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An indirect method for the determination of stacking fault energies (SFE) of pure
metals by X-ray diffraction technique is reported. The existing methods for the
calculation of SFE suffer from simplified assumptions regarding dislocation distri-
bution and type of dislocation present in the specimen. The present method is based
on the strain field model of dislocations assuming a restrictedly random disloca-
tion distribution. The method is applied for the calculation of SFE of plastically
deformed copper and the values come out to be very close to those obtained from
direct observation methods like TEM.
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1. Introduction

The stacking fault energy (SFE) of close packed metals influences their physical
properties. All mechanical phenomena, which are related to dislocation motion
and the resulting dislocation configurations, are a strong function of the separation
of partial dislocations, which is determined by the SFE. From the measurement
of geometry of some dislocation configuration [1 – 2] SFE can be measured directly
provided the stacking fault energy is relatively low, typically less than 30 mJ/m2 for
extended modes. The weak-beam method of electron microscopy allows dislocations
to be imaged as two relatively intense lines if they are separated by a distance of
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more than 20 Å. The stacking fault energy is directly related to the separation of
Schokley partials [3]. From the analysis of the weak beam images of dissociated
dislocations in copper, γCu has been found to be (41± 9) mJ/m2 [3 – 5].

Among the indirect methods of measurement, deformation stacking fault proba-
bility (α) and dislocation density (ρ), simultaneously from X-ray diffraction studies,
also leads to the determination of stacking fault energy of deformed alloys, and a
proper extrapolation may lead to the determination of SFE of pure metals. In the
present work, the existing method of determination of SFE is reviewed. A new
method has been proposed which takes into account the dislocation types and dis-
tributions which eventually helps in determining SFE of pure metals.

2. Theoretical formulation

The stacking fault energy is expressed as

γ = G(b2 · b3)/(2πηr) , (1)

where G is the shear modulus and can be calculated from the elastic constants cij ,
b2 and b3 are Burgers vector for the partial dislocations, η is the type of dislocation
and r is width of intrinsic stacking fault ribbon. Further, the deformation stacking
fault probability (α) is defined as

α = ρrd , (2)

where d is the interplanar spacing of the slip plane. For a F.C.C system, the stacking
fault energy can be written as [6].

γ = Ga3ρ/(αη24π
√
3) . (3)

This simple equation can be used to evaluate the stacking fault energy γ provided
the type of dislocation (η) is known, while α and ρ are measured from X-ray
diffraction line profile analysis. The value of η changes from η = 1 (for screw
dislocation) to η = (1 − n) (for edge dislocation), where ‘n’ is the Poisson’s ratio.
Thus the uncertainty remains if η is not known a priori. A further limitation of
Eq. (3) is that the dislocation density ρ and stacking fault probability α should
be measured simultaneously, which often involves simplified assumption regarding
dislocation distribution. Further, X-ray diffraction line profile analysis based on the
breadth of X-ray diffraction lines give the value of formal dislocation density ρ∗.
For a random dislocation distribution, ρ∗ is related to the mean square strain 〈ǫ2L〉
by the Williamson Smallman equation

ρ∗ = K〈ǫ250〉/b2,

where 〈ǫ250〉 is the mean-square strain at a coherence length of 50 Å. The formal
dislocation density ρ∗ is related to the true dislocation density ρ by the relation
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C̄hklρ
∗ = ρ where C̄hkl is the contrast factor expressing the visibility of dislocation

in any diffraction experiment. In all previous work the value of C̄hkl was chosen to
be 1 which results in systematically lower values of γ. Further, if the dislocation
distribution differs from a random one, the determination of ρ becomes erroneous.
The constant K depends on the crystal geometry, nature of strain distribution and
shape of strain broadened profile.

The equation of Smallman and Westmacott can be modified by incorporating
the dislocation contrast factor C̄hkl, so the equation reduces to

γ = Ga3Chklρ
∗/(αη24π

√
3) . (4)

Reed and Schramm [7] have modified Eq. (3) as

γ =
A−0.37

i K111ω0G111a0〈ǫ250〉111
π
√
3α

, (5)

where the uncertainty due to η is absorbed in the constant factor K111ω0. Ai is
the anisotropy factor defined as Ai = 2C44/(C11−C12) and Cij are elastic stiffness
constants. However, if the dislocation type and arrangement changes with alloying,
which is often the case, a constant value of K111ω0 is not a reasonable assumption.
The value of K111ω0 was obtained as 6.6 by Reed and Schramm.

Further, the mean square strain is a strong function of coherence length L
and dislocation distribution. For dislocation-induced strain broadening, 〈ǫ2L〉 is ex-
pressed as either

〈ǫ2L〉 = ρC̄hkl(b
2/4π)f(χ), χ = (1/2) exp(−0.25) exp(2Re/L)

(The expression for f(χ) can be found elsewhere [8]),

or

〈ǫ2L〉 = ρC̄hkl(b
2/4π) ln(Re/L)

in a simplified manner for a weak defect correlation. C̄hkl is the contrast factor
corresponding to the indices hkl and is defined as C̄hkl = C100(1 − qH2) with
H2 = 1/3 for the index 100.

The stacking-fault energy can be obtained by modifying the expression given
by Reed and Schramm [7, 9]. Incorporating the strain field model of dislocations
the expression for SFE reduces to either

γ =
A−0.37

i K111ω0G111a0

π
√
3α

{

(b/2π)2(πρC̄111)f(χ)
}

, (6)

or using approximate strain function it becomes,

γ =
A−0.37

i K111ω0G111a0

π
√
3α

{

(b/2π)2(πρC̄111) ln(Re/L)
}

. (7)
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3. Results and discussion

Stacking fault energy of pure copper has been determined by using the formalism
described in the earlier section. The cold-worked copper powder has been prepared
by filing at room temperature [10]. Microstructural characterization has been done
using a model based approach. A restrictedly random dislocation distribution and
log-normal distribution of spherical crystallites was used as the microstructural
model. The method of analysis and corresponding results can be found elsewhere
[10]. Only the results which are relevant for the analysis of stacking fault energy
are given in Table 1.

TABLE. 1. Microstructural parameters and some physical constants of Cu.

ρ C̄111 α G111 a0 Re q

(1015m−2) (1011 Pa) (nm) (nm)

10.2 0.067 0.003 0.405 0.3614 7.4 2.34

±0.02 ±0.00017 ±1.1 ±0.02

TABLE. 2. Value of γ determined from different equations.

From equation (4) 58.6 mJm−2

From equation (8) 16.7 mJm−2

From equation (9) (Re = L/2) 9.5 mJm−2

From equation (10) (χ = 1) 25.7 mJm−2

From equation (11) 14.5 mJm−2

The stacking fault energies have been calculated from the expressions (6) and
(7) and are shown in Table 2. It is clear from the nature of expression (5) that
γ is a function of χ, which is further related to the averaging length inside the
crystal. Reed and Schramm used an L value of 5 nm to calculate stacking fault
energy. However, it is reasonable to calculate the stacking fault energy within a sub
area of radius Re characterizing the dislocation substructure. In the present case,
it is assumed that if χ = 1, which corresponds to 2.877L = Re, provides a value
of L ∼ 2.5 nm. The stacking fault energy is calculated from Eq. (6) using χ = 1.
Substituting the value of variables in Eqs. (6) and (7) the stacking fault energy is
given by

From equation (6) γ = 13.7f(χ) mJm−2 (8)

From equation (7) γ = 13.7 ln(Re/L) mJm−2 . (9)

If the anisotropy correction factor A−0.37 is omitted (since the anisotropic factor is
also included in the average dislocation contrast factor C̄111), the above expressions
are modified to

γ = 21f(χ) mJm−2 , (10)
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γ = 21 ln(Re/L) mJm−2 . (11)

It is clear that from the above Eqs. (7 – 9) if L = Re/2 (L = Re does not provide
an acceptable value of γ), systematically lower value of γ are obtained.

Table 2 contains also the value of the stacking-fault energy calculated from
Eq. (4). The uncertainty of Eq. (3) is the value η, which depends on the type of
dislocations. For pure-edge and screw dislocations, the value of γ comes out to be
85 mJm−2 and 50 mJm−2, respectively. In cold worked copper sample, the type
of dislocations present is governed by the factor q (Table 1). The value of q is
2.34, which is equivalent to 75% screw and 25% edge-type dislocations. Assuming
the value of η to be linearly dependent on the type of dislocation, the value of
γ is found to be 58 mJm−2. It is worth comparing the results obtained in the
present investigation with other experimentally observed values. Table 3 lists the
range of γ values. The experimental values are obtained from an extrapolation
of those obtained for cold-worked alloys. To estimate SFE of copper and those
of the copper alloys with e/a ≥ 1.10, extrapolation from the values which could
be measured (i.e. of alloys with large e/a) were used by several workers and two
methods of extrapolation have been suggested: in the first a monotonically rising
curve with decreasing e/a is assumed by Howie and Swann [11] which can lead
to the value for γCu of the order of 70 mJ/m2 [12]. In the second case, based on
the extrapolation methods of Gallagher [13] and Liu and Gallagher [14], using the
experimental results of Nordstrom and Barret, the stacking fault energy γCu was
found to be 50 mJ/m2 [12].

TABLE. 3. Literature values of γ.

γ (mJm−2) Method

18 Theoretical (tight binding) [15]

45 Experimental [16]

55 Experimental [13]

62 Experimental [6]

It is clear from Table 3 that a reasonably good agreement can be observed for
the simplest modified Smallman-Westmacott Eq. (4), provided the true dislocation
density and the dislocation type factor can be determined from microstructural
modeling.

The value of γ obtained from Eqs. (8) – (11) (modified Reed-Schramm equa-
tion) are reasonably close to the theoretical value of γ obtained from tight-binding
approach.

4. Conclusion

A new method has been developed by modifying the existing Reed-Schramm
method and Smallman-Westmacott method for the determination of stacking fault
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energy γ for pure metals and alloys. It is clear that microstructural modeling plays
a vital role in the determination of γ and it is established from the value of Cu.
In the present communication, the results are obtained from the measurement of
dislocation density and stacking fault probability on cold-worked metallic copper.
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NOVA METODA ZA ODRED– IVANJE ENERGIJE GREŠAKA SLAGANJA U
ČISTIM METALIMA PRIMJENOM RENTGENSKE DIFRAKCIJE

Izvješćujemo o novoj metodi za odred–ivanje energije grešaka slaganja (SFE) u čistim
metalima primjenom rentgenske difrakcije. Dosadašnje metode za izračunavanje
SFE trpe zbog jednostavnih pretpostavki o raspodjeli i vrsti dislokacija u uzorku.
Nova metoda se zasniva na modelu polja naprezanja dislokacija, pretpostav-
ljajući ograničivajuću slučajnu raspodjelu dislokacija. Metodu primjenjujemo za
izračunavanje SFE plastično deformiranog bakra i ishodi su vrlo blizi onima koji
su postignuti izravnim metodama mjerenja, kao što je TEM.
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