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ABSTRACT ARTICLE HISTORY

The primary motive behind this research is to see the role of Received 20 August 2021
China’s large agriculture sector in promoting or demoting CO, Accepted 30 January 2022
emissions. Therefore, we applied linear and non-linear ARDL mod-
els by collecting data over the period 1971-2019 for China. The
results of the linear model suggest that livestock production can
help to reduce CO, emissions both in the short and long run. In
the non-linear model, the short-run estimates of livestock produc-
tion are insignificant, however, in the long run, the positive shock
in the livestock production helps to reduce the CO, emissions
and the negative shock is insignificant. On the other side, an
increase in crop production deteriorates the environmental quality
in the short run in both linear and non-linear models. In long run,
the estimate of crop production in the linear model is insignifi-
cant and in the non-linear model, the estimated coefficients of
both positive and negative shocks in crop production are nega-
tive implying that a positive shock reduces the CO, emissions
while the negative shock increases the CO, emissions.
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1. Introduction

Economic growth and global warming are going side by side for the past several dec-
ades. Economic growth is causing greenhouse gas emissions (GHG) which is the
main cause of global climate change such as floods, droughts, storms, extreme tem-
peratures, melting glaciers, and rising sea level (Apergis & Ozturk, 2015; Skare et al.,
2020; Ullah et al., 2021). According to an estimate, the world’s collective GDP was
about US$1,423.6 billion in the year 1961 and it soared to about US$75,124 billion in
the year 2013 (Shuai et al., 2018). In percentage terms, it was estimated at 8.1% per
annum during the years 1961-2013. The driving force behind economic development
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is the massive reliance on energy (Khoshnevis Yazdi & Golestani Dariani, 2019;
Usman et al.,, 2020), obtained from fossil fuels such as coal, oil, and gas which are
acting as a catalyst in CO, emissions and consequently global warming (Govindaraju
and Tang, 2013; Luukkanen et al., 2015; Sueyoshi et al, 2017). In this context, the
fifth valuation report issued by the UN Intergovernmental Panel on Climate Change
(IPCC) is worth mentioning which verified that GHG emissions and other man-
driven activities are the leading cause behind rising global temperature since the last
half of the previous century. The report further mentioned that during the period
1880-2012 the average global temperature rose by 0.85°C and this increase is pro-
jected to continue for the next 100 years. Moreover, the period between 1880-2012
was the warmest period during the 1400 years of the world’s history (IPCC, 2014).

Sustainable development simply means protecting the environment for future gen-
erations without affecting the current pace of economic development. Sustainable
development is necessary to make this world a better living place not only for this
generation but also upcoming ones and reducing CO, emissions is the main goal to
attain sustainable development (Lackner et al., 2012; Luo et al, 2017; Magazzino,
2017). To keep this perspective in my mind many researchers have focused on the
environment-growth nexus by exerting various other variables that could affect this
nexus. Most of the previous studies have included energy consumption as the main
variable while estimating the environment-growth nexus and confirmed that energy
consumption is the main driver behind CO, emissions (Aslam et al, 2021;
Magazzino, 2016). However, recently, studies have started to include various other
variables that may affect environmental quality and among these, industrialization,
globalization, tourism, urbanization, foreign direct investment, education, public
expenditures, and financial inclusion are the most noticeable (Ullah et al., 2020;
Usman et al., 2021).

Indeed, every sector of the economy is responsible for its growth, thus every sector
directly or indirectly affects CO, emissions in one or another way and the same is
true for the agricultural sector (Ullah et al., 2021). According to Reynolds and
Wenzlau (2012), the share of the agricultural sector in global GHG emissions is
between 14%-30% due to its dependency on fossil fuels. Certainly, utilizing farm
apparatus driven by petrol, propelling water for irrigation, nurturing farm animals in
enclosed areas, and employing nitrogen-abundant fertilizers add to agriculture’s extra-
ordinary GHG productions. The food and agricultural organization (FAO) of the UN
have faith in the agricultural sector that it can reduce its current carbon emissions by
almost 80%-88% (Reynolds & Wenzlau, 2012). Surely this can be achieved by chang-
ing the structure of the agricultural sector and by transforming the energy mix used
in the agricultural sector from non-renewable sources to renewable ones.

The importance of the agricultural sector can be recognized from the fact that it is
a major source of income and employment, particularly, in developing economies
(Dogan, 2016; Hu et al., 2021; Magazzino et al., 2021; Streimikis & Saraji, 2021; Ullah
et al., 2018). Besides, this sector is responsible for providing food to billions of people
around the globe. Hence, it has an important part to play in determining the environ-
mental quality of the globe. However, the literature regarding the impact of agricul-
tural productivity on environmental quality is not ample, and the results are
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inconclusive. Ullah et al. (2018) stated that agriculture can have either positive or
negative impacts on environmental quality. Agriculture can negatively affect the
environment via energy consumption which increased because of using machines in
the production and transportation procedures, on-farm lighting systems, rise in the
demand for raw stuff, increased land use, heating and cooling systems for livestock,
and increased utilization of insecticides, chemicals, and fertilizers. Conversely, the
positive effects come from the process of photosynthesis which emerges due to
increased supply of oxygen in the atmosphere as a result of massive plantation and
cropping. Moreover, organic farming can also help to improve the environmental
quality by lowering the role of pesticides, fertilizers, and reducing the proportion of
consuming high-energy feedstuffs (Lee & Choe, 2019).

As far as the top emitter of GHG emissions is concerned China has surpassed the
USA in 2012 and now become the world’s leading emitter as per the report of the
World Resource Institute (Magazzino et al., 2020; Mele & Magazzino, 2020).
Additionally, the UN’s food and agricultural organization reported that the Chinese
economy is the world’s leading economy in terms of agriculture. China predomin-
antly produces meat, vegetables, and cereal grains, whereas, its main import products
are feed grains, oilseeds, and cotton. Furthermore, China is the most populous coun-
try in the world and its agricultural sector is of prime importance. Hence, analyzing
the impact of China’s agricultural sector on its environment is vital for the living
standard of Chinese people. Investigation of this topic is needed in Chine due to
some specific reasons. In the last two decades, China has attained outstanding growth
in each sector of the economy. China is producing one-fourth of the grains of the
world and feeding one-fifth of the population of the world that is a great achievement
in the mission of nutrition security. Moreover, China is leading in the world in the
production of fishery products, eggs, poultry, meat, vegetables, fruit, cotton, and cere-
als. While China produces 55% of agricultural productivity via technology by lower-
ing the pollution. Keeping this thing in mind, in this study, we have analyzed the
relationship between agricultural productivity and environmental sustainability in
China. China has positive variation in the agricultural sector, so this study scrutinizes
the different impacts of agricultural productivity on CO, emissions under positive
and negative shocks using the NARDL method.

Shocks in agricultural productivity can easily affect CO, emissions through differ-
ent mechanisms. Agricultural productivity is more sensitive to China-specific agricul-
tural practices and policies. Ullah et al. (2021) noted that a positive shock in
agricultural productivity is a more dominant impact on CO, emissions than a nega-
tive shock. Thus, agricultural productivity may influence CO, emissions asymmetric-
ally. A positive shock reflects only an increase in agricultural productivity, but a
negative shock reflects only declines in agricultural productivity in China. While posi-
tive shocks seem to have negative effects on CO, emissions, negative shocks have a
positive effect. Therefore, an empirical analysis using a nonlinear estimation approach
is quite useful for China and other agrarian economies. To the best of our knowledge,
this is the first-ever study that has relied on non-linear analysis in this context by col-
lecting data over the period 1971-2019. The methodology adopted for the analysis is
linear and non-linear ARDL. The symmetry assumption implies that the positive and
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negative changes move in opposite directions with the same magnitude. Conversely,
the asymmetry assumption suggests that positive and negative change can move in
the same direction with different magnitude. Therefore, the non-linear analysis is
more close to reality as it provides us with an opportunity to capture the impact of
positive and negative shock in the independent variable, separately, on the depend-
ent variable.

In Sec. 2 literature review is presented. Data and econometric methodology are dis-
cussed in Sec. 3 and the results are given in Sec. 4. Lastly, the conclusion is provided
in Sec. 5.

2. Literature review

It is widely recognized that there is an association between agricultural productivity,
carbon emissions, and the resulting climate change. The agriculture sector contributes
to carbon emissions and is susceptible to such emissions (IPCC, 2014). The agricul-
tural sector’s contribution to global carbon emissions ranges from one-fourth to one-
third (World Bank, 2013). Among these, on-farm activities contribute about 10-12%
of total world’s emissions; whereas, land-use and land-cover transformed to cropland
contribute about 12%-20% of global carbon emissions (World Bank, 2013). The share
of the agriculture sector in global CO, emissions is comparatively lower than the
thermodynamics industry. In order to reduce agriculture-related carbon emissions,
the need of the hour is to implement the low-carbon agriculture technique that would
not only promote economic development but also protect the environment (Fan
et al., 2015; Rehman et al., 2019a; Xiao et al., 2021).

On one side, the agricultural sector is vital for attaining increased economic
growth and improved food security of the country. On the other hand, it also gener-
ates various social and environmental issues in the economy. A plethora of studies
are available that have analyzed various determinants of environmental quality; how-
ever, the relationship between agriculture productivity and CO, emissions is underex-
plored. Valin et al. (2013) analyzed the link between crop yield and livestock feed on
the emissions of greenhouse gases in the developing economies by employing a par-
tial equilibrium model. They observed that after reducing the yield gaps, 50% and
25% for crops and livestock, respectively, by 2050, there will be an 8% reduction in
agriculture-related emissions. Instead of using one single gas as a proxy of environ-
mental degradation, Dufour et al. (2009) combined the data for three leading green-
house gases, which include CO,, methane, and nitrous oxide, and used it as a
representative of environmental quality. They then applied the autoregressive distrib-
uted lag (ARDL) model and estimated the negative association between climate
change and agricultural productivity. In numerical terms, they observed that a 100%
rise in these gases causes a 22.26% fall in agricultural productivity. However, due to
the combination of three gases, the effect of carbon emissions was not clear in this
study. For South Asia and sub-Saharan Africa, Reynolds et al. (2015) analyzed the
association between agricultural yield and CO, emissions. The estimates from the
model confirmed that the link between agricultural yield and CO, emission is
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negative and significant, implying that carbon emissions are detrimental for agricul-
tural productivity in South Asia and Sub-Saharan Africa.

Zhang et al. (2015) investigated the effects of crop harvests, crop remainders, and
crop processes on CO, emissions. The findings of the study estimated that crop
remainders increase the CO, emissions or in other words deteriorate environmental
quality. Edoja et al. (2016) tried to investigate the impact of simulated carbon emis-
sions on agricultural productivity and the welfare of the household. The simulated
findings of the study confirmed that carbon emissions and agricultural productivity
are negatively linked to each other. They observed that carbon emissions would lower
agricultural productivity in the context of traded and non-traded crops, but the live-
stock productivity will not be affected. Moreover, they found that increased carbon
emissions also affect the welfare of all households; however, the worst affected people
are the poor people from the rural areas. Nwaka et al. (2020) estimated the link
between global warming and agricultural productivity and found that differences in
agricultural yield in response to global warming are lower in magnitude than the
yield response CO, fertilization.

Rehman et al. (2019b) tried to estimate the impact of agricultural productivity on
CO, emissions in Pakistan over the period 1987-2019. The study employed the autor-
egressive distributed lag (ARDL) model as an estimation technique. The findings of
the study confirmed that long-run estimated coefficients of cropped area, energy con-
sumption, fertilizers, per capita income, and water availability all are significantly
positive, implying that all these factors increase the CO, emissions in Pakistan. On
the other side, the estimates of improved seeds quality and food grains are negative,
suggesting that both these factors reduce the CO, emissions. Moreover, from these
findings, we deduce that long-run effects are greater in magnitude as compared to
the short-run effects, inferring that our results are heterogeneous. Ullah et al. (2021)
analyzed the nexus between deagriculturalization, GDP, and environmental quality in
Pakistan. They collected data for the period 1975 to 2018 and employed a nonlinear
autoregressive distributed lag (NARDL) model to get numerical estimates. Further, to
know the causal relationship between the variables, the study applied the Granger
causality test. The estimates of the study imply that there exists a negative relation-
ship between agriculturalization and economic growth; whereas, deagriculturalization
does not have any noticeable impact on economic growth in the long run. On the
other side, agriculturalization and deagriculturalization improve Pakistan’s environ-
mental quality. Further, the authors confirmed the presence of asymmetry in the
effects of main variables. Finally, the asymmetric causality test confirms that the uni-
directional causality is running from agriculturalization to CO, emissions and deagri-
culturalization to CO, emissions.

3. Methodology and data
3.1. Methodology

According to most empirical and theoretical studies, agricultural and industrial sec-
tors are the most important determinants of CO, emissions (Ullah et al., 2020, 2021).
The rise in environmental pollution has been affected by agriculture activities that are
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one of the most important sources of income. While the agricultural sector contrib-
utes to economic growth, they also encourage CO, emissions and cause environmen-
tal degradation via deforestation, land use and livestock using fertilizers, machinery,
fossil fuel, and burning stubble. Borlaug’s hypothesis is used to examine the impact
of agricultural productivity on the environment (Angelsen et al., 2001). This hypoth-
esis postulates that at the initial stages agricultural productivity reduces environmen-
tal quality, but after some threshold level, agricultural productivity starts promoting
environmental quality by enhancing the demand for goods and services produce
under environmental regulations. Therefore, the long-run CO, emissions are assumed
to take the following form:

COzt = @y + @APi+ @,GDP; + ¢3EC; + ¢, Trade; + ¢5Urb; + & (1)

where CO,; denotes CO, emissions, AP; denotes agricultural productivity, GDP;
denotes GDP per capita, EC; denotes energy consumption, Trade; denotes inter-
national trade, Urb; denotes urban population, and & is the error term. Estimates of
¢, could be negative and indicates that agricultural productivity reduces environmen-
tal pollution by reducing the dirty activities in the economy (Ullah et al., 2021).
Agricutrilzation shifts economic growth to green economic growth. Equation (1) gives
us the long-run estimates of CO, emissions. Next, we are assembling our model into
an error-correction format so that we can assess the short-run and long-run effects of
agricultural productivity in a single equation. A modelling approach that allows us to
estimate the long-run and short-run effects in single step is to estimate the following
econometric specification:

p p p p
ACOz,t = 0o+ Z TEiACOQ, t—i T+ Z lpiAAPt_i + Z ,uiAGDPt_i -+ Z 0,EC;_;

i=1 i=0 i=0 i=0

p P
+ ZiiTradet_i + piUI'bt_i + 0)1C02,t_1 + Q)zAPt_l + CU3GDPt_1
i=0 =0

+ CO4ECt,1 + a)sTradet,l + CO6UI'bt,1 + /’L.ECMtfl + &
(2)

Specification (2) is inferred by the estimates of short-run effects attached to ‘A’ varia-
bles, while long-run effects are inferred by the estimates of w,—ws normalized on
;. Such econometric specification has few advantages over other time series meth-
ods. This method offers estimates short-run and long-run effects in one step. The
unit root testing is not compulsory, because normally time series variables are inte-
grated at different orders i.e., I(0) or I(1), and even a blend of them. However, in
other time series techniques variables need to be stationary at the same order of inte-
gration (Engle & Granger, 1987). To check the meaningfulness of long-run estimates,
Pesaran et al. (2001) recommend two diagnostic tests (F-test and ECM or t-test).
Another advantage of this method is that it can provide efficient results in the case of
a small sample size (Bahmani-Oskooee et al., 2020). Last but not least, due to the
inclusion of short-run dynamic adjustment framework in the model, this technique
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can also detect any feedback effect among the variables, thus lessens the risk of multi-
collinearity and endogeneity (Pesaran et al.,, 2001). The next step is to modify Eq. (2)
so that it can be used to determine the asymmetric effects of agriculture production
on CO, emissions. To that end, following Shin et al. (2014), AP is separated into two
new time-series variables (positive and negative changes) using the partial sum idea
as follows:

t t

AP, = ZAAP*t = Zmax (AAP*,, 0) (3)
n=1 n=1
t t

AP = Y AAP ;= ) min (AAP", 0) (4)
n=1 n=1

where the AP™ indicates an increase in agricultural productivity variable, while AP~
indicates a decrease in agricultural productivity variable. After replacing both these
new variables in place of the original variable in Eq. (2) so our extended model is as:

p p p
ACO = o+ Y mMACOy i+ Y GAAPT i+ Y GAAP
i=1 i=0 i=0

p p p p
+ Z WAGDP,_; + Z O;EC_; + Z /iTrade,; Z p;Urbi_; + ®1COy
i=0 i=0

i=0 i=0
+ (1)2AP+t,1 + CO3AP_t,1 + Q)4GDPt,1 + a)5ECt,1 + wsTradet,l
+ w,Urbi_; + AECM_; + &
(5)

Shin et al. (2014) label models such as Eq. (5) asymmetric time series ARDL model,
and nonlinearity creates from the method of the partial sum. They also determine
that both models are subject to similar tests, diagnostics, and OLS methods of estima-
tion. The nonlinear model has some extra diagnostics. To test both short and long-
run asymmetric hypotheses are confirmed through the Wald test. In the end, we
check causality in a non-linear framework by conducting the time series causality test
of Hatemi-J] (2012).

3.2. Data

This study examines the impact of shocks in agricultural productivity on environ-
mental quality in China for the time period ranging from 1971 to 2019. For that pur-
pose, CO, emissions is a dependent variable and livestock production and crop
production are independent variables, and GDP per capita, energy use, trade, and
urbanization are control variables. Table 1 delivers detailed information regarding
definitions and symbols of variables, sources of data, and descriptive analysis. The
data for all these variables have been sourced from the World Bank. Data on CO,
emissions is measured in kilotons. Livestock production index and crop production
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Table 1. Variables and definitions.

Variables symbol Definitions Mean Median Minimum Maximum Minimum  Sources
CO, emissions CO, (CO, emissions (kt) 1498 15.01 13.68 16.14 13.68 World Bank
Livestock LP  Livestock production 52.59 54.53 8.780 103.2 8.780  World Bank
production index (2014-
2016 = 100)
Crop CP  Crop production index 3931  3.950 3.101 4.643 3.101  World Bank
production (2014-2016 = 100)
GDP per capita GDP  GDP per capita 7123 7111 5472 9.017 5.472  World Bank
(constant 2010 USS)
Energy use EC  Energy use (kg of oil 6.856  6.765 6.142 7.713 6.142  World Bank
equivalent per capita)
Trade Trade Trade (% of GDP) 31.71  33.81 4921 64.47 4921  World Bank
Urbanization URB  Urban population (% of 33.78  30.96 17.18 60.30 17.18 World Bank

total population)

Source: Wordl Bank.

index are taken at the base of 2014-2016 = 100. GDP per capita is measured at con-
stant 2010 US$. Data on energy use is taken in kg of oil equivalent to per capita.
Data on trade is obtained in percent of GDP. Urbanization data is measured as the
urban population as percent of the total population. In Table 1, the mean of CO,,
LP, CP, GDP, EC, trade, and URB are 14.98kt, 52.59, 3.931, 7.123US$, 6.856kg,
31.71%, and 33.78%, respectively.

4, Empirical results and discussion

In this section, we empirically estimate the livestock production and CO,, and crop
production and CO, symmetric ARDL model and the asymmetric NARDL model by
examining the shocks of agricultural production on CO, emissions over the period
1971-2019. As a preliminary test, since the ARDL and NARDL approaches need the
variables to be a mixture of level-stationary and first difference stationary variables,
we test for these properties and demonstrate the results with structural break and
without structural break unit root statistics in Table 2. From Table 2, it is obvious
that some variables are stationary at 1(0), and the remaining are stationary at I(1).
However, none of the variables is stationary at I(2). From Table 3, Brock-Dechert-
Scheinkman (BDS) test reported the nonlinearity in livestock production and crop
production variables. Table 4 reports the estimates of long-run and short-run parame-
ters of ARDL and NARDL models.

In the ARDL livestock production model, livestock production is negatively and
significantly associated with pollution emissions in the long-run demonstrating that 1
percent increase in livestock results in 0.005 percent decrease in pollution emissions
in the long-run. GDP and energy consumption impact is positive on pollution emis-
sion and urbanization impact is negative on pollution emissions in the long-run.
Coefficient estimates reveal that 1 percent increase in GDP and energy consumption
leads to 0.790 percent and 1.026 percent increase in pollution emissions, however, a 1
percent increase in urbanization leads to 0.038 percent reduction in pollution emis-
sions. In contrast, trade has no impact on pollution emissions in the long-run.
Livestock production has negative impact on pollution emissions in the short-run.
GDP, energy consumption and trade exert a positive impact on pollution emissions
but urbanization exerts a negative impact on pollution emissions in the short-run.
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Table 2. Unit root testing.

ADF DF-GLS Unit root testing with break
1(0) 1(1) 1(0) 1(1) 1(0) Break date 1(1) Break date
Co, —1.223 —4.420%F%  —0.240 —2.873%F*% 3021 2001 —5.012%%* 2013
LP —0.654 —4.656%FF  —1.123 —3.163%%*  _3.854 1990 —5.987%** 1995
CcP —1.203 —7.321%F% 0878 —1.906* —2.245 1989 —8.765%** 2019
GDP 0.234 —3.023%* —0.102 —3.008%*F*%  —1.542 1990 —4.232* 2001
EC —0.423 —4.775%F* 0.278 —4.283%*F*F 3452 2002 —6.565%** 2015
Trade —0.123 —2.654% —0.242 —4.931%F% 1412 2000 —4.321* 2001
URB —2.655%* —1.718* —4.235% 1990
Note: ***p < 0.01; **p < 0.05; and *p < 0.1.
Source: Authors’ Calculations.
Table 3. BDS testing.
LP P

Dimension BDS Stat Std. error z-Stat Prob. BDS Stat Std. error z-Stat Prob.
2 0.198*** 0.006 31.28 0.000 0.200%** 0.006 34.20 0.000
3 0.3371%%%* 0.010 32.78 0.000 0.338*** 0.009 36.04 0.000
4 0.423*** 0.012 34.81 0.000 0.433%** 0.011 38.63 0.000
5 0.486*** 0.013 38.26 0.000 0.502%** 0.012 42.74 0.000
6 0.530*** 0.012 4297 0.000 0.551%%* 0.011 48.46 0.000

Note: ***p < 0.01; **p < 0.05; and *p < 0.1.
Source: Authors’ Calculations.

In the NARDL livestock production model, positive shock in livestock production
has significant negative impact on pollution emissions in the long-run. Coefficient
estimate reveals that 1 percent increase in positive shocks in livestock production
results in 0.004 percent decrease in CO, emissions. However, the negative shock in
livestock production has an insignificant impact on carbon emissions in the long-run.
While GDP, energy consumption, and trade exert significant positive impacts on pol-
lution emissions, but urbanization exerts significant negative impact on pollution
emissions in long-run. The findings reveal that 1 percent increase in GDP, energy
consumption, and urbanization leads to 0.748 percent, 1.068 percent, and 0.003 per-
cent increase in pollution emissions, however, 1 percent increase in urbanization
brings 0.036 percent decrease in pollution emissions in the long-run. The short
results demonstrate that positive and negative shocks in livestock production have no
significant impact on pollution emissions. However, GDP, energy consumption, and
trade positively affect pollution emission and urbanization negatively affect pollution
emissions in the short-run.

The findings of diagnostic tests for ARDL and NARDL models in case of livestock
production reveal that long-run cointegration exists among variables in both models as
shown by significant coefficient estimates of F-test and ECM test. The findings of LM
test and BPG test confirm that there is no issue of autocorrelation and heteroscedastic-
ity in both models. Ramsey RESET test confirms that models are correctly specified. In
the end, the findings of CUSUM and CUSUM-sq test confirm the stability of estimates
in the ARDL and NARDL models. In NARDL livestock production model, Wald test
confirms the existence of only long-run asymmetries among variables.

The study employed variable-based techniques to check the robustness of findings.
So for that reason, crop production is used in empirical analysis. With regard to the
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Table 4. ARDL and NARDL estimates of short and long run.

ARDL-LP NARDL-LP ARDL-CP NARDL-CP

Variable Coefficient ~ t-Statistic  Coefficient  t-Statistic ~ Coefficient  t-Statistic ~ Coefficient  t-Statistic
Short-run

D(LP) —0.003** —2.222

D(LP_POS) 0.004 0.706

D(LP_NEG) —0.049 —0.794
D(CP) 0.330* 1.727
D(CP_POS) 0.095 0.390
D(CP_NEG) 1.724%%* 2.386
D(CP_NEG(—1)) 3.273%* 1.960
D(GDP) 0.580%** 3.931 0.617** 2.530 0.417%* 2314 0.661%** 3.449
D(GDP(—1)) —0.376 —1.509
D(EC) 0.370%** 2.724 0.378%** 2.641 0.353** 2492 0.218 1.570
D(EC(—1)) —0.567%** —2.920 —0.505%** —2.716 —0.488** —2.496 —0.706%** —3.855
D(EC(—2)) 0.234 1.494 0.411%* 2.449 0.436%** 2.848
D(URB) —0.028%** —3.314 —0.032%F%* —3.622 —0.018** —1.996 —0.018** —2.051
D(TRADE) 0.005%** 2.790 0.006*** 2.983 0.005%** 2.596 0.005%** 2.789
D(TRADE(—1)) —0.002 —1.164
Long — run
LP —0.005** —2.347
LP_POS —0.004* —1.696
LP_NEG 0.037 0.688
CP —0.518 —1.013
CP_POS —0.553%* —2.093
CP_NEG —4.505%%*F 3447
GDP 0.790%** 8.433 0.748%** 7.461 0.896*** 2.833 0.779%** 4.509
EC 1.026%** 10.37 1.068*** 12.95 0.964*** 5.357 0.785%** 6.870
URB —0.038%** —5.374 —0.036%** —5.073 —0.038%** —2.884 —0.021** —2.447
TRADE 0.002 0.947 0.003%** 1.939 0.001 0.536  —0.001 —0.534
C 3.807*** 5.382 3.698%** 5.420 5.278%** 3.899 4.970%%* 5.358
Diagnostics
F — test 8.019%** 5.767%** 3.661* 6.687%**
ECM(—1) —0.734%%*% 4522  —0902*** 5690 —0.466%¥** 3350 —0.849%** 5210
LM 1.564 0.124 1.881 1.023
BPG 1.654 1.754 1.048 1.432
RESET 0.123 0.987 0.247 0.387
CUSUM S S S S
CUSUM-SQ S S us S
Wald-LR 3.955%* 2.875%
Wald-SR 0.654 1.023

Note: ***p < 0.01; **p < 0.05; and *p < 0.1.
Source: Authors’ Calculations.

crop production ARDL model, the empirical findings infer that crop production
exerts no significant impact on pollution emissions in the long-run due to insignifi-
cant coefficient estimates of crop production. GDP and energy production impact is
positive on pollution emissions and urbanization impact is negative on pollution
emissions in the long-run. The coefficient estimates demonstrate that 1 percent
increase in urbanization brings 0.038 percent reduction in pollution emissions and 1
percent upsurge in GDP and energy consumption leads to 0.896 percent and 0.964
percent upsurge in pollution emissions in the long-run. Crop production positively
effect pollution emissions in the short-run. In case of control variables, GDP, energy
consumption, and trade lead to an upsurge in pollution emissions but urbanization
leads to alleviation in pollution emissions in the short-run.

According to NARDL crop production model, positive shock in crop production
has a significant and negative impact on pollution emissions in the long-run. The
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coefficient estimates infer that 1 percent increase in positive shocks in crop produc-
tion leads to 0.553 percent reduction in pollution emissions. While findings show
that 1 percent decrease in negative shocks in crop production brings 4.505 percent
increase in pollution emissions in China in the long-run. In nutshell, the short-run
agricultural productivity effects are smaller than the long-run effects on CO, emis-
sions. This implies that over the short run, the impact of agricultural production is
smaller, but as time goes by, this factor tends to impact more on environmental sus-
tainability in China.

This finding is also consistent with Alhassan et al. (2021), who infers that the agri-
culture sector can limit greenhouse gasses (GHG) emissions, because of excessive use
of renewable energy sources during the production process. Undeniably, many culti-
vated events, such as irrigation, could be driven by clean energy sources. The findings
indicate that Chinese agricultural sector production is adopting eco-friendly technolo-
gies by increasing positive externalities and promoting environmental quality. Such
as, Bayrakc1 and Kocar (2012) pointed out many channels through which renewable
energy can be used in the agriculture sector productivity. They indicate that solar
energy can be proved vital and useful in heating and cooling the greenhouses, lighting
the indoor and outdoor farm facilities, drying the products, irrigating the fields and
crops, which in turn reduces the CO, emissions.

This finding is congruous with the findings of Lin and Xu (2018), who infers that
modern biofuels such as bioethanol and biogas, and numerous agricultural deposits
like grain powder, wheatgrass, and hazelnut coverings can be used as important sour-
ces of renewable energy in agricultural productivity by reducing the CO, emissions.
Similarly, another important source of renewable energy viz. geothermal energy that
can be used in the agricultural sector, in sheds, in soil enhancement, for heating and
cooling in the greenhouses, and to dry agricultural commodities. This means that
renewable energy sources proved vital in agricultural productivity as well environ-
mental sustainability in China, this result is also coinciding with those described by
Xu and Lin (2017).

All types of green economic activities can cut a significant amount of CO, emis-
sions because the energy consumed in the agricultural sector is largely based on fossil
fuels which is the main driving force behind GHG emissions (Ullah et al.,, 2021).
Furthermore, the agriculture sector can help the process of photosynthesis to develop
due to the extensive amount of standing crops and plantations that promotes the sup-
ply of oxygen in the ecosystem, which in turn improves environmental sustainability.
Lastly, organic farming in agriculture and livestock is getting popular in China is an
important factor not only improving human health but the health of the environment
(Lin & Xie, 2016).

GDP and energy consumption impact are significantly positive and urbanization
impact is negative on pollution emissions in the long-run. Findings show that 1 per-
cent increase in GDP and energy consumption brings 0.779 percent and 0.785 per-
cent increase in pollution emissions, however, 1 percent increase in urbanization
brings 0.021 percent reduction in pollution emissions in the long-run. Positive shocks
in crop production have an insignificant impact on pollution emissions but negative
shocks in crop production have significant and negative impacts on carbon emissions
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in the short-run. GDP and trade have a positive effect on carbon emissions and
urbanization has a negative effect on pollution emissions in the short-run. All the
findings of diagnostic tests in case of crop production are similar as livestock produc-
tion models except CUSUM-sq test in the ARDL-CP model. Figure 1 shows the
cumulative multipliers for livestock productivity and CO, emissions, while Figure 2
shows the cumulative multipliers for crop productivity and CO, emissions in China.
The graph exhibits that positive and negative shocks in livestock productivity and
crop productivity have a different impact on CO, emissions in China. Finally, the
results of Granger causality are reported in Table 5. To save space, we only discuss
the results of Granger causality between agricultural productivity and CO, emissions.
From Table 5, we gather that one-way causality runs from LP_POS—CO, and
CP_POS—CO, in the base model.

Table 5. Asymmetric causality test results.

Null hypothesis: F-Stat  Prob. Null hypothesis: F-Stat Prob.
LP_POS — CO, 8372 0.001 CP_POS — CO, 3.862 0.029
CO, — LP_POS 0572 0569 (O, — CP_POS 0.262 0.771
LP_NEG — CO, 0.705 0.500 CP_NEG — CO, 0.486 0.619
CO, — LP_NEG 1790 0.180 CO, — CP_NEG 0.673 0.516
GDP — CO, 1227 0304 GDP — CO, 1.227 0.304
CO, — GDP 0379 0.687 (O, — GDP 0.379 0.687
EC — CO, 2313 0112 EC — CO, 2313 0.112
C0O, — EC 2179 0126 CO, — EC 2.179 0.126
URB — CO, 2751 0.075 URB — CO, 2.751 0.075
CO, — URB 0.194 0.825 (O, — URB 0.194 0.825
TRADE — CO, 4474 0.017 TRADE — CO, 4.474 0.017
CO, — TRADE 0291  0.749 CO, — TRADE 0.291 0.749
LP_NEG — LP_POS 2.447 0.099 CP_NEG — CP_POS 2.015 0.146
LP_POS — LP_NEG 1.665 0.202 CP_POS — CP_NEG 1.849 0.170
GDP — LP_POS 2.804 0.072 GDP — CP_POS 0.826 0.445
LP_POS — GDP 0.830 0443 CP_POS — GDP 5.158 0.010
EC — LP_POS 0.441 0647 EC — CP_POS 0.308 0.737
LP_POS — EC 2690 0.080 CP_POS — EC 1.937 0.157
URB — LP_POS 2377 0.106 URB — CP_POS 2.120 0.133
LP_POS — URB 2371 0.106 CP_POS — URB 2336 0.109
TRADE — LP_POS 2387 0.105 TRADE — CP_POS 1.720 0.192
LP_POS — TRADE 0.285 0.754 CP_POS — TRADE 0.184 0.833
GDP — LP_NEG 2346 0.109 GDP — CP_NEG 1.601 0.214
LP_NEG — GDP 0.082 0921 CP_NEG — GDP 4.347 0.019
EC — LP_NEG 1223 0305 EC — CP_NEG 0.930 0.403
LP_NEG — EC 2.042 0.143 CP_NEG — EC 0.272 0.763
URB — LP_NEG 1712 0.193 URB — CP_NEG 2.142 0.130
LP_NEG — URB 1297 0.284 (CP_NEG — URB 0411 0.666
TRADE — LP_NEG 1652 0204 TRADE — CP_NEG 0.120 0.888
LP_NEG — TRADE 0398 0.674 CP_NEG — TRADE 0.816 0.449
EC — GDP 0.153  0.859 EC — GDP 0.153 0.859
GDP — EC 1853 0.169 GDP — EC 1.853 0.169
URB — GDP 3231 0.050 URB — GDP 3.231 0.050
GDP — URB 1363 0.267 GDP — URB 1.363 0.267
TRADE — GDP 2,042 0.143 TRADE — GDP 2.042 0.143
GDP — TRADE 0.044 0957 GDP — TRADE 0.044 0.957
URB — EC 2.839 0.070 URB — EC 2.839 0.070
EC — URB 0464 0632 EC — URB 0.464 0.632
TRADE — EC 3.538 0.038 TRADE — EC 3.538 0.038
EC — TRADE 0673 0516 EC — TRADE 0.673 0.516
TRADE — URB 0.089 0915 TRADE — URB 0.089 0915
URB — TRADE 3483 0.040 URB — TRADE 3.483 0.040

Note: ***p < 0.01; **p < 0.05; and *p < 0.1.
Source: Authors’ Calculations.
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5. Conclusion and policy implications

The agriculture sector in China is one of the important contributors to the growth of
the Chinese economy. According to Mekouar (2015), China is the leading agricultural
economy in the world and it mainly produces meat, vegetables, and cereal grains.
Moreover, China ranked number one in the world in terms of population. Therefore,
to attain food security in the country, the importance of the agriculture sector has
increased manifold. However, such a large agricultural sector can also play its part in
disturbing the balance of the ecosystem by infusing the CO, emissions in the envir-
onment. The primary motive behind this research is to see the role of China’s large
agriculture sector in promoting or demoting CO, emissions. For empirical results, we
applied linear and non-linear ARDL models by collecting data over the period
1971-2019. Two proxies i.e., livestock and crop productions are used to represent the
agricultural productivity in China.

The results of the linear model suggest that livestock production can help to
reduce CO, emissions both in the short and long run. In the non-linear model, the
short-run estimates of livestock production are insignificant, however, in the long
run, the positive shock in the livestock production helps to reduce the CO, emissions
and the negative shock is insignificant. On the other side, an increase in crop produc-
tion deteriorates the environmental quality in the short run in both linear and non-
linear models. In long run, the estimate of crop production in the linear model is
insignificant and in the non-linear, the estimated coefficients of both positive and
negative shocks in crop production are negative implying that a positive shock
reduces the CO, emissions while the negative shock increases the CO, emissions. The
asymmetric effects between positive and negative shocks in both livestock production
and crop production are confirmed only in the long run. Among the control varia-
bles, the GDP and energy consumption are exerting a positive impact on CO, emis-
sions in all four models, whereas urbanization exerted a negative impact on CO,
emissions in all four models. The estimated coefficient of trade is significantly posi-
tive in only the NARDL-livestock production model and insignificant in all
other models.

The findings of this study have some important policy implications. Clearly, in the
long run, the response of CO, emissions to both livestock and crop productions is
asymmetric, hence the policymakers should devise the policies accordingly by keeping
in mind both the negative and positive shocks. Although our findings suggest a posi-
tive role of agricultural productivity in improving the environmental quality but the
magnitude of the positive effects is not large. Because more than 80% of China’s
energy production is based on coal and other non-renewable energy sources which
are the drivers of China’s economic and agricultural growth, hence, to control the
agricultural-related emissions the country needs to rely more on renewable energy
sources. Moreover, China should focus more on organic farming both in terms of
crops and livestock that would also help to reduce the emissions in the agriculture
sector. Finally, the technological innovation and advancement in the cultivating and
harvesting process can help the agriculture sector in China to achieve energy effi-
ciency that is another effective tool to control CO, emissions. Awareness of farmers
should be increased with education to adopt green production and renewable energy
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consumption through enlarged investment in research and development activities.
Governments and policymakers should formulate policies that expand agricultural
productivity without damaging environmental quality. Policymakers should focus on
eco-friendly production to control the agricultural sector’s carbon emissions.

This analysis limits in sample and variables in empirical analysis. Our basic focus
is to assess the effect of agricultural productivity on CO, emissions at the national
level but ignoring provincial and cities level empirical dimensions. The impacts of
agricultural performance on the environment might differ in diverse provinces and
economies. In future studies, provinces-specific factors can be used to interpret the
impact of agricultural performance on the environment in China. Furthermore, in
future research, authors can explore the threshold asymmetry and see whether this
asymmetry holds in the relationship of agriculture, environment, and eco-
nomic growth.
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