend on left and right fractional derivatives, even when the dynamics
depend only on one of them. Other complicated problems arise during the math-
ematical manipulations as the appearance of a very complicated Leibniz rule (the
derivative of product of functions) and the non-presence of any fractional analogue
of the chain rule. The formulation of the fractional problems of the COV still needs

56 FIZIKA A (Zagreb) 19 (2010) 2, 55–72



el-nabulsi: higher-order fractional field equations in (0+1) dimensions . . .

more elaboration as the problem is deeply related to the fractional quantization
procedure and to the presence of non-local fractional differential operators.

In order to better model non-conservative dynamical systems, we proposed a
novel one-dimensional (1D) approach entitled fractional action-like variational ap-
proach (FALVA) based on the concept of left Riemann-Liouville fractional integral
functionals with one parameter, but not on fractional-order derivatives of the same
order [13, 14]. The derived Euler-Lagrange equations are similar to the standard
one, but with the presence of fractional generalized external force acting on the
system. Many encouraging results were obtained and discussed [9 – 40]. The gener-
alization of the classical Noether’s theorem for the context of the fractional calculus
of variations has been derived recently [32 – 34]. The variational calculus of frac-
tional order was used by Jumarie in Refs. [41, 42] to derive the Hamilton-Jacobi
equation and a fractional Lagrangian approach to the one-dimensional optimal con-
trol theory with fractional cost functional. The multi-dimensional fractional action-
like problems of the calculus of variations were explored recently in Ref. [19]. More
recently, the author discussed the application of the multi-dimensional fractional
approach to fractional field theories where the fractional Euler-Lagrange equations
have been derived for classical fields and the fractional Dirac operators and frac-
tional Bohner-Weitzenböck of multiple orders in fractional spinor fields have been
introduced [15].

The interest in fractional field theory is a relatively new one. The readers may be
refereed to Refs. [15 – 18] and references therein for the importance of fractional dy-
namics in quantum field theory. The principle of local gauge invariance were applied
to fractional fields where an analytic mass formula of a non-relativistic fractional
charged particle moving in a constant magnetic fractional field was derived [43],
opening consequently a new exciting branch in fractional field theories. Recently,
Hermann [44, 45] applied the concept of fractional derivative to derive a fractional
Schödinger type wave equation by a quantization of the classical non-relativistic
Hamiltonian. This equation was considered by the author as an alternative tool
for a suitable explanation of the charmonium spectrum, normally described by a
phenomenological potential.

Our main aim in the present work is to explore the fractional Lagrangian for-
malism for the treatment of higher-order fractional field equations. No fractional
derivatives of any type and any order will be introduced.

The higher-order field equations are acquiring increasing importance due to the
consideration of higher-order gravity theories (supergravity, superstring, M-theory),
with Lagrangians containing terms quadratic in the curvature tensors [46]. It was
recently shown that many of the central ideas constructed in quantum field theory
can be exemplified simply and straightforwardly by using toy models in (0+1)
dimensions. Because quantum field theory in (0+1) dimensions is equivalent to
quantum mechanics, these models allow us to use techniques of quantum mechanics
to gain insight into quantum field theory [47]. Therefore, we will build the higher-
order fractional formalism in (0+1) dimensions.

We follow the rationale of Ref. [21] where it is assumed that at least one sta-
tionary point for the fractional functional exists. We introduce the main notations,
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conventions and assumptions that underlie the remainder of the present work:

1. In the notation t → f(t), t is a dummy variable.

2. Exactly, the same function can be written, for example (q̇, q, τ) → f(q̇, q, τ);
q̇, q, τ are here dummy variables.

3. For (q̇, q, τ) → f(q̇, q, τ), the partial derivative of f with respect to the first
argument is denoted by ∂f/∂q̇.

4. For a given scalar field φ, ∂iφ = ∂φ/∂qi, i = 1, 2, . . . , n.

5. Einstein summation convention is applied throughout.

6. The analysis is carried out entirely at the classical level.

7. Following our previous work, we use in this paper the left-fractional Riemann-
Liouville integral which is the most widely used definition of an integral of
fractional order via an integral transform, defined as

aI
α
t f(t) =

1

Γ(α)

t∫

t0

f(τ)(t− τ)α−1dτ, 0 < α < 1 .

8. Space-time variables and scalar fields are properly normalized as dimension-
less observables.

9. No fractional-order derivatives will be introduced.

10. The Poincaré indices are denoted by i, j = 0, 1, 2, 3.

11. The Minkowski metric ηij has signature (+,−,−,−) so that η00 = +1.

12. We work in units ~ = c = 1.

To the best of our knowledge, this work represents the first attempt to apply the
concept of FALVA to the Lagrangian procedures for higher-order field equations.
We care that our contribution is planned to serve as a simple informal introduction
and not a precise treatment of the topic. The paper is organized as follows: in
Sec. 2, we review rapidly the basic concepts of FALVA in (0+1) dimensions (Prob-
lem 2.1 and Theorem 2.1). After that, in the same section, we derive the fourth-
and third-order fractional Euler-Lagrange equations and we generalize our results
to Lagrangian involving higher derivatives. The fractional canonical tensors are
discussed in Sec. 3. The case in which the derivatives appear only in the invariant
d’Alembertian operator is discussed within the same section and is illustrated by a
simple example. The paper concludes in Sec. 4 with a brief summary of the main
results and future challenge and perspectives.
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2. Brief overview of FALVA

In 2005, the author introduced the one-dimensional FALVA problem as follows
[13, 14]:

Problem 2.1: Find the stationary points of the integral functional

S
[
q(•)

]
=

1

Γ(α)

t∫

a

L(q̇(τ), q(τ), τ)(t− τ)α−1dτ , (1)

under the initial condition q(a) = qa, where q̇ = dq/dτ , Γ is the Euler gamma
function, 0 < α < 1, τ is the intrinsic time, t is the observer time, t /= τ , and the
smooth Lagrangian function L : [a, b]×R

n ×R
n → R is a C2-function with respect

to all its arguments.

Theorem 2.1: If q(•) are solutions to the previous problem, i.e., q(•) are critical
points of the function (1), then q(•) satisfy the following Euler-Lagrange equations:

∂L(q̇(τ), q(τ), τ)

∂q
−

d

dq

(
∂L(q̇(τ), q(τ), τ)

∂q̇

)
=

1− α

t− τ

∂L(q̇(τ), q(τ), τ)

∂q̇
. (2)

To deal with the FALVA problem with higher-order derivatives, we first discuss, for
convenience, the case of the Lagrangian of the type L(q̈(τ), q̇(τ), q(τ), τ).

Suppose we want to extremise the fractional functional

S
[
q(•)

]
=

1

Γ(α)

t∫

a

L(q̇(τ), q(τ), τ)(t− τ)α−1dτ ,

subject to the constraints G(q̇(τ), q(τ), τ) = 0, where G : Rn × R
n × R → R

k is
a differentiable function. We may introduce the well-known Lagrange multipliers
λ : [a, b] → R

k.

Definition 2.1: The constrained fractional action integral is defined by

S
[
q(•), λ

]
=

1

Γ(α)

t∫

a

(
L(q̇(τ), q(τ), τ)− 〈λ(τ),G(q̇(τ), q(τ), τ)〉

)
(t− τ)α−1dτ , (3)

where 〈, 〉 is the dot product in R
k.

We may now derive the fractional Euler-Lagrange equation for a Lagrangian
L(q̈(τ), q̇(τ), q(τ), τ) depending on the second derivatives of a C3 function.
This problem is the same as extremizing the fractional action with Lagrangian
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L(Ẏ(τ), q̇(τ), q(τ), τ), subject to the constraints Y(τ) = q̇(τ). The modified frac-
tional action is then written like

S
[
Y, q(•), λ

]
=

1

Γ(α)

t∫

a

(
L(Ẏ(τ), q̇(τ), q(τ), τ

)
−λ(τ)

(
Y−q̇(τ)

))
(t−τ)α−1dτ . (4)

Corollary 2.1: If q(•) are solutions to Eq. (3) subject to the constraints Y(τ) =
q̇(τ), then q(•) satisfy the following Euler-Lagrange equations for the Lagrangian
L(q̈(τ), q̇(τ), q(τ), τ),

∂L(q̈(τ), q̇(τ), q(τ), τ)

∂q
−

d

dτ

(
∂L(q̈(τ), q̇(τ), q(τ), τ)

∂q̇

)
+

d2

dτ2

(
∂L(q̈(τ), q̇(τ), q(τ), τ)

∂q̈

)

=
1− α

t− τ

[
∂L(q̈(τ), q̇(τ), q(τ), τ)

∂q̇
− 2

d

dτ

(
∂L(q̈(τ), q̇(τ), q(τ), τ)

∂q̈

)]

−
(1− α)(2− α)

(t− τ)2
∂L(q̈(τ), q̇(τ), q(τ), τ)

∂q̈
. (5)

For α = 1, we find the standard Euler-Lagrange equations which correspond to
the Lagrangian L(q̈(τ), q̇(τ), q(τ), τ). Equation (5) is fourth-order because in gen-
eral the third term on its LHS involves a fourth-derivative term. However, when
the second-order fractional Euler-Lagrange equations for L(q̇(τ), q(τ), τ) are dif-
ferentiated, one gets a third-order fractional equation as shown by the following
simple calculation: first, by differentiating the fractional Euler-Lagrange equation
for L(q̇(τ), q(τ), τ), we get

d

dτ

(
∂L(q̇(τ), q(τ), τ)

∂qj
−

d

dτ

(
∂L(q̇(τ), q(τ), τ)

∂q̇j

))
−

d

dτ

(
1−α

t−τ

∂L(q̇(τ), q(τ), τ)

∂q̇j

)
=0 .

(6)
The above equation may be written as

∂2L(q̇(τ), q(τ), τ)

∂qj∂qi
q̇j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂qi
q̈j

−
d

dτ

(
∂2L(q̇(τ), q(τ), τ)

∂qj∂q̇i
q̇j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂q̇i
q̈j
)
−

1−α

(t−τ)2
∂L(q̇(τ), q(τ), τ)

∂q̇j

−
1−α

t−τ

(
∂2L(q̇(τ), q(τ), τ)

∂qj∂q̇i
q̇j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂q̇i
q̈j
)

= 0 , (7)

which is
∂2L(q̇(τ), q(τ), τ)

∂qj∂qi
q̇j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂qi
q̈j
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+
∂2L(q̇(τ), q(τ), τ)

∂qj∂q̇i
q̈j +

∂3L(q̇(τ), q(τ), τ)

∂qk∂qj∂q̇i
q̇k q̇j +

∂3L(q̇(τ), q(τ), τ)

∂q̇k∂qj∂q̇i
q̈kq̇j

+
∂3L(q̇(τ), q(τ), τ)

∂qk∂q̇j∂q̇i
q̇kq̈j +

∂3L(q̇(τ), q(τ), τ)

∂q̇k∂q̇j∂q̇i
q̈k q̈j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂q̇i
...
q
j

−
1−α

t−τ

(
∂2L(q̇(τ), q(τ), τ)

∂qj∂q̇i
q̇j+

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂q̇i
q̈j
)
+

α−1

(t−τ)2
∂L(q̇(τ), q(τ), τ)

∂q̇j
=0 .

(8)
This is the third-order fractional Euler-Lagrange equation. i, j = 1, . . . , k.

Equation (5) may be generalized to a Lagrangian involving higher derivatives
L(q(m)(τ), . . . , q̇(τ), q(τ), τ) as follows [34 – 36].

Problem 2.2: Find the stationary points of the integral functional

Sm
[
q(•)

]
=

1

Γ(α)

t∫

a

L(q(m)(τ), . . . , q̇(τ), q(τ), τ)(t− τ)α−1dτ , (9)

m ≥ 1, under the initial condition q(i)(a) = qa, i = 0, 1, 2, . . . ,m, where q(i) =
dq/dτ i, Γ is the Euler gamma function, 0 < α ≤ 1, τ is the intrinsic time, t is the
observer time, t /= τ , and the smooth Lagrangian function L : [a, b]×R

n×(m+1) → R

is a C2m-function with respect to all its arguments.

Theorem 2.2: If q(•) are solutions to the problem 2.2, i.e., if q(•) are criti-
cal points of the function (9), then q(•) satisfy the following higher-order Euler-
Lagrange equations in (0+1) dimensions:

m∑

i=0

(−1)i
di

dτ i
∂i+2L(q

(m)(τ), . . . , q̇(τ), q(τ), τ)

=
1−α

t−τ

m∑

i=1

i(−1)i−1 di−1

dτ i−1
∂i+2L(q

(m)(τ), . . . , q̇(τ), q(τ), τ)

+

m∑

k=2

k∑

i=2

(−1)i−1 Γ(i−α+1)

(t−τ)iΓ(1−α)

(
k

k−i

)
dk−i

dτk−i
∂k+2L(q

(m)(τ), ..., q̇(τ), q(τ), τ). (10)

Here ∂iL denotes the partial derivatives of L(•, •, ..., •, ) with respects to its ith
argument. In the particular case when m = 1, problem 2.2 reduces to the problem
2.1.
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3. Fractional field theories

Our main aim now is to deal with field theories. We start with a Lagrangian
function of a scalar field φ and of its first m derivatives, i.e.,

δL =
∂L

∂φ
δφ+

∂L

∂/∂βφ
δ(/∂βφ) + . . .+

∂L

∂/∂β1
φ · · · /∂βm

φ
δ(/∂β1

· · · /∂βm
φ) . (11)

We shall assume for simplicity that m = N .

Definition 3.1: The fractional problems for the calculus of variations of the field
theory in (0+1)-dimensions are defined by

Sm
[
q(•)

]
=

1

Γ(α)

t∫

a

L
(
∂(m)φ(•), . . . , ∂φ(•), φ(•)

)
(t− τ)α−1 dτ , (12)

where the admissible paths are smooth functions φ : Ω ⊂ R → M , satisfying given
Dirichlet boundary conditions on ∂Ω. The Lagrangian function is supposed to be
sufficiently smooth with respect to all its arguments.

Theorem 3.1: If φ(•) are solutions to the action (12), i.e., if φ(•) are criti-
cal points of the function (12), then φ(•) satisfy the following higher-order Euler-
Lagrange equations,

m∑

i=0

(−1)i
di

dτ i
∂i+2L

(
∂(m)φ(•), . . . , ∂φ(•), φ(•)

)

=
1−α

t−τ

m∑

i=1

i(−1)i−1 di−1

dτ i−1
∂i+2L

(
∂(m)φ(•), . . . , ∂φ(•), φ(•)

)

m∑

k=2

k∑

i=2

(−1)i−1 Γ(i−α+1)

(t−τ)iΓ(1−α)

(
k

k−i

)
dk−i

dτk−i
∂k+2L

(
∂(m)φ(•), ..., ∂φ(•), φ(•)

)
. (13)

Remark 3.1: In reality, FALVA is accompanied with a non-conservative total
energy as a new expression appears which also depends on the fractional order
α. Therefore, the Noether’s theorem is violated and ceased to be valid. However,
it was recently shown that it is still possible to obtain a Noether-type theorem
which covers conservative and nonconservative dynamical systems simultaneously
[36 – 39].
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We discuss the special case where the Lagrangian is L
(
�

(N)φ(•), ...,�φ(•), φ(•)
)
,

i.e. φ(0) = 0. Here � = ηij∂i∂j . The corresponding fractional Euler-Lagrange equa-
tions are obtained using the previous arguments as follows,

m∑

i=0

(−1)i
di

dτ i
∂i+2L

(
�

(N)φ(•), . . . ,�φ(•), φ(•)
)

=
1−α

t−τ

m∑

i=1

i(−1)i−1 di−1

dτ i−1
∂i+2L

(
�

(N)φ(•), . . . ,�φ(•), φ(•)
)

+

m∑

k=2

k∑

i=2

(−1)i−1 Γ(i−α+1)

(t−τ)iΓ(1−α)

(
k

k−i

)
dk−i

dτk−i
∂k+2L

(
�

(N)φ(•), ...,�φ(•), φ(•)
)
. (14)

Similarly, it is still possible to obtain a Noether-type theorem which covers conser-
vative and nonconservative field theories simultaneously. Here ξ1 = t and x1 = τ .
Let us illustrate by the following example.

In fact, we discuss the case where L = 1
2�φ�φ− 1

2µ
4φ2, µ is a real parameter

[48]. The corresponding equations of motion are

��φ+
1− α

t− τ
�φ− µ4φ = 0 . (15)

Using the Fourier development for the scalar field φ, i.e., φ(x) =
∫
dk e−ikxφ̃(k),

we obtain easily (
k4 +

1− α

t− τ
k2 − µ4

)
φ̃(k) = 0 , (16)

and therefore

k2+ =
1

2


1− α

τ − t
+

√(
1− α

τ − t

)2

+ 4µ4


 (17)

k2
−
=

1

2


1− α

τ − t
−

√(
1− α

τ − t

)2

+ 4µ4


 (18)

The term (1− α)/(τ − t)can be identified to a decaying mass with positive square
mass m2 > 0 (0 < α < 1). Hence, Eqs. (17) and (18) take the form

k2+ =
1

2

[
m2 +

√
m4 + 4µ4

]
, (19)
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k2
−
=

1

2

[
m2 −

√
m4 + 4µ4

]
. (20)

At very large timesm2 → 0 and therefore k2+ → µ2 (normal particle) and k2
−
→ −µ2

(tachyon), in agreement with the standard case. At very early times, m2 ≫ µ2 and,
therefore, k2+ ≈ m2 and k2

−
≈ 0. Note that the mass m may be attributed to the

Hubble mass H up to a certain order if the difference in times τ − t is identified
as the cosmic time, i.e., H = β/T , T = τ − t. β is a real and positive parameter
to be determined from astrophysical observations. Hence, m = (1 − α)H/β. This
fractional mass appears within the context of quantum field theory with quantum

corrections. Recent observations adopt the conservative bounds 0.85
<
∼ H0T0

<
∼ 1.91

[49]. Here T = τ − t. As a result, at very early times m2 ≫ H2 and, consequently,
k+ ≈ (1 − α)2H2/β2 and k− ≈ 0. In summary, at the early epoch of time, the
field is dominated by normal and massless particles. During the growth of time,
massless particles turn into tachyons and this is highly interesting as it may have
interesting consequences on cosmology and the dark energy problem [50].

However, at very large time, one may also attend to have weak-mass particles
and not massless particles. For this, we propose the following problem.

Problem 3.1: Find the stationary points of the integral exponential-like functional

S
[
q(•)

]
=

1

Γ(α)

t∫

a

L(q̇(τ), q(τ), τ)(et − eτ )α−1dτ , (21)

under the initial condition q(a) = qa, 0 < α ≤ 1, where the smooth Lagrangian
function L : [a, b]×R

n×R
n → R is a C2-function with respect to all its arguments.

Theorem 3.2: If q(•) are solutions to the problem 3.1, then q(•) satisfy the fol-
lowing Euler-Lagrange equations

∂L(q̇(τ), q(τ), τ)

∂q
−

d

dq

(
∂L(q̇(τ), q(τ), τ)

∂q̇

)
=

(1− α)eτ

et − eτ
∂L(q̇(τ), q(τ), τ)

∂q̇
. (22)

Proof: We may write qk(τ) = q0k(τ) + σk(τ), where q0k(τ) is the minimum solution
and σk(τ) describes the deviation of qk(τ) from the minimum path q0k(τ). Replacing
into the the action (1) gives

S =
1

Γ(α)

t∫

a

L(q̇0k(τ) + σ̇k(τ), q
0
k(τ) + σk(τ), τ)(e

t − eτ )α−1dτ ,

Performing Taylor expansion to first order in σ̇k(τ) and σk(τ) yields

S =
1

Γ(α)




t∫

a

{
L
(
q̇0k(τ), q

0
k(τ), τ

)
+

∂L

∂q̇k
σ̇k(τ) +

∂L

∂qk
σk(τ)

}
(et − eτ )α−1dτ


 .
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Integrating the term in σk(t) by parts gives without difficulty

S =
1

Γ(α)




t∫

a

L
(
q̇0k(τ), q

0
k(τ), τ

)
(et − eτ )α−1dτ




−
1

Γ(α)

t∫

a

σ(τ)

[
(et−eτ )α−1

d

dτ

∂L

∂q̇k
+(1−α)eτ

∂L

∂q̇k
(et−eτ )α−2−

∂L

∂qk
(et−eτ )α−1

]
dτ ,

and we get the required result. �

The originality in this approach concerns the occurrence of the new decaying
(1− α)eτ (et − eτ )−1 holding the properties,

lim
τ→∞, t /= τ

(1− α)
eτ

et − eτ
= 1− α , (23)

lim
τ→0, t /= τ

(1− α)
eτ

et − eτ
=

1− α

et − 1
. (24)

Let us illustrate by discussing again the case when L = 1
2�φ�φ − 1

2µ
4φ2, µ ∈ R.

The corresponding equations of motion are accordingly

��φ+ (1− α)
eτ

et − eτ
�φ− µ4φ = 0 . (25)

Making use of the Fourier development φ(x) =
∫
dk e−ikxφ̃(k), we obtain

straightforwardly, (
k4 +

(1− α)eτ

et − eτ
k2 − µ4

)
φ̃(k) = 0 , (26)

and consequently:

k2+ =
1

2


 (1− α)eτ

et − eτ
+

√(
(1− α)eτ

et − eτ

)2

+ 4µ4


 (27)

k2
−
=

1

2


 (1− α)eτ

et − eτ
−

√(
(1− α)eτ

et − eτ

)2

+ 4µ4


 (28)

The term (1−α)eτ/(et−eτ ) can again be identified to a fractionally decaying mass
with positive square mass m2 > 0, (− < α < 1). Amazingly in this approach, the
mass m2 depends on the observer time at the origin of time. At very large times
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m2 → (1 − α), i.e., weakly massive particles, in contrast to the first case which
yields massless particles. Therefore

k2+ =
1

2

[
(1− α) +

√
(1− α)2 + 4µ4

]
, (29)

k2
−
=

1

2

[
(1− α)−

√
(1− α)2 + 4µ4

]
, (30)

which for µ = 0, give k2+ = 1−α (massive particles) and k2
−
= 0 (massless particles),

in contrast to the first discussed case. The tachyons disappear in this approach, in
particular at very large time, what is quite interesting. The main difference between
Eqs. (29, 30) and (19, 20) concern the behavior of the positive and negative modes
at very large time. In the first Riemann-Liouville fractional approach, k2+ → µ2

(massive particle) and k2+ → −µ2 (tachyon) at very large time, while in the second
fractional exponential approach, k2+ > µ2 and k2

−
< −µ2. This may have interesting

consequences in high energy physics. Work in this direction is under progress.

At the end, we want, as previously, to extremise the fractional functional (21)
subject to the constraints G(q̇(τ), q(τ), τ) = 0 where G : Rn×R

n×R → R
k is again

a differentiable function by introducing the Lagrange multipliers λ : [a, b] → R
k.

Definition 3.2: The constrained fractional action integral in R
k is defined by

S
[
q(•), λ

]
=

1

Γ(α)

t∫

a

(
L(q̇(τ), q(τ), τ)−〈λ(τ),G(q̇(τ), q(τ), τ)〉

)
(et−eτ )α−1dτ . (31)

Our main aim now is to derive the fractional Euler-Lagrange equations for the La-
grangian L(q̈(τ), q̇(τ), q(τ), τ) depending on the second derivatives of a C3 function
subject to the constraints Y(τ) = q̇(τ). The modified fractional action is afterward
written like

S
[
Y, q(•), λ

]
=

1

Γ(α)

t∫

a

(
L(Ẏ(τ), q̇(τ), q(τ), τ

)
−λ(τ)

(
Y−q̇(τ)

))
(et−eτ )α−1dτ . (32)

Corollary 3.1: If q(•) are solutions to the integral exponential-like functional (32)
subject to the constraints Y = q̇(τ), then q(•) satisfy the following Euler-Lagrange
equations for the Lagrangian L(q̈(τ), q̇(τ), q(τ), τ),

∂L(q̈(τ), q̇(τ), q(τ), τ)

∂q
−

d

dτ

(
∂L(q̈(τ), q̇(τ), q(τ), τ)

∂q̇

)
+

d2

dτ2

(
∂L(q̈(τ), q̇(τ), q(τ), τ)

∂q̈

)

=
(1− α)eτ

et − eτ

[
∂L(q̈(τ), q̇(τ), q(τ), τ)

∂q̇
− 2

d

dτ

(
∂L(q̈(τ), q̇(τ), q(τ), τ)

∂q̈

)]
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−(1− α)(2− α)

[
eτ

et − eτ
+ (2− α)

e2τ

(et − eτ )2

]
∂L(q̈(τ), q̇(τ), q(τ), τ)

∂q̈
. (33)

Proof: In fact, we may follow the standard steps and we write the variation
δSm

[
q(•)

]
like

δSm
[
q(•)

]
=

1

Γ(α)

t∫

a

(
m∑

i=0

∂i+2L δq(i)

)
(et − eτ )α−1dτ ,

where δq(i) ∈ C2m
(
[a, b];R

)
, i = 1, 2, . . . ,m are the variations of q(i) with

δq(i)(a) = 0. By performing the integration by parts, we obtain

for m = 1, δS
[
q(•)

]
=

1

Γ(α)

t∫

a

(
∂2L−

d

dτ
∂3L−

(1−α)eτ

et−eτ
∂3L

)
(et−eτ )α−1 δqdτ ,

for m=2, δS2
[
q(•)

]
=

1

Γ(α)

t∫

a

(
∂2L−

d

dτ
∂3L+

d2

dτ2
∂4L

)
−

(
(1−α)eτ

et−eτ

(
∂3L−2

d

dτ
∂4L

)

−(1−α)(2−α)

[
eτ

et−eτ
+

(2−α)e2τ

(et−eτ )2

]
∂4L

)
(et−eτ )α−1 δqdτ ,

and in general, we get the required results. Here ∂iL represents the partial derivative
of the Lagrangian with respect to its i-th argument, i ∈ N. �

Remark 3.2: For α = 1, we find the standard Euler-Lagrange equations which
corresponds to the Lagrangian L(q̈(τ), q̇(τ), q(τ), τ).

Theorem 3.3: If q(•) are solutions to the integral exponential-like functional (21),
then the third-order fractional Euler-Lagrange equation is

∂2L(q̇(τ), q(τ), τ)

∂qj∂qi
q̇j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂qi
q̈j

+
∂2L(q̇(τ), q(τ), τ)

∂qj∂q̇i
q̈j +

∂3L(q̇(τ), q(τ), τ)

∂qk∂qj∂q̇i
q̇k q̇j +

∂3L(q̇(τ), q(τ), τ)

∂q̇k∂qj∂q̇i
q̈kq̇j

+
∂3L(q̇(τ), q(τ), τ)

∂qk∂q̇j∂q̇i
q̇kq̈j +

∂3L(q̇(τ), q(τ), τ)

∂q̇k∂q̇j∂q̇i
q̈k q̈j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂q̇i
...
q
j

−
(1− α)eτ

et − eτ

(
∂2L(q̇(τ), q(τ), τ)

∂qj∂q̇i
q̇j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂q̇i
q̈j
)
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−(1− α)
eτet

(et − eτ )2
∂L(q̇(τ), q(τ), τ)

∂q̇j
= 0 . (34)

Proof: By differentiating the fractional Euler-Lagrange equation (22) for
L(q̇(τ), q(τ), τ), we get straightforwardly,

d

dτ

(
∂L(q̇(τ), q(τ), τ)

∂qj
−

d

dτ

(
∂L(q̇(τ), q(τ), τ)

∂q̇

))
−

d

dτ

(
(1−α)eτ

et−eτ
∂L(q̇(τ),q(τ),τ)

∂q̇

)
=0.

(35)
The left-hand side of the above equation is

∂2L(q̇(τ), q(τ), τ)

∂qj∂qi
q̇j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂qi
q̈j −

d

dτ

(
∂2L(q̇(τ), q(τ), τ)

∂qj∂q̇i
q̇j
)

−
d

dτ

(
∂2L(q̇(τ), q(τ), τ)

∂q̇j∂q̇i
q̈j
)
− (1− α)

eτet

(et − eτ )2
∂L(q̇(τ), q(τ), τ)

∂q̇j

−(1− α)
eτ

et − eτ

(
∂2L(q̇(τ), q(τ), τ)

∂qj∂q̇i
q̇j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂q̇i
q̈j
)

= 0 ,

which is

∂2L(q̇(τ), q(τ), τ)

∂qj∂qi
q̇j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂qi
q̈j

+
∂2L(q̇(τ), q(τ), τ)

∂qj∂q̇i
q̈j +

∂3L(q̇(τ), q(τ), τ)

∂qk∂qj∂q̇i
q̇k q̇j +

∂3L(q̇(τ), q(τ), τ)

∂q̇k∂qj∂q̇i
q̈kq̇j

+
∂3L(q̇(τ), q(τ), τ)

∂qk∂q̇j∂q̇i
q̇kq̈j +

∂3L(q̇(τ), q(τ), τ)

∂q̇k∂q̇j∂q̇i
q̈k q̈j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂q̇i
...
q
j

−
(1− α)eτ

et − eτ

(
∂2L(q̇(τ), q(τ), τ)

∂qj∂q̇i
q̇j +

∂2L(q̇(τ), q(τ), τ)

∂q̇j∂q̇i
q̈j
)

−(1− α)
eτet

(et − eτ )2
∂L(q̇(τ), q(τ), τ)

∂q̇j
= 0 . �

The generalization of the previous problems and results for the case of higher-order
derivatives, i.e. L(∂(m)φ(•), . . . , ∂φ(•), φ(•)) where φ : Ω ⊂ R → M satisfies given
Dirichlet boundary conditions on ∂Ω, are under progress.
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4. Conclusions

The present work represents a new application of the fractional problems of
the calculus of variations to the quantum field theory in (0+1) dimensions which is
equivalent to quantum mechanics. We derived the fourth- and third-order fractional
Euler-Lagrange equations and we generalized our results to the case in which the
Lagrangian contains higher-order derivatives. To deal with quantum field theory in
(0+1) dimensions, we choose the particular case in which the derivatives appear
only in the invariant d’Alembertian operator. As a simple application, we discussed
the case where the Lagrangian is L = (1/2)(�φ�φ − µ4φ2). In the standard case,
the field is dominated by massless particles and tachyons at any epoch of times. In
the fractional approach, the field is dominated at the early epoch of time by normal
and massless particles. In the growth of time, massless particles turn into tachyons
and it is the author’s speculation that it might have interesting consequences in
cosmology and dark energy problem. The fractional field theory is still an open
problem under development. The exponentially fractional integral approach intro-
duced here requires more study and elaboration and work in this direction is under
progress. We expect they will open up in the future a new stimulating research area
in fractional field theory and provide us with a powerful tool to understand many
fundamental problems in the area of high energy physics and physics of curved
spacetime [51]. Contemporaneous research efforts are needed to confirm or falsify,
develop or disprove the fractional dynamics discussed here including our prelimi-
nary findings.
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RAZLOMNE JEDNADŽBE POLJA VIŠEG REDA U (0+1) DIMENZIJI I
FIZIKA IZA STANDARDNOG MODELA

Raspravljam o Lagrangeovom postupku za obradu razlomnih jednadžbi polja
vǐseg reda u (0+1) dimenziji koji zasnivamo na razlomnim djelatnim varijacijskim
zadacima s izvodima vǐseg reda. Istražujem slučaj kada se izvodi javljaju samo u
invarijantnom d’Alembertovom operatoru. Nalaze se zanimljivi ishodi.

72 FIZIKA A (Zagreb) 19 (2010) 2, 55–72


