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We revisit analytical calculation [Mishra et al., Physica A 323 (2003) 453 and
Mishra, NewYork Sci. J. 3 (1) (2010) 32 ] of the persistent length of a semiflexible
homopolymer chain in the extremely stiff chain limit, k → 0, where, k is the stiff-
ness of the chain, for the directed walk lattice model in two and three dimensions.
Our study for the two-dimensional (square and rectangular) and three-dimensional
(cubic) lattice case clearly indicates that the persistent length diverges according to
the expression (1−gc)

−1, where gc is the critical value of the step fugacity required
for polymerization of an infinitely long linear semiflexible homopolymer chain, and
nature of the divergence is independent of the space dimension. This is obviously
true because, in the case of extremely-stiff chain limit, the polymer chain is a one-
dimensional object and its shape is like a rigid rod.
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1. Introduction

The persistent length of a polymer chain measures correlations in the orientation
of the segments of the chain along its length. In other words, the persistent length
is a measure of the distance along the chain length at which the configuration of
the chain on an average has memory of the orientation of its specific segment.
The bending rigidity and thus the persistent length is a consequence of the short
range atomic and molecular interactions present in the polymer chain. Since, the
persistent length is stemming from the bending rigidity of the polymer chain, it can
exhibit enormous variation in the magnitude. Therefore, if the persistent length
associated with the polymer chain is much smaller than the overall length of the
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chain, such a chain is said to be flexible and stiffness of such a chain is unity.
When the stiffness of the chain is approaching to zero, the persistent length of
such a chain becomes comparable to its length and the chain is said to be rigid.
However, if the stiffness of the chain has value between 0 and 1, the chain is said
to be semi-flexible. Actin filaments, microtubules, DNA, protein and collagen are
examples of the semiflexible polymers. The persistent length plays an important
role in describing elastic properties of a semiflexible polymer chain and also plays
a vital role in developing the theory of polyelectrolyte solutions.

Due to the excluded volume effect, a self-avoiding polymer chain has memory
of its specific segment and initial bias persists along the walk of the chain up to
a finite distance (for flexible chains) from initial step of the chain. Grassberger [1]
initially discussed this problem and showed that the persistent length of a two-
dimensional self-avoiding flexible polymer chain diverges with a power law. Later,
Redner and Privman [2] suggested that this divergence is logarithmic. However,
through MC studies [3], it has been shown that the persistent length could be
fitted by a power law and by a logarithmic function. Eisenberg and Baram [4]
demonstrated and confirmed that the persistent length of a flexible polymer chain
converges to a finite value. The situation is different in the case when polymer
chain is semiflexible, and in the extremely stiff chain limit, the persistent length of
a semiflexible polymer chain diverges.

The aim of the present report is to take into account correlations prevailing
between two distant segments of an extremely rigid polymer chain of an infinitely
long length in the bulk and to demonstrate through simple calculations that the
persistent length of such a polymer chain, when expressed in terms of critical value
of step fugacity in the extremely stiff chain limit (i.e. k → 0), diverges as a simple
pole, and the nature of the divergence is independent of space dimensionality.

This report is organized as follows: In Sec. 2, we define briefly the directed
walk model and revisit the results of calculation of the persistent length for two-
dimensional (square and rectangular) and three-dimensional (cubic) lattice to inves-
tigate the divergence of the persistent length of an infinitely long linear semiflexible
homopolymer chain in the extremely stiff chain limit. Finally, in Sec. 3, we conclude
the discussion by summarizing the results obtained.

2. Model and method of calculations

We consider following two cases of directedness [5] of the polymer chain for
square, rectangular and cubic lattices: In the case (i), the partially-directed self-
avoiding walk (PDSAW) model, the walker is allowed to walk along ±y and +x
directions on a square or a rectangular lattice, while in the cubic lattice case, walker
is allowed to walk along ±y, +x and +z directions. In the case (ii), the fully directed
self-avoiding walk (FDSAW) model, the walker is allowed to take steps along +x,
+y directions in the square and rectangular lattice case, while along +x, +y and +z
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Fig. 1. a) A partially-directed self-avoiding walk of a linear semiflexible polymer
chain is shown on a square lattice of 9 steps, and b) on a two-dimensional rectangu-
lar lattice of 11 steps. The step fugacity of each step is shown by g, k [= exp(−βǫb)]
is the stiffness of the polymer chain, ǫb is the value of the bending energy required
to produce one bend in the chain and β [= 1/(kBT )] is the inverse of thermal en-
ergy. The Boltzmann weight of the walk shown in figure a) is g9k6 and in figure b)
is g11k8.

directions for the case of a cubic lattice. A partially-directed self-avoiding walk is
shown graphically on a two-dimensional rectangular and a square lattice in Fig. 1.

The partition function of the chain is defined as follows

Z(g, k) =

N=∞
∑

N=0

∑

over all walks of N steps

gNkNb , (1)

where, Nb is the number of bends in a walk of a polymer chain of N steps
(monomers) and g is the fugacity associated with each step (monomer). The par-
tition function of the chain is calculated [6, 7] by us using method of generating
function technique [5].

The persistent length is defined [Mishra et al. [6] ] as an average length of the
polymer chain between two successive bends, i. e.

lp =
< L >

< Nb >
=

(

g
∂log[Z(g, k)]

∂g

)

/

(

k
∂log[Z(g, k)]

∂k

)

,

where the length of the chain is L = Na, a being the lattice parameter and N
is the number of monomers in the chain. We have taken the value of the lattice
parameter unity for the sake of simplicity.
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2.1. PDSAW model on a square lattice

The partition function of a linear semiflexible homopolymer chain for this model
is written as [6]

ZPD−S(g, k) =
(4k − 3)g2 + 3g

1− 2g + g2 − 2g2k2
,

where g is the step fugacity and k is the stiffness weight associated with each bend
of the polymer chain.

The critical value of the step fugacity required for polymerization of an infinitely
long linear semiflexible homopolymer chain is determined from the singularity of
the partition function. The critical value of the step fugacity for partially-directed
self-avoiding walk model of the chain on a square lattice is written in terms of k as
[6]

gc =
1

1 +
√
2k

.

This allows us to write k in terms of gc as

k =
1− gc√

2gc
.

The persistent length of the polymer chain for the PDSAW model on a square
lattice can be written as [6]

lp =
3 + 2

√
2

4 + 3
√
2

[√
2 +

1

k

]

. (2)

Substituting

k =
1− gc√

2gc

in Eq. (2), we obtain the expression for the persistent length as

lp = (1− gc)
−1

. (3)

2.2. FDSAW model on a square lattice

For a fully-directed self-avoiding walk model on a square lattice, the partition
function of the chain is written as [6]

ZFD−S(g, k) =
2g

1− (1 + k)g
,
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while [6]

gc =
1

1 + k
.

Therefore, we have the expression for k in terms of gc as k = (1− gc)/gc, while the
persistent length for this case is, lp = 1 + k−1 [6]. Substituting the value of k in
terms of gc, we get also for this case

lp = (1− gc)
−1. (4)

2.3. PDSAW model on a two-dimensional rectangular lattice

We have considered a rectangular lattice which has lattice parameter one unit
along the x-axis and two units along the y-axis. This rectangular lattice can be de-
rived from a two-dimensional hexagonal lattice and the lattice is shown in Fig. 1b).
The partition function of the polymer chain for this case is written as [7]

ZPD−R(g, k) =
3g + 2g2 + 2g2k − g3 + 4g3k − 4g3k2

1− g2 − 2g2k2
.

In the case of a two-dimensional rectangular lattice, critical value of the step fugac-
ity for polymerization of an infinitely long linear semiflexible homopolymer chain
is written in terms of k as [7]

gc =
1√

1 + 2k2
.

In other words, k in terms of gc is written as

k =
1− gc

2

2gc2
,

while the persistent length has dependence on k as, lp = 1+1/2k2 for the PDSAW
model on a rectangular lattice. The persistent length (on substitution of k in terms
of gc) is re-written in terms of gc as,

lp =
1

(1 + gc)(1− gc)
. (5)

2.4. FDSAW model on a two-dimensional rectangular lattice

The partition function of the polymer chain for the FDSAW model on a two-
dimensional rectangular lattice is [7]

ZFD−R(g, k) =
2g + g2 + g2k − g3 + 2g3k − g3k2

1− g2 − g2k2
,
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and we have [7]

gc =
1√

1 + k2
,

from the singularity of the partition function. In this case, k in terms of gc is written
as

k =
1− gc

2

gc2
,

and lp = 1+1/k2 for the FDSAW model on a rectangular lattice in two dimensions.
On substitution of k in terms of gc for the FDSAW model on a two-dimensional
rectangular lattice, we get

lp =
1

(1 + gc)(1− gc)
. (6)

2.5. PDSAW model on a cubic lattice

The partition function of the polymer chain for the partially-directed self-
avoiding walk model is [6]

ZPD−C(g, k) =
(6k − 4)g2 + 4g

(1 + k − 4k2)g2 − (k + 2)g + 1
.

In this case the persistent length of the polymer chain is written as [6]

lp =
2u1[k

−2 + k−1 − 4]

(1−
√
17 + 2k−1)u2 + (85 + 21

√
17)k−2

, (7)

where

u1 = 85 + 19
√
17− (102 + 26

√
17)k−1 + (34 + 8

√
17)k−2

and

u2 = 204 + 52
√
17− (272 + 64

√
17)k−1.

The critical value of the step fugacity for this case is [6]

gc =
k + 2−

√
17k

2(k + 1− 4k2)
.

For this case too, we follow the method discussed above and substitute

k =
(1− gc)(

√
17− 1)

8gc
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to obtain,

lp = (1− gc)
−1. (8)

In this case, dependence of the persistent length on k (as shown in Eq. (7)) is more
involved than in the cases discussed in subsections (2.1 – 2.4), and expression for
the persistent length reduces to a simple form, as we have discussed in subsections
(2.1 – 2.4), when the persistent length is expressed in terms of gc, i.e. Eq. (8).

2.6. FDSAW model on a cubic lattice

The partition function of the polymer chain for the FDSAW model on a cubic
lattice is written as [6]

ZFD−C(g, k) =
3g

1− (1 + 2k)g

The critical value of the step fugacity is

gc =
1

(1 + 2k)

and the persistent length is [6]

lp = 1 +
1

2k

for the FDSAW model on a cubic lattice. In this case, too, (on substitution of
k = (1− gc)/2gc in the expression for the persistent length) we obtain,

lp = (1− gc)
−1 . (9)

3. Conclusions

We have used the definition of Mishra et al. [6] to investigate the nature of
the divergence of the persistent length of an infinitely long linear semiflexible ho-
mopolymer chain in the extremely stiff chain limit, i.e. when k → 0. In this limit,
the polymer chain is a one-dimensional object and average length of the polymer
chain between its two successive bends diverges as (1− gc)

−1. In other words, the
persistent length diverges as

lp ∼ (1− gc)
−1 ∼

1

kq
,

(where q is an integer) for the extremely stiff chain limit.

When the persistent length is expressed in terms of k, the constant of propor-
tionality will depend on the lattice dimension and model. The constant of propor-
tionality will have a different value for the isotropic model and the directed walk
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model. However, when the persistent length is expressed in terms of gc, we expect
that the nature of the divergence of an average distance between two successive
bends of the polymer chain will remain the same for directed and undirected self-
avoiding walk models, and constant of proportionality will have a different value for
the isotropic (undirected) model and the directed walk model. The nature of the
divergence is identical for partially- and fully-directed walk models of the polymer
chain for two- and three-dimensional lattices. This is due to the fact that in the
extremely stiff chain limit the polymer chain is a one-dimensional object and its
shape is like a rigid rod.

The qualitative nature of variation of the persistent length with stiffness of the
chain has similar variation for directed and isotropic self-avoiding walk models in
two and three dimensions. However, exact value of the persistent length of the chain
will depend on space dimensions and type of model (directed or isotropic) chosen
to enumerate walks of the chain [8].
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DIVERGENCIJA POSTOJANE DULJINE POLUFLEKSIBILNOG
HOMOPOLIMERNOG LANCA U GRANICI KRUTOG LANCA

Obnavljamo analitički račun [Mishra et al., Physica A 323 (2003) 453 i Mishra,
NewYork Sci. J. 3 (1) (2010) 32 ] za postojanu duljinu polufleksibilnog homo-
polimernog lanca u granici krajnje krutog lanca, k → 0, gdje je k krutost lanca, za
model rešetke s usmjerenim hodom u dvije i tri dimenzije. Proučavanje dvodimen-
zijske (kvadratne i pravokutne) i trodimenzijske (kubične) rešetke jasno pokazuje
da postojana duljina divergira kao (1− gc)

−1, gdje je gc nepostojanost potrebna za
polimerizaciju beskonačno dugog linearnog polufleksibilnog homopolimernog lanca,
i priroda divergencije ne ovisi o prostornoj dimenziji. To je očito tako jer u slučaju
krajnje krutog lanca, polimerski lanac je jednodimenzijski predmet i on ima oblik
krutog štapa.
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