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Under the travelling-wave transformation, Getmanou equation is reduced to a
second-order ordinary differential equation. According to the complete discrimi-
nation system for polynomials, we obtain all single travelling-wave solutions to
Getmanou equation.
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1. Introduction

There are many methods to find exact travelling-wave solutions to nonlinear
partial differential equations. An important aim is to find all single travelling-
wave solutions to some equations. For example, using dynamic system method,
all travelling-wave solutions to some equations can be analyzed in detail [1,2]. On
the other hand, in a series papers [3—9], Liu introduced the complete discrimina-
tion system for polynomials to give the classifications of all single travelling-wave
solutions to many nonlinear mathematical physics equations. According to Liu’s
method and other methods, Wang and Li [10] had further studied travelling-wave
solutions to some nonlinear equations, and Yang [11] gives all envelope travelling-
wave solutions to DaveyStewartson (DS) equation.

In the present paper, we study the Getmanou equation [12]. Using the complete
discrimination system to the fifth-order polynomial, we give directly the classifica-
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tion of all single travelling-wave solutions. It would be difficult to discuss all values
of parameters in Getmanou equation in detail.

2. Classification

The Getmanou equation reads

—u(l—u?) =0. (1)

Taking the travelling-wave transformation as v = u(§), £ = kx + wt, Eq. (1) is
reduced to the following ODE

1
1—u?

Wy + =Y g, ®

1
u kw

which has the general solution given by

(&) = dv
| /¢z+1[c;/u<uﬂ>

where C' and &y are two arbitrary constants. We give the classification of all single
travelling-wave solutions to equation (1) as follows.

bl

u+1’du]

u —

Case 1. If u > 1 or u < —1, the integral (3) becomes

5—50:/ u+1 d
V2kw —(u+1)P+ 2u+1)4 = S(u+ 1) +du+1)—2d

+ u, (4)

where d = 2ka—%.

Case 1.1. d = 0. Then the corresponding integral (4) is

§—%o du
+ = : (5)
2kw /(u+1) (1 —u)(u— 1)

Because the radical has no sense, Getmanou equation has no solution.

Case 1.2. d#0. Denote F(v) = v° + pv3 + qv? + rv + s, where v = —u — %,
p=—2 q¢=3%, r=3-d s=—-3(d+ ). The integral (4) becomes

TSl 50 d 6
V2kw v2 +pud +qu+rv+ s v (6)
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The complete discrimination system for the polynomial F'(v) is given by [6]
Dy =—p,
Dy = 40rp — 12p® — 45¢°,
Dy = 12p*r — 4p3¢® + 117pg*r — 88p*r? — 40p?qs — 27¢* — 300grs + 16073,
Ds = —1600gr®s — 3750pgs® + 2000pr?s? — 4p>¢®r? + 16p>¢®s — 900p>rs?
+825p%¢%s? + 144pg®r3 + 2250¢°rs? 4+ 16p*r® + 108p°s? — 128p?rt
—27¢*r? + 108¢°s + 256r° + 3125s* — 72p*qrs + 560p2qr?s — 630pg°>rs ,
Ey = 160p>r? 4+ 90012 — 48p°r + 60p?¢*r + 1500pgrs
+16p*q® — 1100p3gs + 625p*s — 3375¢°s

Fy = 3¢*> — 8pr. (7)

Case 1.2.1. D5 =0, Dy > 0, then d = —% or d = 0. Therefore we have

F@) = (v—a)?*(v—a)(v—az)(v—as), where a, oy, ag, agz are real numbers
and a1 > as > agz. We have
=& 2(3 - ) (F—a)(a—az)
+ = a1 —o A, T
\/% (al—a)(a—ag)\/(%—ag)(oq—ozg)) ( 2)H ( (%—042)(04_041) )
Ha—a)F( )] - - FOLT). ®

V(G —az)(a1 —ay)

2 _ - _1 2 _ —
where A\ = arcsin (g az)(—u = 113), r = (3 a1)(z 0[3)' It is clear
(3 —a)(-u—a2—3) (3 — a2)(on — a3)
that Eq. (8) is elliptic integral of the first kind and the third kind.

Case 1.2.2. D5 = 0, Dy < 0, then d = 1. Therefore we have F(v) =

(v—a)?(v—B)[(v—1)%+s?], where , 3, I, s are real numbers. The corresponding
integral (4) becomes

VIR U+a+é\/—<u+/3+§>[<u+z+;>2+sz]d“~ ©)
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It is clear that the integrals (9) can be expressed by elliptic integrals of the first
kind and the third kind.

Case 1.2.3. D5 < 0, then d > %. Therefore we have F(v) = (v — ay)(v —
ag)(v—az)[(v—1)%+52], where a1, o, as, [, s are real numbers. The corresponding
integral (4) becomes

+

% :/11 1tu du, (10)
V2kw —(utan+3)(utao+3)(utas+3)[(utl+3)? + 2]
which can be expressed by the hyper-elliptic function or hyper-elliptic integrals.

Case 1.2.4. D5 > 0, D3 < 0, then d < —3%. Therefore we have F(v) =

(v —a)[(v—11)% + s2][(v — I2)? + s3], where «, [1,12, 51, 52 are real numbers. The
corresponding integral (4) becomes

9 1+u

L% :/
V2kw —(uta+ H(u+l+ 52+ s3[(u+lp+ $)%+ s3]

du, (11)

which can be expressed by the hyper-elliptic function or hyper-elliptic integrals.

Case 2. If -1 < u < 1 , the integral (3) becomes

§ u+1

n —&o :/
V2kw —(u+ 1P+ W+ 1)t — S(u+ 1) —du+1)+2d

du, (12)

where d = 2ka+%.

Case 2.1. d = 0. Then the integral (12) is

§—%o du
+ = : (13)
2kw /(u—|—1) 1 —u)(u—1)

When % < u <1, the solutions to equation (1) are given by

8
u= 1, 14
5 + sin 26 —&0) .
Vv 3kw
which are double-periodic solutions.
Case 2.2. d+0. Denote F(v) = v® + pv® + qv? + rv + s, where v = —u — 1,
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Case 2.2.1. D5 =0, Dy <0, then d = —1—36 ord=0ord= % Therefore we
have F(v) = (v — a)?(v — B)[(v — 1)? + s?], where «, 3, I, s are real numbers. The
integral (12) becomes

:I:\/%_ u—‘,—a—ké\/_(u+ﬁ+é)[(u+l+é)2+82]dU, (15)

which can be expressed by the first kind of elliptic integrals and the third kind of
elliptic integrals.

Case 2.2.2. Ds; < 0, then d < 3. Therefore we have F(v) = (v — aq)(v —

az)(v — az)[(v — 1)? + s?], where a1, g, as, [,s are real numbers. The integral
(12) becomes

+

¢—% z/v Ltu du, (16)
V2kw —(utar+3)(utaz+3) (utas+3)[(utl+3)2+5%]
which can be expressed by the hyper-elliptic function or hyper-elliptic integrals.

Case 2.2.3. D5 > 0, D3 < 0, then d > %. Therefore we have F(v) = (v —

a)[(v—11)%+ s3] [(v—12)% + s3], where a, [, 12, 1, $2 are real numbers . The integral
12) becomes

§—& 1+u "
i\/%_/\/—(u+a+é)[(u+zl+§)2+s§][(u+12+;)usg]d - 47

We must express the integrals (17) by the hyper-elliptic function or hyper-elliptic
integrals.

3. Conclusion

In summary, under the travelling-wave transformation, we reduce Getmanou
equation to the corresponding ordinary differential equation (ODE). Using the com-
plete discrimination system for polynomial and the detailed discussion about con-
crete parameter’s values, we obtain its all single travelling-wave solutions. Among
these, two solutions are triangle function periodic solutions and others can be ex-
pressed by elliptic function and the hyper-elliptic function.
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RAZVRSTAVANJE SVIH JEDNOVALNIH RJESENJA GETMANOUOVE
JEDNADZBE

Primjenom pretvorbe za putujuci val, Getmanouova se jednadzba svodi na diferen-
cijalnu jednadzbu drugog reda. Pomoc¢u potpunog razlikovnog sustava za polinome,
izvodimo sva rjeSenja te jednadzbe za jednovalne putujuce valove.
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