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A simple and comprehensive solution is given for the Bell thought experiment. Us-
ing the equations of hyperbolic motion expressed in coordinate time, we can easily
derive the distance between rockets as a function of time, the time elapsed between
rocket takeoff and string breaking as well as the expression that gives the exact
coordinate time of string breaking.
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1. Introduction

In Bell’s “spaceship” experiment [1], two spaceships, that are initially at rest
in some common inertial reference frame, are connected by a taut string. At the
time zero in the common inertial frame, both spaceships start accelerating, with
a constant proper acceleration a as measured by an on-board accelerometer. We
study the question: when does the string break as expressed as a function of the
coordinate time? For simplicity, throughout the paper, all objects (string, rockets)
are considered as being Born-rigid [2], thus neglecting the very minor effects on the
length of the objects during the accelerated motion [3 – 7]. We have provided earlier
[9] a treatment expressed in terms of the proper time, τ , while in the current paper
we show a different approach in terms of the coordinate time, t.

2. Analysis of motion assuming hyperbolic dependence of

position as function of coordinate time

Bell’s paradox is easily understood if we start by looking at the situation in
the instantaneously co-moving inertial rest frame (ICIRF) of the rear spaceship at
a given instant of time. In that frame and at that time, the trailing spaceship is
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at rest, and at the same time the leading spaceship has nonzero velocity moving
forward.

We do this for the ICIRF of any small portion of the string, and each spaceship
is moving away from the portion in question. So from the standpoint of the string,
each small region of the string must stretch and eventually break when its elastic
limit is exceeded. In Ref. [9], we have shown a treatment expressed in terms of the
proper time, τ . In the current paper, we show a different treatment, expressed in
terms of the coordinate time t. The two treatments are different both physically
and mathematically.

Two rockets, A and B, describe hyperbolic trajectories [9] (see Fig. 1),
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Let us consider the instantaneous co-moving frame Σ (an inertial frame with
the origin attached to the trailing rocket) at an arbitrary coordinate time tA. The
ξ axis makes an angle α with the x axis, where

tanα =
v(tA)

c
=

atA

c
√

1 +

(

atA

c

)2
. (2)

The ξ axis represents a line of simultaneity in the frame Σ. If we want to determine
the distance between the two rockets at the coordinate time tA as measured in Σ,

Fig. 1. Minkowski’s diagram for the Bell’s spaceship experiment.
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we have to intersect the ξ axis with the trajectory of the leading rocket, that is, we
have to solve for t the system of equations:

(x− xA) tanα = c(t− tA) , x = L+
c2
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The system reduces to a simple equation of the second degree in t that has a
positive root tB′ > tA,
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with the solution:
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From (6) it is obvious that tB′ > tA. Once we find tB′ , we can easily find the
coordinate (in frame S) of the leading rocket

xB′ = L+
c2

a

√

1 +

(

atB′

c

)2
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We can now apply a Lorentz transformation between the launcher frame S and the
co-moving frame Σ in order to get the distance between the rockets calculated in
the frame Σ,

L′ = ξB′ = γ(v(tA)) (xB′ − vtB′) , (8)

where
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We can show easily that the function
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since
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for any tB′ > tA. This is due to the fact that g(t) = t
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)2

is a monoton-

ically increasing function.

Thus, we can conclude that the distance between the rockets in the co-moving
frame is larger than their distance L as measured in the launcher frame
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Since tA has been chosen arbitrarily and since tB′ is a function of T (t) as described
by Eq. (5), we can also write the distance between the two rockets as a function of
the coordinate time t, as measured in the co-moving frame Σ, by a more general
formula
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The distance between rockets increases with the coordinate time t so the string will
get stretched until it breaks.

3. When does the string break?

The calculation of the time when the string breaks requires that we take into
consideration that each infinitesimal element of the string moves at a different speed
as viewed from the frame Σ, as we have shown in the previous section. So, each
infinitesimal element will stretch by a different amount [8]. The formalism built in
the prior section will be very useful in calculating the amount of stretching.

Consider an infinitesimal element of length dl as viewed from the frame. Its
endpoints will describe the hyperbolas (see Fig. 2)
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According to (6), the ξ axis intersects the two hyperbolas at

ti=λp , ti+1=(λ+ dλ)p , with p =
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Substituting (16) into (15), we obtain
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So, the infinitesimal element is stretched by the amount
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Substituting (16) into (18) we obtain

a

2
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ap2

2
((λ+ dλ)2 − λ2) ≈ ap2λdλ , (19)

Fig. 2. Calculation of the stress.

The total stretch is obtained by integrating (19)

L
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2
. (20)

Since tA has been taken arbitrarily, it means that, in general, p is a function of t
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Material science teaches us that for any string of a given length L, cross-sectional
area A and a given tensile strength, there is a limit of stretching, δL, beyond which
it will break. The time of the string breaking will be given by solving the equation

ap2

L
= δL , (22)
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for the coordinate time t.

We have shown the realistic computations of the string stretching as a function
of the coordinate time.

4. Conclusions

We have produced a very simple and comprehensive solution for the Bell’s
thought experiment. As we have demonstrated, using the equations of hyperbolic
motion, we can easily derive the distance between the two rockets as a function of
time as well of the time elapsed between rocket takeoff and string breaking, and
the expression that permits the calculation of the exact time of string breaking.
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HIPERBOLNO GIBANJE U KOORDINATNOM VREMENU ZA BELLOVE
SVEMIRSKE BRODOVE

Daje se jednostavno i jasno rješenje za Bellov misaoni eksperiment. Primjenom
jednadžbi hiperbolnog givanja izraženih u kordinatnom vremenu, jednostavno se
izvodi razmak dviju raketa kao funkcija vremena, vrijeme koje protekne od polaska
rakete do trenutka pucanja užeta, te se daje izraz za točno koordinatno vrijeme
pucanja užeta.
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