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ABSTRACT
In traditional financial studies, existing approaches are unable to
address increasingly complex problems. In this paper, an artificial
financial market is proposed, in accordance with the adaptation
market hypothesis, using artificial intelligence algorithms. This
market includes three types of agents with different investments
and risk preferences, representing the heterogeneity of traders.
Genetic network programming is combined with a state-action-
reward-state-action (SARSA)(k) algorithm for designing the market
to reflect the adaptation of technical agents. A pricing mechanism
is taken into consideration, based on the auction mechanism of
the Chinese securities market. The characteristics of price time
series are analyzed to determine whether excessive volatility
exists in four different markets. Explanations are provided for the
corresponding financial phenomena considering the hypotheses
under the proposed novel artificial financial market.
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1. Introduction

The fundamentals of financial theories are based on two important assumptions: the
rational economic man and the general equilibrium theory. Based on these assump-
tions, several theories have been proposed to answer key questions in this field. The
results of these studies have contributed to the development and clarified the internal
logic of economics, as well as provided comprehensive explanations for some economic
problems. However, traditional financial theories cannot accommodate all solutions in
finance. Therefore, in the search for appropriate methods to explain emerging financial
phenomena, several novel theories have been proposed, among which behavioral
finance and agent-based computational economics (ACE) are the prominent ones.

ACE is a bottom-up approach that uses computational techniques to simulate eco-
nomic environments. To explain financial phenomena at a macroeconomic level, agent-
based approaches set specific characteristics of an economic environment, referred to as
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agents, on a microeconomic level. In this study, the basic idea of ACE is adopted to cre-
ate an artificial stock market (ASM) with the help of evolutionary computation and
reinforcement learning. The ASM model is subsequently used to study how market
forces impact price trends. There are three types of agents (traders) in our ASM: funda-
mental traders, noise traders, and technical traders. This study focuses on comparing the
forces between the three types of traders and their influence on stock price changes.

The motivation for this paper arises from our previous research on genetic network
programming (GNP), a new optimization method derived from genetic algorithms. The
previous research results demonstrated the method to be useful and efficient in many
different research areas, such as data mining and stock market prediction. In this study,
these research findings are applied to ASM and some interesting results are obtained.

The remainder of the paper is organized as follows: in Section 2 the related
literature is reviewed; in Section 3 the structure of GNP with state-action-reward-
state-action (SARSA) (k) learning is briefly introduced and applied to stock market
prediction; in Section 4 the ASM is discussed, combined with GNP; and in Section 5
the simulation results and analyses are presented. Conclusions and future work are
discussed in the last section.

2. Literature review

In an attempt to probe the mechanisms underlying financial markets, the agent-based
stock market is considered a part of computational economics. This bottom-up
method focuses primarily on the actions of microeconomic agents. Unlike traditional
financial methods, ASM analyzes the behavior of the agents, such as their learning,
evolution, and interaction with each other. ASM takes into consideration the changes
in the agent’s characteristics at the micro-level of the market to study the impact on
the entire financial market at the macro-level. Numerous studies in related research
areas have been conducted since the 1990s, such as the agent-based model introduced
by Zare et al. (2021), which estimates the parameters of a limit order book (LOB)
market with a price limit. LeBaron (2006) and Hommes (2006) conducted a compre-
hensive review of all relevant research.

In practice, the newly emerging agent-based stock market is complementary to
traditional financial theories. Existing models in empirical financial studies are based
on numerous complicated mathematical and statistical methods. However, anomalies,
such as excess volatility and irrational behavior, are increasingly encountered in
emerging financial markets, which present a challenge to traditional financial theories.
Traditional methodologies are not well-placed to solve these emerging problems. To
overcome the disadvantages of traditional theories, Levy et al. (2000) introduced
dynamic models with heterogeneous investors who learn and evolve by themselves.
Bertschinger and Mozzhorin (2021) proposed Hamiltonian Monte Carlo, an efficient
and scalable Markov chain Monte Carlo algorithm, as a general method for the
Bayesian inference of agent-based models. Chakole et al. (2021) proposed two differ-
ent ways to represent the discrete states of the environment and trained the trading
agent using the Q-learning algorithm of reinforcement learning to determine the opti-
mal dynamic trading strategies.

5038 Y. CHEN ET AL.



Several models of an artificial financial market (AFM) have been proposed to dis-
cuss different research problems, raising the difficult question of finding a way to dis-
tinguish between the models. According to LeBaron (2006), agent-based financial
markets can be classified into three categories: few-type models, dynamic models
under learning, and emergence and many-type models. Few-type models were pro-
posed early on in AFM research (Frankel & Froot, 1986; Kirman, 1991; MacDonald
et al., 1994). In these models, agents usually follow two different strategies, called the
‘technical’ and ‘fundamental’ strategies. The ‘technical’ strategy usually assumes that
history repeats itself. By analyzing historical trends and patterns in the data, agents
predict future trends. The ‘fundamental’ strategy is a more complicated way of deter-
mining the internal values of securities. If agents find a bias between the internal
value and the face value, an opportunity develops.

Dynamic models under learning often overlap emergence and many-type models.
The former often includes a dynamic learning process. A genetic algorithm (GA) is
the most common evolutionary method (Huang et al., 2021; Routledge, 2001; Sargent,
1993). In Lettau’s (1997) model, a GA was used to find the optimal portion of high-
risk and risk-free assets. Arifovic and Masson (2000) constructed a two-country, two-
period, overlapping generation model of foreign exchange rates. A GA was used to
explore the question of whether the exchange rate will converge to a single value.

Emergence and many-type models try to determine the expected strategy in a
dynamic environment and whether a market can evolve into an efficient market
(Song et al., 2021; Wang et al., 2021, Yao et al., 2021). The most famous model of
this type is SFI-ASM (Arthur et al., 1996; LeBaron et al., 1999). Chen and Yeh (2001)
proposed an ASM which used genetic programming (GP) as a prediction method for
the price, and established a knowledge base, called a business school, to store the GP
rules. This model also imposes adaptation strategies on the agents, such as whether
the agents will change their strategies or hold on to the same strategy. This model,
however, does not consider the GA or GP methods for the evolution of the agents. In
other words, the agents are not GA or GP-based. Joshi et al. (1999) explored the
interaction between technical and fundamental traders.

GNP can be viewed as an extension of GA and GP (Eguchi et al., 2006). The struc-
ture of GNP is discussed in detail in the next section. GNP uses a graphical structure
to present solutions and has already been demonstrated as an efficient method for solv-
ing complicated problems. For example, Chen et al. (2007, 2009a, 2009b) used GNP to
optimize an investment portfolio and to determine trading strategies. In addition, GNP
has been used as a creative and fast method for association rule mining problems,
which are well-known in data mining research. There are also the SARSA(k) reinforce-
ment learning algorithms, which play an important role in determining appropriate
paths in structures constructed by evolution, as discussed in this paper.

3. Trading strategy using GNP with a SARSA(k) algorithm

3.1. GNP structure

At the start of the evolutionary computation, the GA uses a binary array to present
solutions to the problem. GP proposes a tree structure, whereas GNP, as an extension
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of the GA and GP, employs a graphically directed structure to present more complex
solutions to the posed problems. A complete GNP structure has three types of nodes:
starting nodes, judgment nodes, and processing nodes. These three types of nodes are
connected by directed edges. Figure 1 displays the structure of GNP:

The function of the starting node, as implied by the name, is where the GNP pro-
cess begins. A judgment node uses an if-then function to select the next node. The
processing nodes are used to arrive at a decision. Ki represents the node type; Ki ¼ 0
denotes a starting node; Ki ¼ 1 denotes a judgment node; and Ki ¼ 2 denotes a proc-
essing node.

In addition, the judgment and processing nodes usually have an inner sub-node
structure, as illustrated in Figure 2. There are two sub-nodes in both, the judgment
and processing nodes. The sub-nodes within the judgment node select the next node,
and each sub-node can only contain one function. The sub-nodes in the processing
node generate decisions. For each sub-node in a judgment or processing node, the Q-
value decides the node to be selected next. The Q-value indicates the ‘state’ of the
node; for instance, in the judgment node in Figure 2, the sub-nodes IDi1 and IDi2

have their own Q-values of Qi1 and Qi2, respectively. The sub-node with the highest
Q-value is selected. If node IDi1 is selected, the judgment node is in state IDi1:

During the refinement of GNP passing through the judgment node i, the sub-node
IDi1 will be selected. The Q-value of a processing node is the same as that of a judg-
ment node. The Q-value of each node is determined by SARSA(k) reinforcement
learning, as discussed in detail later. Another useful parameter is the A-value that
exists only in the processing node and has the decision-making function. During the
evolution of GNP, the A-value is calculated for each state. Subsequently, based on
whether the A-value is higher or lower than the threshold, a decision is made (buy or
sell). If the condition is not satisfied, the next node is selected.

Figure 1. Basic GNP structure.
Source: drawn by authors with the help of R software.
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To control the number of nodes to be included during refining, a parameter called
the time delay di is introduced. There are three types of time delays in our model:
the time delay during the transition from one node to the next, the time delay in the
judgment node, and the time delay in the processing node. Here, the time delay
between nodes is set to zero; the delay at the judgment node is set to one unit; and
the delay at the processing node is set to five units. Subsequently, the maximum unit
time for the refining process is set to five. When the refining process takes more than
five units to complete, it is terminated. Therefore, the maximum number of judgment
nodes is five; thus, only one processing node can be included within a single process.

3.2. Evolution process of GNP

As in the GA or GP, one GNP population includes a predefined number of GNP
individuals. Each GNP individual represents a solution to the problem. Based on the
fitness value of each individual, better individuals are more likely to be selected as the
parents of offspring individuals. Crossover and mutation are used as the evolu-
tion operators.

The crossover operator selects two GNP individuals and then exchanges their
nodes, as illustrated in Figure 3. The node for any particular GNP individual is

Figure 2. Inner structure of judgment and processing nodes.
Source: drawn by authors with the help of R software.
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selected with probability pc, and a new individual is generated by this operator as the
next generation.

The mutation operator can alter the structure of GNP. When one of the GNP
individuals is selected, three types of mutations can be executed: connection change,
parameter change, and node function change. As shown in Figure 4, a connection
change results in a connection, which is selected with the probability pm of being
reconnected to another node. In a parameter change, the Q-value of a sub-node
selected with probability pm will be altered. A node function change alters the func-
tion of the selected sub-node.

3.3. Reinforcement learning: SARSA(k) algorithm

SARSA is a popular on-policy temporal difference control learning algorithm that has
been widely used in several control tasks. This algorithm has a performance superior
to that of off-policy algorithms when the space of all possible actions is low-dimen-
sional and discrete. As an on-policy algorithm, it updates function values strictly on
the basis of the experience gained from executing some policy. The update function
of the SARSA algorithm is defined as follows:

Figure 3. Illustration of the crossover operator.
Source: drawn by authors with the help of R software.
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Qðs, aÞ  Qðs, aÞ þ a r þ cQðs0, a0Þ � Qðs, aÞ� �
,

where s0 is the next state and a0 is the next action.
Eligibility traces are basic mechanisms of reinforcement learning. They not only

bridge temporal difference (TD) methods to Monte Carlo methods, but also mark the
memory parameters associated with the eligible event to undergo learning changes.
Therefore, from a reverse perspective, an eligibility trace is a temporary record of the
occurrence of an event. Almost any temporal difference method, such as Q-learning
or SARSA, can be combined with eligibility traces to obtain a more general method
that learns more efficiently. The eligibility trace version of SARSA will be called
SARSA(k). The main idea of SARSA(k) is to apply the TD(k) prediction method to
state-action pairs rather than to states. Thus, a trace is needed not only for each state,

Figure 4. Illustration of the mutation operator.
Source: drawn by authors with the help of R software.

ECONOMIC RESEARCH-EKONOMSKA ISTRAŽIVANJA 5043



but also for each state-action pair. SARSA(k) is an on-policy algorithm, implying that
it approximates Qpðs, aÞ, the action values for the current policy p, and then
improves the policy gradually based on the approximate values for the current policy.
The update rule of the SARSA(k) algorithm is defined as follows:

Qtþ1ðs, aÞ  Qtðs, aÞ þ etðs, aÞdt ,

where

dt  a rtþ1 þ cQtðstþ1, atþ1Þ � Qtðst , atÞð Þ:

a is the learning rate; the eligibility traces eðst , atÞ of all state-action pairs at time-step
t can be defined as:

etðs, aÞ  cket�1ðs, aÞ þ 1 if ðs, aÞ ¼ ðst, atÞ
cket�1ðs, aÞ otherwise

for 8s 2 S, 8a 2 AðsÞ:
�

For more details, the standard version of this algorithm with the aforementioned
eligibility traces is illustrated in Algorithm 1.

Algorithm 1. The SARSA(k) Algorithm with Eligibility Trace Replacement
Initialize Q(s, a) arbitrarily and eðs, aÞ ¼ 0 for all s, a;
repeat {for each episode}
Initialize s;
Choose a from s using policy derived form Q;
repeat {for each step of episode}
Take action a, observe reward r, s0;
Choose a0 from s0 using policy derived form Q;
d r þ cQðs0, a0Þ�Qðs, aÞ;
eðs, aÞ ¼ 1 {replacing traces};
for all s, a do

Qðs, aÞ  Qðs, aÞ þ deðs, aÞ;
eðs, aÞ  ckeðs, aÞ;

end for
s s0, a a0;

until state s is terminal
until

3.4. Trading strategy in GNP combined with SARSA(k) learning

To determine an appropriate and effective trading strategy, the basic structure of
GNP must be adjusted. In this section, GNP is combined with the SARSA(k) algo-
rithm to construct an optimal strategy superior to other traditional methods.

3.4.1. Judgment node functions
The functions within judgment nodes are defined according to the trading strategies
applied during daily transactions. In this study, six indicators were selected for the
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functions: moving average (MA), relative strength index (RSI), rate of change (ROC),
volume ratio, gold cross, and moving average convergence and divergence (MACD)
cross. Each of these indicators can be calculated using the closing price over a long
or short time period. For example, MA can be calculated using 5 days, 13 days, or
26 days of data. Each technical indicator has its own importance index (IMX) func-
tion, which is used to select the next node.

As shown in Figure 5, the x-axis of each chart denotes the index value, and is split
into several segments, which are used to select the next node. The y-axis denotes the
IMX value, which is a function of the index. IMX is used for the processing node. To
illustrate the complete process, consider the following example: if the function in the
judgment node is the ROC, and the value of this index is 1.2, according to the IMX
chart, the judgment result is C and the IMX value is 1. Then, the next value is Cc

i1,
and the IMX value is stored to calculate the A-value.

3.4.2. Processing node
The processing node is used for making decisions. The procedure is illustrated in Figure 6.

1. Before arriving at the processing node, several IMX values were already stored
while passing through the judgment node. If the current node is the processing
node, then the A-value is calculated by averaging the IMX values:

At ¼ 1
jI0j

X
i02I0

IMXðI0Þ,

where I0 is the judgment node set, which includes the previously visited node. i0 is
the judgment node in I0:

1. The A-value is compared to the threshold to determine whether to buy or sell. If
the current sub-node is a buying node, At � aip, and money is available, then a
buying decision can be made. Otherwise, no action is taken. If the current sub-
node is a selling node, At < aip, and stock is available, then a selling decision can
be made. Otherwise, no action is taken.

Figure 5. IMX function.
Source: drawn by authors with the help of R software.
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2. The procedure keeps transferring to the next node until the time limit
is exceeded.

3.5. Brief explanation of the GNP-SARSA(k) trading strategy

As the details of the GNP-SARSA(k) learning model and the associated trading strat-
egy have been introduced, the overall GNP-SARSA(k) method is discussed.

The GNP-SARSA(k) algorithm can be considered a ‘technical’ method of trading. It is
different from traditional methods because it combines several common indicators, while
traditional methods usually include only one indicator. A trading strategy based on the
GNP-SARSA(k) algorithm can combine evolutionary and reinforcement learning meth-
ods to find optimal solutions to the model, that is, to determine the optimal strategy for
trading. The strategies are stored during the training period and subsequently used to
guard the trading, in particular, those of the agents in the ASM in this study.

4. Agent-based stock market model

4.1. Model of agents

In this study, the artificial market includes three types of agents: rational agents, tech-
nical agents, and noise agents. Each type of agent has its own wealth, risk preference,
and predictive model. Adopting the assumption in the research of Chen and Yeh
(2001) that all investors have the same constant absolute risk aversion utility func-
tion,

UðWiÞ ¼ � exp ð�xiWiÞ,

where Wi and xi are the wealth and risk aversion coefficient of agent i, respectively.
The agent’s wealth is composed of two types of assets: money (mi) and stocks (Si);
thus the wealth of each agent at time t is Wi, t ¼ mi, t þ Si, t � pt: Under the normal

Figure 6. An example of node transition.
Source: drawn by authors with the help of R software.
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distribution assumption of stock price and dividends, the optional position of the risk
assets is posit ¼ Eðptþ1, ijItÞ=pt�1�r

xir2
t

:

4.1.1. Rational agents
A rational agent believes that the expected price of the stock is decided by the divi-
dend discount model (DDM). The rational stock price is the discount of these future
dividends based on the DDM:

Eðptþ1, ijItÞ ¼ dt=r
xi

,

where ptþ1, i is the ith agent’s expectation of the price at time tþ 1; It contains all the
information in period t; r is the constant cost of equity capital; and xi is the agent’s
risk aversion coefficient. The risk aversion coefficient is introduced in the DDM to
reflect the impact of risk preference on price expectation. dt is the dividend in period
t, and it follows a random walk process, namely dt ¼ adt�1 þ et , where et are i.i.d.
random variables each with zero mean and variance r2

t :

In each period, rational agents can obtain the dividend information on the stock
and can calculate the rational price of the stock and the optimal position for their
own risk assets. Upon comparing their optimal position with the current position,
they buy or sell the stock at the predicted price to satisfy the optimal position.

4.1.2. Technical agents
Technical agents usually use historical market data to forecast the trend of the price.
Common indicators such as the RSI and MACD are used to determine the trading
strategy. As introduced in the previous section, the GNP model can be thought of as
a technical method for investors. The advantage of using a GNP model for the trad-
ing strategy is that it not only combines model indicators, but also specifies thresh-
olds for trading.

Moreover, as with the GA and GP models, GNP also has evolution features to
describe the adaptation of the agents. These advantages render GNP suitable for
agents who use technical analysis in the proposed artificial market.

4.1.3. Noise agents
The existence of noise traders has been shown in many previous studies. Noise trad-
ers are irrational investors who do not adopt common stock pricing methodologies,
technical analysis methods, or portfolio optimization. In this study, the definition of
Black (1986) is adopted for noise traders: such investors, with no access to inside
information, irrationally act on noise as if it were information that would give them
an edge. Under this definition, it is assumed that a noise trader has a biased expect-
ation of the stock price (De Long et al., 1990), that is, the bias of the expected price
follows a normal distribution with constant variance:

qt�Nðq�,r2
qÞ:
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Thus, the expected price can be described as

EðPn
tþ1Þ ¼ EðPtþ1Þ þ qt ,

where EðPn
tþ1Þ is the expected stock price of noise traders, and EðPtþ1Þ is decided by

the DDM.

4.2. Model of the pricing mechanism

The pricing mechanism is also an important factor in the series data of the stock
price and the returns for each agent. In some papers, the pricing mechanism is called
a specialist. It collects bids, offers a price and volume, and then chooses a knockdown
price. The knockdown price reflects the demand and supply of the market. Four types
of mechanisms were proposed in early research (LeBaron, 2006). These mechanisms
were: temporary market equilibrium, price impact function, order book, and match-
ing. In this study, a pricing mechanism referred to as call auction was used. With call
auction, after each agent bids a price and direction, the mechanism collects all bids
and chooses a knockdown price that satisfies several conditions. In this study, the
condition was imposed to maximize the trading volume. This pricing mechanism is
used to choose the start price of each day’s trading in the Shanghai and Shenzhen
Exchanges. The process of this mechanism is: (1) collect all bids in the buying/selling
direction; (2) order all bids by their bid price; (3) check each price in the orders, and
find out how much trading volume can be achieved at each price (the achievable
trading volume is the minimum aggregate volume in the buying and selling direc-
tions); and (4) choose the price which can achieve the maximum trading volume.
This mechanism can be represented by the formula:

p ¼ argfmax
pc2h

minð
X
pi�pc

hb, pi ,
X
pj�pc

hb, pjÞg,

where h is the set of all call prices; hb, pi is the share at price pi to buy; hs, pj is the
share at price pj to sell; and pc is the price in the price set h.

4.3. Model of agent adaptation

In the proposed model, adaptation of the agents is represented by changing their pre-
dictive method. Chen and Yeh (2001) assumed that each agent changes the predictive
model with a certain probability, given by pi, t ¼ Ri, t

N , where Ri, t is the rank of the
agents in order of returns. Thus, the traders who are ranked at the top have a lower
probability of changing their model. However, this setting assumes that agents can
get other agents’ returns instantly, an assumption which we think does not reflect
reality. Because the agents’ returns are stored as private information, they will not
share this information with other agents; hence, the rank Ri, t is in fact unavailable. In
this study, it is assumed that rational agents and noise agents never change their pre-
dictive method, but that the technical agents check the returns of the current predict-
ive method according to the GNP strategy. Agents can check the returns of the GNP
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strategy held in the past n days. The return is r ¼ Wt, i�Wt�n, i
Wt�n, i

: Each agent has an
expectation that the return follows the expression rei ¼ rf þ hr, where rf is the risk-
free rate and hr is the risk premium for the risk asset, which can be approximated by
hr�Nðkrf ,rrÞ: The parameter k is specified to control the risk premium. If the return
of the current GNP strategy is below expectations, then k is used to compare the
returns of the current GNP strategy with those of other alternative GNP strategies,
until a GNP is found that is higher than the agent’s expectation. After that, agents
use the newly assigned GNP strategy as their predictive method.

4.4. Knowledge base of GNP

In this study, the GNP strategies are stored in a knowledge base, which can easily be
accessed by technical agents. This knowledge base dynamically updates during trans-
actions. The GNP strategies are updated every n periods with the latest price and vol-
ume data. Each agent can use the newly generated GNP strategies after they are
added to the knowledge base. This dynamical updating can also be considered as a
type of agent adaptation.

5. Simulation design and result analysis

Different expectations of risky assets form the relationship between transaction supply
and demand for traders in the financial market. In an ASM, each type of agent holds
a different expectation, and even those of the same type have different risk preferen-
ces. The following problems will be discussed through simulations for this
novel model:

1. The first problem is the character of the generated price time series in the ASM.
Does the price and return series follow a normal distribution? Does it have a
heavy tail?

2. The second problem is regarding how a change in market forces impacts the
market. Do changes of forces lead to more volatility?

5.1. Simulation design

Simulation design usually refers to the setting of the elements (agents, pricing mech-
anism, and so on) in an ASM. This set includes the agents’ characteristics such as
their assets, risk preferences, and predictive methods. The settings for the market
include the number of each type of agent, the risk-free rate, and the total trading
days. In this study, there is an extra setting for the GNP-SARSA(k) model. These
important parameters, which were carefully tuned to ensure a smooth running of the
market, are listed in Table 1.

To establish a GNP knowledge base, real price series data are used to generate
GNP strategies. To ensure typical strategies, Shanghai A-Stock Exchange Index and
trading volumes were used for the training data. The period of data ran from January
4, 2013 to December 30, 2016. In total, 500 GNP strategies were generated for the
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initial knowledge base. Agents could choose and compare GNPs as their predic-
tion models.

To study the influence of the changes in market forces, four experiments were sep-
arately conducted. Each experiment was executed for 2000 trading days. The gener-
ated stock prices, bonus, and the holding of each agent were recorded in text files.
The data from the first 500 trading days were dropped to allow time for transition
into a smooth state. The remaining 1500 trading days were used for the research.

5.2. Simulation result and analysis

5.2.1. Character of price series data
To answer the first question, the characters of price series data in four experiments
were tested. Each of these four experiments presents different forces with a different
number of agents in the market. For example, in the balanced-forces market, the
number of each type of agents is equal; in our experiment, 400 agents of each type
were used. In the noise-agent-dominated market, the number of noise agents is much
larger than the other two types of agents; in our experiment, there are 1000 noise
agents, 100 technical agents, and 100 fundamental agents. The technical-agent-domi-
nated market and fundamental-agent-dominated market are arranged, similar to the
noise-agent-dominated market.

Figures 7 and 8 show the price and return time series data of the four types of
markets. Tables 2 and 3 present descriptive statistics for these four prices and return
time series.

Figure 7 shows the price trends in the four types of markets. It is clearly observed
that the balanced-forces market and the technical market have similar trends, indicat-
ing the influence of technical agents on market price trends. Table 2 displays the
descriptive statistics and tests for normality. In this study, three methods for testing
normality show that the price time series data in these four scenarios do not follow a
normal distribution.

The return series is derived from rt ¼ ln ðPtÞ� ln ðPt�1Þ: It can be observed in
Figure 3 that none of the four normal testing methods are normally distributed.
Furthermore, a heavy tail is illustrated by the kurtosis statistic results. In the

Table 1. Parameter settings.
Parameters Value Parameters Value

Noise traders 400/1000/100/100 Technical Traders 400/100/1000/100
Fundamental traders 400/100/100/1000 Risk-free rate 0.03
Alpha (dividend process) 1 Sigma (dividend process) 0.001
Rho (noise agent) N(0,0.1) Lambda 0.1
Theta (agent adaptation) N(0.003,0.000001) Days of changing the model 20
Initial money of agent 20000 Initial shares of agent 1000
Risk aversion N(1,0.001) Number of GNPs 500
Alpha (Sarsa(k)) 0.1 Gamma (Sarsa(k)) 0.4
Lambda (Sarsa(k)) 0.9
GNP parameters Value GNP parameters Value
Number of individuals 300 Judgment Node 30
Process node 20 Number of Subnodes 2
Crossover rate 0.2 Mutation rate 0.3

Source: calculated by authors via R software.
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balanced-forces market, noise-agent-dominated market, and technical-agent-domi-
nated market, the kurtosis is much larger than three, which is associated with a nor-
mal distribution. The kurtosis value of the fundamental-agent-dominated market is

Figure 7. The price time series of the four market types.
Source: drawn by authors with the help of R software.

Figure 8. The return time series of the four market types.
Source: drawn by authors with the help of R software.
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modestly smaller than those of the other three market types while displaying some
type of heavy-tail characteristic.

5.2.2. Impact of changing market forces
As described previously, this research considers four types of markets. Three of the
markets are dominated by one type of agent. In the fourth market, the forces of
agents are equal. This research also focuses on the impacts of price variation. Figure
9 shows the price and bonus trends in the four markets.

First, the fundamental-agent-dominated market is considered. In this type of mar-
ket, fundamental agents determine the bonus series of the risk assets and the real
price of the risk assets by the dividend discount model. The only differences between
agents are their risk preferences, which impact the optimal position of their risk
assets. In Figure 9, it is clear that the price series and bonus series have a high correl-
ation. For the domination of fundamental agents, the price trend cannot significantly
differ from the bonus trend.

Table 2. Descriptive statistics of price for the four price time series.

Statistics types Balance forces
Noise

agent dominant
Technical

agent dominant
Fundamental

agent dominant

Mean 21.09 15.50 21.58 13.54
Sigma 2.11 2.65 1.96 2.85
Skewness 0.73 0.63 0.82 0.33
Kurtosis 3.74 3.02 3.66 2.27
Shapiro-Wilk Stat 0.97 0.969 0.958 0.975

P-value < 0.0001 < 0.0001 < 0.0001 < 0.0001
Kolmogorov-

Smirnov
Stat 0.06 0.07 0.08 0.05

P-value < 0.0100 < 0.0100 < 0.0100 < 0.0100
Cramer-

von Mises
Stat 1.79 2.35 3.13 1.47

P-value < 0.0050 < 0.0050 < 0.0050 < 0.0050
Anderson-Darling Stat 11.10 14.05 18.24 10.05

P-value < 0.0050 < 0.0050 < 0.0050 < 0.0050

Source: calculated by authors via R software.

Table 3. Descriptive statistics of return for the four price series.

Statistics types Balance forces
Noise

agent dominant
Technical

agent dominant

Fundamental
agent

dominant class

Mean �0.000023 0.000116 �0.000014 �0.000335
Sigma 0.059975 0.065549 0.058708 0.038028
Skewness �0.026452 �0.049936 �0.046583 0.024956
Kurtosis 4.611933 5.304814 5.119004 3.376879
Shapiro-Wilk Stat 0.99 0.96 0.98 1.00

P-value < 0.0001 < 0.0001 < 0.0001 0.03
Kolmogorov-

Smirnov
Stat 0.03 0.08 0.03 0.02

P-value < 0.0100 < 0.0100 < 0.0100 0.05
Cramer-

von Mises
Stat 0.40 3.66 0.43 0.20

P-value < 0.0050 < 0.0050 < 0.0050 0.01
Anderson-Darling Stat 2.62 20.36 3.18 1.04

P-value < 0.0050 < 0.0050 < 0.0050 0.01

Source: calculated by authors via R software.

5052 Y. CHEN ET AL.



The noise-agent-dominated market is the same as the fundamental-agent-domi-
nated market; the price series is close to the bonus series, but it varies more than that
of the fundamental-agent-dominated market. This can be attributed to the design of
the noise agent. The difference between a noise agent and a fundamental agent is that
there is a bias (qt) in the expectation of price for a noise agent. The bias follows a
normal distribution qt�Nðq�,r2

qÞ:
For the technical-agent-dominated market and the balanced-forces market, the

situation changes. Figure 9 shows that price trends have their own pattern and are no
longer related to the bonus. The similarity between these two price trends indicates
that technical agents play an important role in price generation.

To measure the correlation between price and bonus trends in these four markets,
the linear correlation coefficients were calculated. Table 4 shows the results. From
this table, the conclusion can be drawn that there is a strong relationship between
price and bonus trends in markets dominated by fundamental agents and noise
agents. However, the relationship is very weak in the other two markets.

There is significant research proving that excess volatility exists in financial mar-
kets. For instance, Shiller (1981) proposed a relationship between the volatility of
price and dividends. In this study, our focus is on how changes in market forces
impact excess volatility, for which two steps are proposed. The first step is to prove
that excess volatility exists in ASM price series. Based on the results, the second step
is to test whether there is a difference in the excess volatility between these
four markets.

Figure 9. Trends of prices and bonuses in the four markets.
Source: drawn by authors with the help of R software.
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The basic method of this research is similar to the one used by Shiller (1981). The
real price is obtained from the dividend series using pdt ¼ dt=rf : Assuming that the
risk-free rate rf is constant, dt is a random walk process. Next, the 1500 trading days
are separated into 30 periods. Each period includes 50 trading days. The volatilities of
pt and pdt in each period are calculated. Finally, analysis of variance (ANOVA) meth-
ods are used to test whether there is a distinct difference in volatility between pt
and pdt :

The ANOVA analyses for these four markets reject the hypothesis of no difference
in volatility between pt and pdt , as shown in Table 5, implying that there are signifi-
cant differences between the volatilities of pt and pdt : Therefore, in these four types of
markets, the volatility of the market price (pt) is significantly larger than the dividend
discount price (pdt ), which proves the existence of excess volatility.

In the second step, ANOVA calculates the difference in excess volatility in these four
markets. Because the dividend series in each market arise from different random proc-
esses, the volatility ratio between the ASM and DDM prices is used to remove these
effects; that is ji, t ¼ ri, pt=ri, pdt

, where ri, pt is the volatility of the ASM price and ri, pdt
is the volatility of the DDM price. The ANOVA results of ji, t are displayed in Table 6.

The results in Table 6 show that the p-value is larger than the 5% confidence level,
implying that the null hypothesis cannot be rejected. This also implies that there is
no significant difference in volatility among these four markets.

This result is expected; the first step of this study already proved the existence of
excess volatility in all four markets, including the markets in which fundamental agents
do not dominate. This indicates that excess volatility does not arise only from the divi-
dend process, which is an unstable random walk. A fundamental cause of excess volatility
is the difference in the beliefs or expectations of agents regarding the stock price.

Table 4. Correlation between price and bonus trends.
Balanced forces Noise agent Technical agent Fundamental agent

Dominant Dominant Dominant
Coefficient 0.070 0.553 0.031 0.983

Source: calculated by authors via R software.

Table 5. ANOVA analysis of excess volatility.
Source DF Sum of squares Mean square F value Pr >F

Panel A: Balanced forces market
Model 1 2.686 2.686 16.330 0.000
Error 58 9.543 0.165
Corrected total 59 12.229
Panel B: Noise agent dominated market
Model 1 3.634 3.634 15.690 0.000
Error 58 13.433 0.232
Corrected total 59 17.068
Panel C: Technical agent dominated market
Model 1 1.610 1.610 11.330 0.001
Error 58 8.243 0.142
Corrected Total 59 9.853
Panel D: Fundamental agent dominated market
Model 1 1.022 1.022 6.040 0.017
Error 58 9.822 0.169
Corrected total 59 10.845

Source: calculated by authors via R software.
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6. Concluding remarks

An efficient GNP-SARSA(k) algorithm for an agent-based artificial financial market
was presented and three assertions were evaluated.

First, an ASM with three types of agents was established to study how belief affects
stock price trends. The three types of agents consisted of fundamental, technical, and
noise agents. Each type of agent was designed with a predictive model for the stock
price. This predictive model can be regarded as the beliefs or expectations of the
agents themselves. Technical agents represented the traders who use candle charts
and other indexes to trade stocks. GNP was also introduced to build a knowledge
base for technical agent trading. GNP provides a key advantage in evolutionary fea-
tures that can be used for agent adaptation.

Second, price trends affected by the market domination of different agents were
studied through simulations. It was determined that technical agents can influence
the price to deviate from the real price decided by the DDM. However, the price
trends in noise-agent-dominated markets and fundamental-agent-dominated markets
still approached the real price.

Finally, our ASM was tested for the existence of excess volatility and compared for
the four types of markets. The results indicate that the excess volatility is not signifi-
cantly different in any of these markets. The difference in expectation is the reason
for the excess volatility in price.
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