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The derivation of particle equations of motion in gravitational fields in general
relativity is done routinely via the use of covariant derivatives. Since the geodesic
equations based on covariant derivatives are derived from the Euler-Lagrange equa-
tions in the first place, and since the Euler-Lagrange formalism is very intuitive,
easy to derive with no mistakes, there is every reason to use them even for the
most complicated situations. In the current paper we show the application of the
lagrangian equations for various scenarios in general relativity. A special paragraph
is dedicated to the radial motion. In textbooks, radial motion is given less atten-
tion than orbital motion, perhaps because solving the equations of motion is more
difficult than in the case of orbital motion.
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Keywords: general relativity, Schwarzschild metric, Reissner-Nordström metric, advance-
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1. Introduction: the Lagrangian method applied to radial

motion

The pedagogical approach permeating through the paper is straightforward:
derive the lagrangian from the metric, derive the Euler-Lagrange equations from the
lagrangian and solve them. In the concluding paragraphs, four novel applications of
the lagrangian method are presented. Firstly, we show the application for deriving
the advancement of the perihelion of not only Mercury but also for Venus and Earth
in a novel way by combining perturbation theory with the lagrangian approach.
Secondly, we show how to calculate the length of a rod while in radial motion.
While the paper is constructed around the case of gravitational fields described by
the Schwarzschild metric, we demonstrate how to extend the algorithms to other
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metrics, like Reissner-Nordström or Kerr, for example. We show an application in
the concluding paragraph. In the cases of Reissner-Nordström or Kerr metrics, the
lagrangian method has a definite advantage since the Christoffel symbols are much
more difficult to calculate than in the case of the Schwarzschild metric. We chose the
case of the Reissner-Nordström metric because it is encountered in literature much
less than the Schwarzschild solution and because finding the equations of motion
for objects falling into or gravitating around a charged black hole are considerably
more difficult than in the case of the Schwarzschild solution. We show how to use
the lagrangian approach in solving this problem and we even solve the difficult
problem of calculating the perihelion advancement for objects describing arbitrary
orbits. We conclude by deriving the trajectories of light in the vicinity of a charged
black hole. While radial motion is the easiest type of motion to describe in natural
language, it turns out that its equations are far from trivial.

In order to find the equations of motion, we start with the Schwarzschild metric
for the particular case of absence of rotation (dθ = dϕ = 0)

ds2 = αdt2 − 1

α
dr2, α = 1− 2m

r
= 1− rs

r
, (1)

wherem = GM/c2 ≪ 1 and rs = 2GM/c2 is the Schwarzschild radius. For example,
the Schwarzschild radius of the Earth is only 9 millimeters. From the metric we
obtain:

a) the lagrangian

L = α
dt2

ds2
− 1

α

dr2

ds2
. (2)

b) from the lagrangian we obtain the Euler-Lagrange system of equations [1, 5],

d

ds

∂L

∂ṫ
− ∂L

∂t
= 0 ,

d

ds

∂L

∂ṙ
− ∂L

∂r
= 0 , (3)

and, respectively:

d

ds

(

α
dt

ds

)

= 0 , α
dt

ds
= k , (4)

d

ds

∂L

∂ṙ
− ∂L

∂r
=

d

ds

(−2ṙ

α

)

− ṫ2
dα

dr
+ ṙ2

d

dr

(

1

α

)

= 2

(

− r̈

α
+ ṙ2

dα/dr

α2

)

− ṙ2
dα/dr

α2
− ṫ2

dα

dr
= −2

r̈

α
+

(

ṙ2

α2
− ṫ2

)

dα

dr
.

The over-dots signify derivative with respect to s. From the metric (1) we obtain:

α

(

dt

ds

)2

=
1

α

(

dr

ds

)2

. (5)
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Substituting (5) into (4) we obtain

c) the equation of motion:

d2r

ds2
+

1

2

dα

dr
= 0 , (6)

that is,

d2r

ds2
= −m

r2
. (7)

From (7) we can see that the acceleration increases as the radial coordinate de-
creases. In order to solve (7) we will need to resort to a lemma.

Lemma

d2r

ds2
=

1

2

d

dr

(

ds

dr

)

−2

. (8)

Proof:

d2r

ds2
=

d

ds

(

dr

ds

)

=
d

dr

(

dr

ds

)

dr

ds
=

d

dr

(

ds

dr

)

−1(

ds

dr

)

−1

= −
(

ds

dr

)

−2
d2s

dr2

(

ds

dr

)

−1

= −
(

ds

dr

)

−3
d2s

dr2
=

1

2

d

dr

(

ds

dr

)

−2

. (9)

Applying the lemma, Eq. (7) becomes

d

dr

(

ds

dr

)

−2

= −2m

r2
. (10)

With the notation y =

(

ds

dr

)

−2

, Eq. (10) becomes

dy

dr
= −2m

r2
, (11)

with the immediate solution:

y =
2m

r
− 2m

r0
, (12)

where r0 = r(0). On the other hand, y =

(

dr

ds

)2

, so (12) reduces to

dr

ds
=

√

2m

r
− 2m

r0
. (13)
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From (13), we can see that the proper speed increases as the radial distance de-
creases. Finally, we are ready to obtain the equation of motion by solving (13)
through variable separation:

dr
√

2m/r − 2m/r0
= ds , (14)

s

√

2m

r0
= r0 arctg

√

r

r0 − r
−
√

r(r0 − r) . (15)

Unfortunately, expression (15) is a transcendental equation in r, so we cannot
obtain r as a symbolic function of the proper time s. Yet, as we will see later in
this paper, the information is very valuable in solving other classes of problems.

2. A different approach for radial motion

We can determine the proper and coordinate speed for radial motion with a
slightly different approach. From (1)

(

dr

ds

)2

= α2

(

dt

ds

)2

− α ,
dr

ds
=
√

k2 − α , (16)

d2r

ds2
=

−dα/ds

2
√
k2 − α

=
−1

2
√
k2 − α

2m

r2
dr

ds
= −m

r2
. (17)

Using (1) and (3), the coordinate speed is

(

dr

dt

)2

= α2 − α

(

ds

dt

)2

,
dr

dt
=

√

α2 − α

(

ds

dt

)2

=

√

α2 − α3

k2
. (18)

From (18), we get the coordinate acceleration

d2r

dt2
=

d

ds

(

dr

dt

)(

ds

dt

)

=
2α− 3α2/k2

2
√

α2 − α3/k2
dα

ds

α

k
=

α

k

2α− 3α2/k2

2(α/k)
√
k2 − α

2m

r2
dr

ds

=
2α− 3α2/k2√

k2 − α

m

r2

√

k2 − α =
m

r2
α

(

2− 3α

k2

)

. (19)

k can be determined by setting the condition that the coordinate (or proper) speed
is zero when the particle is dropped from radial distance r0 towards the mass M ,

0 =
dr

ds
=
√

k2 − α(r0) , k =
√

α(r0) =

√

1− 2m

r0
, (20)
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0 =
dr

dt
=

√

α2(r0)−
α3(r0)

k2
, k =

√

α(r0) . (21)

Given (21), the coordinate acceleration becomes

a=
d2r

dt2
=

m

r2
α

(

2− 3α

k2

)

=
m

r2
α

(

2− 3α(r)

α(r0)

)

=−m

r2

(

1− 2m

r

)(

3
1−2m/r

1−2m/r0
−2

)

.

(22)
If the particle is dropped from infinity, (22) becomes

a =
d2r

dt2
= −m

r2

(

1− 2m

r

)(

1− 6m

r

)

. (22a)

The proper speed (16) is

dr

ds
=
√

k2 − α =
√

α(r0)− α(r) =

√

2m

r
− 2m

r0
. (23)

We can see that we have re-derived expression (13) through the new method. Fi-
nally, the coordinate s peed (in units of c = 1) is

dr

dt
=

√

α2 − α3

k2
= α

√

1− α(r)

α(r0)
=

(

1− 2m

r

)

√

1− 1− 2m/r

1− 2m/r0
. (24)

3. Classical treatment of unidimensional radial motion

The same problem, in Newtonian formulation, for the case of unidimensional
radial motion reduces to the equation of motion:

m
d2r

dt2
= −GMm

r2
. (25)

It is interesting to note that GR and Newtonian mechanics produce exactly the
same equation of motion. Equation (25) gives us the tool for determining when two
bodies of radiuses r1 and r2 and massesM andm will collide after starting from rest
at locations x1 and respectively x2 separated by the initial distance D = x1 − x2.
We would need to solve the system of differential equations:

d2x1

dt2
= − GM

(x1 − x2)2
,

d2x2

dt2
= +

Gm

(x1 − x2)2
, (26)

with initial conditions

x1(0) = D , x2(0) = 0 ,
dx1

dt

∣

∣

∣

t=0
=

dx2

dt

∣

∣

∣

t=0
= 0 , (27)
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and find out the time when x1 − x2 = r1 + r2 (i.e., when the two masses touch) by
solving a transcendental equation in t. The system gets easily reduced to a single
equation by subtracting the two equations:

d2(x1 − x2)

dt2
= −G(M +m)

(x1 − x2)2
. (28)

From (7), we know that equation (28) has the general solution:

t

√

2G(M +m)

D
= D arctg

√

x1 − x2

D − (x1 − x2)
−
√

(x1 − x2)
(

D − (x1 − x2)
)

. (29)

At the time of collision, x1 − x2 = r1 + r2, so

t =
D3/2

√

2G(M +m)



arctg

√

r1 + r2
D − (r1 + r2)

−

√

(r1 + r2)
(

D − (r1 + r2)
)

D



 .

(30)
Now, we can see that the transcendental Eq. (15) proved instrumental in finding
the “time to collision” for the unidimensional classical problem.

4. Generalization to arbitrary planar orbits

In the case of arbitrary planar orbits characterized by constant θ (that is,
dθ = 0), we start with the Schwarzschild metric,

ds2 = αdt2 − 1

α
dr2 − (rdϕ)2. (31)

The lagrangian associated with the metric (31) is:

L = α
dt2

ds2
− 1

α

dr2

ds2
− r2

dϕ2

ds2
. (32)

The lagrangian (32) is the generalization for the more particular lagrangian (2).
Likewise, the generalization of the Euler-Lagrange equations is

−2
d

ds

(

ṙ

α

)

− ṫ2
dα

dr
+ ṙ2

d

dr

(

1

α

)

+2rϕ̇2 = −2
r̈

α
+

(

ṙ2

α2
− ṫ2

)

dα

dr
+2rϕ̇2 = 0, (33)

α
dt

ds
= k , (34)

d

ds
(r2ϕ̇) = 0 , r2ϕ̇ = h . (35)
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From the general equation of motion (33), we can obtain interesting particular
cases.

a. For circular orbits, r = R, ṙ = 0, so

−ṫ2
dα

dr
+ 2rϕ̇2 = 0 , (36)

meaning that
(

dt

ds

)2
2m

r2
= 2r

(

dϕ

ds

)2

, (37)

dϕ

dt
=

√

m

r3
. (38)

Inserting (38) back into the metric (31), we obtain

ds2 =

(

1− 3m

r

)

dt2, (39)

with the immediate consequence

dϕ

ds
=

√

m

r3
1

√

1− 3m/r
. (40)

Thus, we have recovered a well known equation of the mechanics describing circular
orbits.

b. For radial orbits, dϕ = 0, so, the Euler-Lagrange Eq. (33) reduces to

−2
d

ds

(

ṙ

α

)

− ṫ2
dα

dr
+ ṙ2

d

dr

(

1

α

)

= −2
r̈

α
+

(

ṙ2

α2
− ṫ2

)

dα

dr
= 0 . (41)

If we add to the above the metric (31), we obtain

ds2 = αdt2 − 1

α
dr2. (42)

From (41) and (42), we obtain the equation of motion

−2r̈ − 2m

r2
= 0 , (43)

that is, we recovered Eq. (7).

c. For arbitrary planar orbits, the Euler-Lagrange equation is given by (33).
Coupled with the general metric (31) the equation reduces to

r̈ = −m

r2
+

(

1− 3m

r

)

rϕ̇2. (44)
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The above is very interesting since it allows recovering the previous answers to
both the radial and circular orbit situations. Indeed, ϕ̇ = 0 implies r̈ = −m/r2,
and ṙ = 0 implies

dϕ

ds
=

√

m

r3
1

√

1− 3m/r
.

Thus we have recovered Eq. (40).

5. The derivation of the advancement of Mercury

perihelion via perturbation theory

In this paragraph we will combine the lagrangian approach with perturbation
theory in producing a novel solution to the advancement of the perihelion of not only
Mercury, but also of Venus, Earth and Mars. Using the Euler-Lagrange Eq. (35)
Eq. (44) can be simplified to

r̈ +
m

r2
=

h2

r3
− 3m

h2

r4
. (45)

Using the substitution

u(ϕ) =
1

r(ϕ)
, (46)

with the immediate consequences:

ṙ = − u̇

u2
= −r2

du

dϕ

dϕ

ds
= −h

du

dϕ
, r̈ = −h

d2u

dϕ2

dϕ

ds
= −h2u2 d

2u

dϕ2
. (47)

Equation (45) transforms into

d2u

dϕ2
+ u =

m

h2
+ 3mu2. (48)

Equation (48) is nothing but the Kepler’s first law from Newtonian mechanics,

d2u

dϕ2
+ u =

m

h2
, (49)

with the added relativistic perturbation of +3mu2. Now, we know the solution for
(49) is

u(ϕ) =
m

h2
(1− e cosϕ) , (50)
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or, expressed in terms of r = r(ϕ)

r(ϕ) =
rc

1− e cosϕ
, (51)

where for e < 1 (51) represents the parametric equation of an ellipse in which case
rc = h2/m = r(π/2) is the radial distance from the focus to the ellipse. Armed
with the solution for classical mechanics equation (49) we can now attempt to solve
the GR equation (48) by applying perturbation theory. An appropriate solution is

u(ϕ) =
m

h2

(

1− e cos(Ωϕ)
)

. (52)

In order for (52) to be a solution for (48) it must satisfy the condition

3m2

h2

(

1 + e2 cos2(Ωϕ)
)

− 6m2

h2
e cos(Ωϕ) = −e(1− Ω2) cos(Ωϕ) . (53)

Since
m2

h2
=

m

h2/m
=

rs/2

rc
≪ 1 , (54)

it follows that (53) is satisfied if

6m2

h2
= 1− Ω2, (55)

that is,

Ω =

√

1− 6m2

h2
≈ 1− 3m2

h2
. (56)

Rindler [1] produced a similar explanation, but his derivation relies on a less rigorous
series of multiple approximations. Thus, the solution for the GR Eq. (48) is

u(ϕ) =
m

h2

[

1− e cos

((

1− 3m2

h2

)

ϕ

)]

, (57)

r(ϕ) =
rc

1− e cos
(

(1− 3m2/h2)ϕ
) . (58)

The solution (58) agrees with the Newtonian solution for m = 0, thus giving us a
high level of confidence that it is correct.

When 0 < ϕ < 2π, 0 < (1 − 3m2/h2)ϕ < 2π − 6πm2/h2, that is the or-
bit “misses” its closure [2] by 6πm2/h2 per revolution, resulting into a precession
phenomenon seen in Fig. 1.
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Fig. 1. Precession of orbits in gravitational field.

The precession per revolution is a direct function of the term m2/h2 = rs/(2rc),
while the overall observed precession per century is also a function of the number
of revolutions per century. From Table 1, we can see that physics “conspires” in
such a fashion that, for our solar system, Mercury is by far the best candidate
for observing the precession given that it has not only the highest precession per
revolution but also the largest number of revolutions per century.

TABLE 1. Perihelion precession of the inner solar planets.

Planet rc Precession Revolutions Precession per

(106 km) per revolution per century century (arcsec)

Mercury 55.443 0.1034 414.9378 42.9195

Venus 108.1947 0.0530 162.6016 8.6186

Earth 149.5568 0.03835 100 3.8335

Mars 225.9289 0.0254 53.1915 1.3502

Over the centuries, the astronomers have observed that the precession of Mer-
cury perihelion is actually a much larger number (5600 arcsecond/century). Of the
total 5600 arcsecond/century, 5557 can be accounted for by Newtonian mechan-
ics, leaving the balance of 43 arcsecond/century to be explained by the disparity
between the Newtonian equation (49) and its relativistic counterpart (48). It was
Einstein [1] who explained the disparity between the Newtonian calculations and
the observed values. Given the advancements in modern measuring devices, we can
today not only account for the advancement of Mercury perihelion but also for the
advancements for Venus and Earth [3 – 4].
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6. Application to calculating the length of a rod in radial

fall

Let’s assume that we are asked to find the length of a rod of proper length
L as calculated from the perspective of a distant Schwarzschild observer. Now,
our observer has read reference [6] and understands that there are several ways
of operationally determining the length of an object in motion. So, the observer
decides to drop the rod from a distance r0 and he decides to set a “trap” at location
r1 < r0. By calculating the time interval ∆t between the leading end of the rod and
the trailing end of the rod passing through the “trap” set at r1 and by knowing the
coordinate speed at the same point, our observer can determine the length of the
moving rod. We will assume throughout this chapter that the rod is Born-rigid, so
it is not distorted by tidal forces, that is, all its points travel at the same speed.
The coordinate speed is variable along the trajectory and, at location r1, according
to what we derived in Eq. (14), it is

v
∣

∣

r=r1
=

(

1− 2m

r1

)

√

1− 1− 2m/r1
1− 2m/r0

. (59)

The time for the leading end of the rod to reach location r1 is

tlead =

r0
∫

r1

dt , (60)

while the time for the trailing end of the rod is

ttrail =

r0+L
∫

r1

dt . (61)

Thus, the elapsed time for the rod to pass through the “speed trap” at location r1
is

∆t =

r0+L
∫

r1

dt−
r0
∫

r1

dt =

r0+L
∫

r0

dt . (62)

From (14) we also know that

dt =
dr

(

1− 2m

r

)

√

1− 1− 2m/r

1− 2m/r0

. (63)
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We are now ready to calculate the length of the rod, as it passes through r1,

∆l = v∆t =

(

1− 2m

r1

)
√

1

r1
− 1

r0

r0+L
∫

r0

dr

(1− 2m/r)
√

1/r − 1/r0
. (64)

The above represents one operational way of determining the length of the falling
rod. Now, the astute observer, who has read Geroch’s book [6], may decide to apply
a different operational definition in determining the rod’s length, such as marking
both ends of the rod at the same coordinate time. So, the observer decides to
find out where the trailing end of the rod is when the leading end has reached r1.
Assume that this is at the radial location r, where

ttrail =

r0+L
∫

r

dt . (65)

In this case, the coordinate length of the rod is r − r1, where r is the solution of
the integral equation

ttrail = tlead

r0+L
∫

r

dt =

r0
∫

r1

dt . (66)

The above equation can be further simplified in two steps. Firstly, we reduce it to

r
∫

r1

dt =

r0+L
∫

r0

dt . (67)

Now, the RHS is a constant, independent of r and the LHS is a polynomial in r.
In the second step, we notice that for r, r1 ≫ 2m, we have

1

(1− 2m/r)
√

2m/r − 2m/r0
≈
(

1 +
2m

r

)
√

r

2m
=

√

r

2m
+

√

2m

r
. (68)

Thus, equation (67) reduces to a simple algebraic equation in r,

√
2mr+

r

3

√

r

2m
=
√
2mr1+

r1
3

√

r1
2m

−
√
2mr0

r0
3

√

r0
2m

+
√

2m(r0+L)+
r0+L

3

√

r0+L

2m
.

(69)
We presented just two different modes of determining the length of a moving rod,
the reader can decide on his/her own operational way of determining the length
since several more ways can be found in the literature [6].
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7. Charged black holes

In (1916) Reissner [7] and in 1918 Nordström [8] derived independently the met-
ric that represents the static solution to the Einstein field equations in empty space,
which corresponds to the gravitational field of a charged, non-rotating, spherically
symmetric body of mass M and charge Q. Finding the equations of motion for
objects falling into or gravitating around a charged black hole is considerably more
difficult than in the case of the Schwarzschild solution. We will show how to use
the lagrangian approach in solving this problem and we will even solve the difficult
problem of calculating the perihelion advancement for objects describing arbitrary
orbits. The Reissner-Nordström metric is given by

ds2 = α′dt2 − 1

α′
dr2 − r2dϕ2, (70)

where

α′ = 1− 2m

r
+

r2Q
r2

, (71)

and

r2Q =
GQ2

4πǫ0r4
. (72)

The Euler-Lagrange equations are

−2
d

ds

(

ṙ

α′

)

− ṫ2
dα′

dr
+ ṙ2

d

dr

(

1

α′

)

+2rϕ̇2 = 0 , α
dt

ds
= k , r2ϕ̇ = h . (73)

d. For circular orbits we obtain:

dϕ

dt
=

√

m

r3
−

r2Q
r4

. (74)

Inserting (74) back into the metric (70), we obtain

ds2 =

(

1− 3m

r
+

2rQ
r2

)

dt2, (75)

with the immediate consequence

dϕ

ds
=

√

m

r3
−

r2Q
r4

√

√

√

√

√

1
√

1− 3m/r + r2Q/r
2

. (76)

Thus we obtained a very elegant result showing that circular orbits for charged black
holes can be obtained by applying a charge-dependent correction to the solution
for neutral black holes.
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e. For radial orbits, the Euler-Lagrange equation reduces to

−2
r̈

α′
+

(

ṙ2

α′2
− ṫ2

)

dα′

dr
= 0 . (77)

We add to the above the fact that the metric (70) reduces to

ds2 = α′dt2 − 1

α′
dr2. (78)

From (41) and (42), we obtain the equation of motion

−2r̈ − da′

dr
= −2r̈ − 2m

r2
+

2r2Q
r3

= 0 , (79)

that is, we recovered Eq. (7). with the charge-related perturbation 2r2Q/r
3.

f. For arbitrary planar orbits, the equation reduces to

r̈ = −m

r2
+

r2Q
r3

+

(

1− 3m

r
+

2r2Q
r3

)

rϕ̇2. (80)

The computation for the advancement of the perihelion becomes more complicated
since the starting point is now the equation

r̈ +
m

r2
−

r2Q
r3

=
h2

r3
− 3m

h2

r4
+

2h2r2Q
r5

. (81)

Using again the substitution u(ϕ) = 1/r(ϕ) and neglecting the term in r5, we
obtain

d2u

dϕ2
+ u =

m

h2
+ 3mu2 −

r2Q
h2

u , (82)

an equation very similar to (48). We can proceed by considering the equation

d2u

dϕ2
+ u =

m

h2
, (83)

with the perturbation 3mu2 − r2Q/h
2u. As an alternative, we can start from

d2u

dϕ2
+

(

1 +
r2Q
h2

)

u =
m

h2
, (84)

with the known solution

u(ϕ) =
1

√

1 + r2Q/h
2

m

h2
+ e cos



ϕ

√

1 +
r2Q
h2



 , (85)
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and to apply the perturbation 3mu2. Either way, the perturbation approach that
we developed in (52) – (56) bears fruit since the computation of the perihelion ad-
vancement becomes a simple algebraic exercise.

8. Light bending by charged black holes

Light bending can be calculated starting from the fact that the light path is
null,

0 = αdt2 − 1

α
dr2 − r2dϕ2. (86)

So

dr2 = α2dt2 − αr2dϕ2. (87)

To the above we add the Euler-Lagrange equations (34) and (35),

αṫ = k , (88)

r2ϕ̇ = h . (89)

Combining (85) with (86) and (87), we obtain immediately

(

dr

ds

)2

= k2 − h2 α

r2
. (90)

Differentiating Eq. (88) with respect to r, we obtain a simpler equation,

2
d2r

ds2
=

h2

r3

(

2α− r
dα

dr

)

. (91)

For the case of uncharged black holes, α = 1 − 2m/r, and using the notation
u(ϕ) = 1/r(ϕ), Eq. (89) reduces to [1]

d2u

dϕ2
+ u = 3mu2. (92)

For the case of charged black holes, α = 1 − 2m/r + r2Q/r
2, and the equation

becomes
d2u

dϕ2
+ u = 3mu2 − 2r2Qu

3. (93)

The solution of Eq. (91) is the superposition of the solutions of Eq. (90) and the
solution of

d2u

dϕ2
+ u = −2r2Qu

3. (94)
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The solution of Eq. (90) is

u = C sinϕ+
3mC2

2

(

1 +
cos 2ϕ

3

)

, (95)

where C = 1/R and R is the effective radius. The solution of Eq. (92) is

u = −3A

8
ϕ cosϕ+

A

32
sin 3ϕ , (96)

where A = −2r2QC
3. When r → ∞, u → 0 and ϕ → ϕ∞, so

0 = Cϕ∞ + 2mC2 +
9r2QC

3

16
ϕ∞ , (97)

resulting in

ϕ∞ ≈ −2m

R

(

1−
9r2Q
16R2

)

. (98)

The total deflection angle is

ϑ = 2|ϕ∞| ≈ 4m

R

(

1−
9r2Q
16R2

)

. (99)

Comparing (97) with the deflection by an uncharged black hole [1], we can conclude

that the charge contributes an additional effect of −4m

R

9r2Q
16R2

.

9. Conclusion

We have shown the derivation of the equations of motion from the Schwarzschild
metric via the Euler-Lagrange formalism. In the process, we have fully developed
the equations describing radial motion, a subject much less developed in literature
than the orbital motion. In the case of orbital motion, we have produced a derivation
that is more rigorous and which entails fewer approximations than the one that can
be found in Rindler [1]. While the pedagogical approach was constructed around the
case of gravitational fields described by the Schwarzschild metric, it became easy to
extend the algorithms to other, more difficult metrics, like the Reissner-Nordström
metric.
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EULER-LAGRANGEOVO RJEŠAVANJE STAZA ČESTICA U
GRAVITACIJSKOM POLJU

Izvod–enje jednadžbi gibanja čestica u gravitacijskom polju u općoj teoriji rela-
tivnosti obično se zasniva na kovarijantnim derivacijama. Kako su geodezijske
jednadžbe zasnovane na kovarijantnim derivacijama i prvotno se izvode iz Euler-
Lagrangeovih jednadžbi, i budući da je Euler-Lagrangeov formalizam vrlo poimljiv,
lako izvodljiv s malo pogrešaka, mnogo je razloga da se rabi pa i u najzamršenijim
zadacima. U ovom se radu primjenjuju Lagrangeove jednadžbe u nizu zadaća iz
opće relativnosti. Poseban odjeljak posvećen je radijalnom gibanju. U udžbenicima
se tome posvećuje malo pažnje, vjerojatno s toga što je rješavanje radijalnih jed-
nadžbi gibanja teže nego za gibanja u stazi.
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