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Original scientific paper

We have applied partial algebraization technique to the cut-off Coulomb potential
−Ze2/(r + β). It has been found that for a spin j representation 2j + 1 exact
solutions are obtained but they belong to excited states of potentials for different
values of β. Degeneracies observed in the spectrum have been compared with exact
numerical results.

1. Introduction

Recently the partial algebraic technique has been applied to a class of problems
which are partially solvable1−3). (For a recent exposition see Karman and Oliver4)).
Relation between this technique and that of supersymmetric quantum mechanics
has also been shown by Roy and Roychoudhury5). Attempts has been made to
apply partial algebraization6) to the nonpolynomial potential

V (x) =
x2

1 + gx2
.
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However this technique does not give any non-trivial results for the non-polynomial
potential. This motivated us to see whether another important nonlinear type po-
tential viz. the cut-off Coulomb potential −Ze2/(r + β) can be treated by this
technique. We show that a hidden SU(2) symmetry exists for this potential and
though the general formula for En for any n can be found explicitly independent of
β, the restriction on β itself is such that for each β only one solution is obtained.
However, we found that there is a Coulomb like degeneracy in those solutions by
having recourse to numerical analysis.

2. Results

Before we cast the cut-off Coulomb potential problem in SU(2) symmetric form
we briefly describe the method of partial algebraization. Given a Schrödinger equa-
tion

Hψ = Eψ , (1)

we perform an imaginary gauge transformation on the wave function ψ(x)7)

ψ(x) → ψ(x)e−f(x) , (2)

then

H = −
1

2

d2

dx2
+ V (x) , (3)

HG = −
1

2

d2

dx2
+A(x)

d

dx
+∆V , (4)

where

∆V = V (x) +
1

2
A′(x)−

1

2
A2(x) , (5)

while

f(x) =

∫
A(x)dx . (6)

The gauge transformed eigenvalue equation reads

HGψ̃(x) = Eψ̃(x) (7)

Next we consider a finite dimensional representation of the SU(2) group with spins.
The generators of the group are

T+ = 2jξ − ξ2
d

dξ
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T 0 = −jξ − ξ2
d

dξ
(8)

T− =
d

dξ

The corresponding finite dimensional representation is

Rj = (1, ξ, ξ2, . . . , ξ2j) . (9)

We choose the gauge such a way that HG can be written as

HG =
∑

a,b±0

CabT
aT b +

∑

a,b±0

CaT
a + constant, (10)

where Cab and Ca are numerical coefficients. Using (8), (10) can be written as

HG = −
1

2
P4(ξ)

d2

dξ2
+ P3(ξ)

d

dξ
+ P2(ξ) , (11)

where Pn(ξ) denotes at most a polynomial of degree n.

To bring (11) in Schrödinger like form we put

x =

∫
dξP

−1/2
4 (ξ) = F (ξ), say, (12)

then

HG = −
1

2

d2

dx2
+
P ′
4 + 4P3

4P
1/2
4

d

dx
+ P2 . (13)

Now the basis can be chosen as

{ψ̄}+ (1, ξ, ξ2, . . . , ξ2j , ψ̄2j+2, ψ̄2j+3, . . .) (14)

where

ξ = F−1(x) , (15)

and ψ̄2j+k is an arbitrary set of functions orthogonal to (1, ξ, . . . , ξ2j) with weight
exp(−2f(x)). Then H has the form

H =

(
H1 0
0 H2

)
, (16)

where H1 is finite matrix and can be diagonalized.
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With these tools we now attempt to solve the cut-off Coulomb problem8) for
which the Schrödinger equation is (h̄ = m = c = 1)

−
1

2
φ′′(r)−

1

2
φ′(r) + VE(r)φ(r) = Eφ(r) (17)

where we have written the radial part of the Schrödinger equation and

VE = V (r) +
l(l + 1)

2r2
= −

Ze2

r + β
+
l(l + 1)

2r2
. (18)

(Henceforth we shall take Ze2 = 1). Putting ψ = r−1ϕ(r), equation (16) reduces
to

d2

dr2
φ+ (2E − 2VE(r))φ(r) = 0 . (19)

Now we choose the gauge f(r) as (here we take ξ = r)

f(r) = ar − (l + 1) log r − log(r + β) . (20)

A(r) is given by [see equation (5)]

A(r) =
d

dr
f(x) = a−

l + 1

r
−

1

r + β
(21)

∆V (r) = VE(r) +
l + 1

r
−

1

2

(
a−

l + 1

r
−

1

r + β

)2

+
1

2(r + β)2

= V (r) +
l + 1

r
− a−

a2

2
+

(
a+

l + 1

β

)
1

2(r + β)2
−
l + 1

rβ
(22)

and finally

HG = −
1

2

d2

dr2
+

(
a−

l + 1

r
−

1

r + β

)
d

dr
+∆V (r) . (23)

Here we make a slight improvisation of the partial algebraization method following
Ref. 9

ΩG = 2r(r + β)(E −Hg) , (24)

then

ΩG = (r2 + rβ)
d2

dr2
−

(
2ar2 + 2arβ − 2r(l + 1)− 2r − 2β(l + 1)

) d

dr

+r(2− 2al − 4a)− 2aβ(l + 1) + 2(l + 1) , (25a)
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where we have taken

a2 = −2E , (25b)

to remove r2 term from ΩG. The eigenvalue equation now reads

ΩGψ̃ = 0, where ψ̃ = ψef(r) (25c)

We immediately see that ΩG can be expressed in the form given by the r.h.s. of
(9). Explicitly we write,

ΩG = AT 2
0 +DT−T 0 + FT−T+ +GT+ +HcT

− + IT 0

≡ (A− F )r2
d2

dr2
+Dr

d2

dr2
−Gr2

d

dr
(26)

+(A− 2jA+ 2jF − 2F + I)r
d

dr
+ (Hc − jD +D)

d

dr

+2jGr +Aj2 + 2jF − 2jGr − Ij (27)

(Hc has nothing to do with H, the Hamiltonian).

Comparing with (25a) and equating the coefficients of r2 d2

dr2 , r
2 d
dr etc., sepa-

rately, one gets 7 simultaneous equations in A, F , G etc. Solving them we get (for
j /=0)

A =
2j

j + 1
+

2(l + 1)(1− aβ)

j(j + 1)
−

2aβ − 2(l + 2)

j + 1
(28)

D = β (29)

G = 2a =
2

2j + l + 2
(30)

Hc =
β

2l + j + 1
(31)

F =
j − 1

j + 1
+

2(l + 1)(1− aβ

j(j + 1)
−

2aβ − 2(l + 2)

j + 1)
(32)

I =
2j+2j − 2

j + 1
+

2(l + 1)(1− aβ)

j(j + 1)
−

2(j + 2)(aβ − 1− 2)

j + 1
(33)
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From (22b) and (30),

−E =
1

2(2j + l + 2)2
(34)

Though E is apparently independent of β, it depends on β through l. Because, as
will be shown below, if we fix l, β is also fixed. Below we discuss several cases.

1. j = 0
For this case solutions (28), (32) and (33) will be inconsistent unless

aβ = 1 (35)

or

β =
1

a
= l + 2 from Eq. (30))

As expected there is only one solution for a fixed l which is given by

ψ̃ = C0 (36)

(C0 being a constant), or

ψ = C0r
l+1(r + β)e−r/β (37)

and

E = −
a2

2
= −

1

2(l + 2)2
(38)

2. j = 1
2

Here β can not be determined from the set of equations (28) to (34). However for

i = 1/2, ψ̃ will be at most a linear function of r and we follow the method of Ref.

7 to determine ψ̃. We write

ψ̃ = C1(r − r0) . (39)

To find r0 we put (39) in (25c) and equate powers of r2, r etc. to zero separately.
After some elementary algebra we get

a =
1

l + 3
(40)

r0 = (a− 1/β)−1 (41)

and

(l + 2)a2β2 − 3aβ(l + 2) + (2l + 3) = 0 . (42)
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From (42)

aβ =
3(l + 2)± (9(l + 2)2 − 4(2l + 3)(l + 2))1/2

2(l + 2)
. (43)

Hence for same l we get two different values of β. However, since r0 will have two
different signs for these different values of β, the eigenvalue will be of ground state

Table 1.

l β
E0 (ground

state)
E∗

1

0 2.0 −.1230000 −.0544741

1 3.0 −.0555556 −.0310546

2 4.0 −.0312500 −.0199477

3 5.0 −.0200000 −.0138710

4 6.0 −.0138881 −.0101969

5 7.0 −.0102041 −.0078093

6 8.0 −.0078125 −.0061712

7 9.0 −.0061728 −.0049992
∗Numerical results.

Table 2.

l β r0 E∗
1 E1 E∗

2

0 1.902 5.1762 −.05551

(7.098) (−5.1962)

1 2.945 11.16515 −.056013 −.03125 −.01996

(9.0551) (−7.1652)

2 3.964 19.1421 −.03125 −.02000 −.013873

(11.0355) (−9.1421)

3 4.9751 29.1246 −.02003 −.01388 −.01020

(13.0241) (−11.1246)

4 5.9815 41.11048 −.01390 −.0102 −.00781

(15.0185) (−13.11088)

5 6.9857 55.0999 −.01021 −.00781 −.00617

(17.01447) (−15.0997)
∗Numerical results.
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for a particular potential and will be the excited state for another potential. Hence
SU(2) symmetry does not give two states for the same potential contrary to the
claim made in the original papers on partial algebraization1−3). Table 2 gives the
eigenvalues obtained from the present work together with the numerical values for
E0 and E2 states (the numbers within brackets are for negative values of r0). It
may be noted that our exact solutions for j = 0 and j = 1/2 completely agree
with those obtained from supersymmetric quantum mechanics technique19) which
again supports the result of Ref. 4 for N = 0 and N = 1, respectively. However for
N > 1 our technique can be carried on to higher values of j. We give below the
results for j = 1.

3. j = 1
Here

E = −
1

(l + 4)2

We take ψ(r) = (r − r0)(r − r1).

We apply the method of Ref. 9 to determine r0 and r1. Elimination of r0 and
r1 gives a cubic equation in β. Though in principle the equation could be solved
analytically, we present below only a set of numerical solutions. The signs of r0 and
r1 show that the energy eigenvalues are those of the first excited states.

In Table 3 energy eigenvalues for l = 0 to l = 3 are presented for the case j = 1
for a particular set of β values. Similar analysis can produce exact results for the
case j = 3

2 , 2, etc., but then β has to be solved numerically.

Table 3.

l β r0 r1 Energy

0 6.6108 8.9069 −4.7372 −0.625

1 8.7617 16.8375 −6.8875 −.04

2 10.8364 26.7687 −8.9492 −.02777

3 12.8745 38.7024 −10.9820 −.020408
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Original scientific paper

Primijenili smo tehniku djelomične algebrizacije na odrezani Coulombov potencijal
−Ze2/(r+β). Nad–eno je da se za spin j dobiva 2j+1 točnih rješenja, koja pripadaju
pobud–enim stanjima potencijala za različite vrijednosti β. Opažene degeneracije u
spektru uspored–ene su s točnim numeričkim rezultatima.
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