LETTER TO THE EDITOR

CLEBSCH-GORDAN COEFFICIENTS FOR THE QUANTUM ALGEBRA $\mathrm{SU}(2)_{p, q}$
MIROSLAV DOREŠIĆ and STJEPAN MELJANAC
Ruder Bošković Institute, Bijenička c. 54, 41001 Zagreb, Croatia
and
MARIJAN MILEKOVIĆ
Prirodoslovno-Matematički fakultet, Department of Theoretical Physics, Bijenička c. 54, 41001 Zagreb, Croatia
Received 26 February 1993

UDC 53.01: 512
Original sceintific paper

The Clebsch-Gordan coefficients for the $\mathrm{SU}(2)_{p, q}$ algebra are calculated using the covariant - tensor method for quantum groups. It is shown that the C.-G. coefficients depend on a single parameter $Q=\sqrt{p q}$.

During the past few years, much attention has been paid to the quantum deformations of Lie algebras (quantum groups) ${ }^{1)}$, both from the mathematical and physical point of view. The main idea of physical application of the quantum groups is a generalization of the concept of symmetry. For example, the rules for the addition of angular momenta in q-deformed $\mathrm{SU}(2)_{q}$ algebra are generalized in accordance with q-deformed algebra and co-algebra ${ }^{2}$.

Multiparameter deformations of Lie algebras (with more than one deforming parameter) were also studied ${ }^{3)}$.

In this Letter we calculate for the Clebsch-Gordan coefficients for two-parameter (p, q) deformed $\mathrm{SU}(2)_{p, q}$ algebra. We show that the C.-G. coefficients depend effec-
tively on only one parameter $Q=\sqrt{p q}$. Our result are in agreement with Drinfeld and Reshetikhin's theorem ${ }^{4)}$.

We recall the $\mathrm{SU}(2)_{p, q}$ algebra defined in references [3] and [5] (p and q are real parameters):

$$
\begin{gather*}
{\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm}} \\
{\left[J_{+}, J_{-}\right]_{p, q}=J_{+} J_{-}-q p^{-1} J_{-} J_{+}=\left[2 J_{0}\right]_{p, q}} \\
{\left[2 J_{0}\right]_{p, q}=\frac{p^{2 J_{0}}-q^{-2 J_{0}}}{p-q^{-1}}} \\
\left(J_{0}\right)^{\dagger}=J_{0} \\
\left(J_{ \pm}\right)^{\dagger}=J_{\mp} \tag{1}
\end{gather*}
$$

The coproduct Δ is:

$$
\begin{align*}
\Delta\left(J_{ \pm}\right) & =J_{ \pm} \otimes p^{J_{0}}+q^{-J_{0}} \otimes J_{ \pm} \\
\Delta\left(J_{0}\right) & =J_{0} \otimes 1+1 \otimes J_{0} \tag{2}
\end{align*}
$$

The finite dimensional unitary irreducible representation (IRREP) D^{j} of $\operatorname{spin} j$ contains the highest weight vector $|j j\rangle$, satisfying

$$
\begin{align*}
& J_{0}|j j\rangle=j|j j\rangle \\
& J_{+}|j j\rangle=0 \\
& \langle j j \mid j j\rangle=1 \tag{3}
\end{align*}
$$

The other orthonormalized states of IRREP $\mathrm{D}^{j},|j m\rangle$, with $-j \leq m \leq j$, satisfy

$$
\begin{align*}
J_{+}|j m\rangle & =\left(\frac{q}{p}\right)^{\frac{1}{2}(j-m-1)} \sqrt{[j-m]_{p, q}[j+m+1]_{p, q}}|j m+1\rangle \\
J_{-}|j m\rangle & =\left(\frac{q}{p}\right)^{\frac{1}{2}(j-m)} \sqrt{[j-m]_{p, q}[j-m+1]_{p, q}}|j m-1\rangle \\
J_{0}|j m\rangle & =m|j m\rangle . \tag{4}
\end{align*}
$$

We calculate the C.-G. coefficients for the $\mathrm{SU}(2)_{p, q}$ quantum algebra using the covariant - tensor method recently proposed by us ${ }^{6}$. The main results are written in tensor notation. The basis vectors in the tensor space $\left(V_{2}\right)^{\otimes k}$ are $\left|e_{a_{1}} \ldots e_{a_{k}}\right\rangle$, with $a_{1}, \ldots, a_{k}=1,2$.

Then

$$
\begin{equation*}
|j m\rangle=\left|e_{a 1, \ldots, a_{k}}\right\rangle=\frac{1}{\sqrt{f}} q^{-\frac{M}{2}} \sum_{\operatorname{perm}\left(a_{1} \ldots a_{k}\right)}(p q)^{\frac{1}{2} \chi\left(a_{1} \ldots a_{k}\right)}\left|e e_{a_{1}} \ldots e_{a_{k}}\right\rangle \tag{5}
\end{equation*}
$$

where the curly bracket $\left\{a_{1} \ldots a_{k}\right\}$ denotes the q-symmetrization. The summation runs over all the allowed permutations of the fixed set of indices ($n_{1} 1^{\prime} s$ and n_{2} $\left.2^{\prime} s\right) . \chi\left(a_{1} \ldots a_{k}\right)$ is the number of inversions with respect to the normal order 11...122...2, and

$$
\begin{align*}
& M=n_{1} n_{2}=(j+m)(j-m) \\
& j=\frac{1}{2}\left(n_{1}+n_{2}\right) \quad m=\frac{1}{2}\left(n_{1}-n_{2}\right) \\
& f=\binom{2 j}{j+m}_{p, q}=\frac{[2 j]_{p, q}!}{[j+m]_{p, q}![j-m]_{p, q}!} \tag{6}
\end{align*}
$$

The important relations are:

$$
\begin{align*}
f & =q^{-M} \sum_{\operatorname{perm}\left(a_{1} \ldots a_{k}\right)}(p q)^{\chi\left(a_{1} \ldots a_{k}\right)} \\
{[n]_{p, q} } & =\frac{p^{n}-q^{-n}}{p-q^{-1}}=\left(\frac{p}{q}\right)^{\frac{1}{2}(n-1)}[n]_{Q} \tag{7}
\end{align*}
$$

with $Q=\sqrt{p q}$.
The dual states are

$$
\begin{align*}
\left\langle c e_{a_{1}} \ldots e_{a_{k}}\right| & =\left(\left|e_{a_{1}} \ldots e_{a_{k}}\right\rangle\right)^{\dagger} \\
\langle j m|=(|j m\rangle)^{\dagger} & =\frac{1}{\sqrt{f}} q^{-\frac{M}{2}} \sum_{\operatorname{perm}\left(a_{1} \ldots a_{k}\right)} Q^{\chi\left(a_{1} \ldots a_{k}\right)}\left\langle e_{a_{k}} \ldots e_{a_{1}}\right| . \tag{8}
\end{align*}
$$

From the orthonormal condition

$$
\begin{equation*}
\left\langle e_{a_{k}} \ldots e_{a_{1}} \mid e_{b_{1}} \ldots e_{b_{k}}\right\rangle=\delta_{a_{1} b_{1}} \ldots \delta_{a_{k} b_{k}} \tag{9}
\end{equation*}
$$

and equation (7) it follows that $\left\langle j m_{1} \mid j m_{2}\right\rangle=\delta_{m_{1} m_{2}}$.
Applying $\Delta\left(J_{ \pm}\right)$and $\Delta\left(J_{0}\right)$ from equations (2), we obtain equations (4). It is important to note that $|j m\rangle_{p, q}=|j m\rangle_{Q}$.

Furthermore, the quadratic form, invariant under the action of the coproduct Δ (equations (2)), is

$$
\begin{equation*}
I=\left|e_{a_{k}} \ldots e_{a_{1}}\right\rangle\left|e_{b_{1}} \ldots e_{b_{k}}\right\rangle \varepsilon_{a_{1} b_{1}} \ldots \varepsilon_{a_{k} b_{k}} \tag{10}
\end{equation*}
$$

where

$$
\begin{gather*}
\varepsilon=\left(\begin{array}{cc}
0 & p^{\frac{1}{2}} \\
-q^{-\frac{1}{2}} & 0
\end{array}\right) \\
\left(\frac{\varepsilon}{\sqrt{[2]}}\right)_{p, q}=\left(\frac{\varepsilon}{\sqrt{[2]}}\right)_{Q} \\
\varepsilon_{a b} \varepsilon_{b c}=-\sqrt{\frac{p}{q}} \delta_{a c} \quad \varepsilon_{a b} \varepsilon_{c b}=\sqrt{\frac{p}{q}}\left(Q^{2 J_{0}}\right)_{a c} \\
\varepsilon_{a b} \varepsilon_{a b}=[2]_{p, q} \quad\left(\varepsilon_{b a}\right)_{p, q}=-\left(\varepsilon_{a b}\right)_{q^{-1}, p^{-1}} . \tag{11}
\end{gather*}
$$

The general form of the C.-G. coefficients for the $\mathrm{SU}(2)_{p, q}$ algebra is ${ }^{6}$)

$$
\begin{align*}
& \left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{p, q}=N_{p, q} \cdot F(p, q)= \\
& =N_{p, q} \sum_{m=-j}^{+j}\left\langle j_{1} m_{1} \mid\left(j_{1}-j\right)\left(m_{1}-m\right) j m\right\rangle_{p, q} \times \\
& \times\left\langle j_{2} m_{2} \mid j-m\left(j_{2}-j\right)\left(m_{2}+m\right)\right\rangle_{p, q}\langle j m j-m \mid 00\rangle_{p, q} \times \\
& \times\left\langle\left(j_{1}-j\right)\left(m_{1}-m\right)\left(j_{2}-j\right)\left(m_{2}+m\right) \mid J M\right\rangle_{p, q} \tag{12}
\end{align*}
$$

where $2 j=j_{1}+j_{2}-J$ and $N_{p, q}$ is the norm depending on j_{1}, j_{2} and J.
The C.-G. coefficients are real for p, q real and the following relation is valid:

$$
\begin{equation*}
\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{p, q}=\left\langle J M \mid j_{1} m_{1} j_{2} m_{2}\right\rangle_{p, q} \tag{13}
\end{equation*}
$$

Using the tensor notation $|j m\rangle=\left|e_{\left.a_{1} \ldots a_{k}\right)}\right\rangle, k=2 j$, we first calculate C.-G. coefficients for $j_{1} \otimes j_{2} \rightarrow j_{1}+j_{2}$:

$$
\begin{align*}
& \left\langle j_{1}+j_{2} m_{1}+m_{2} \mid j_{1} m_{1} j_{2} m_{2}\right\rangle_{p, q}=\left\langle e_{\{b, a\}} \mid e_{\{a\}} e_{\{b\}}\right\rangle_{p, q}= \\
& =\sqrt{\left(\frac{f_{1} \cdot f_{2}}{f_{3}}\right)_{p, q}} \cdot\left(\frac{q}{p}\right)^{\frac{1}{4}\left(M_{1}+M_{2}-M_{3}\right)}(p \cdot q)^{\frac{1}{2}\left(j_{1} m_{2}-j_{2} m_{1}\right)}= \\
& =\sqrt{\left(\frac{f_{1} \cdot f_{2}}{f_{3}}\right)_{Q}} Q^{j_{1} m_{2}-j_{2} m_{1}}=\left\langle j_{3} m_{3} \mid j_{1} m_{1} j_{2} m_{2}\right\rangle_{Q} \tag{14}
\end{align*}
$$

where

$$
\begin{gathered}
M_{i}=\left(j_{i}+m_{i}\right)\left(j_{i}-m_{i}\right), \quad f_{1}=\binom{2 j_{i}}{j_{i}+m_{i}}_{p, q} j_{3}=j_{1}+j_{2} \\
m_{3}=m_{1}+m_{2} \quad \text { for } i=1,2,3
\end{gathered}
$$

We point out that these C.-G. coefficients depend effectively only on one parameter $Q=\sqrt{p q}$ and that

$$
\begin{equation*}
\left\langle j_{1}\left(\pm j_{1}\right) j_{2}\left(\pm j_{2}\right) \mid\left(j_{1}+j_{2}\right) \pm\left(j_{1}+j_{2}\right)\right\rangle_{p, q}=1 \tag{15}
\end{equation*}
$$

There of the four C.-G. coefficients appearing on the right-hand side of equation (12) have the simple form (14). The fourth coefficient $\langle j m j-m \mid 00\rangle_{p, q}$ also has a simple form and depends only on one parameter Q. Namely, for $n=2 j$ we have

$$
\begin{align*}
& \langle j m j-m \mid 00\rangle_{p, q}=\frac{1}{\sqrt{[n+1]_{p, q}}} \varepsilon_{a_{1} b_{1}} \ldots \varepsilon_{a_{n} b_{n}}= \\
& =(-1)^{j-m} \frac{1}{\sqrt{[n+1]_{Q}}} Q^{m}=\langle j m j-m \mid 00\rangle_{Q} \tag{16}
\end{align*}
$$

After inserting equations (16) and (14) into equation (12), we conclude that the C.-G. coefficients depend only on one parameter Q :

$$
\begin{align*}
& \left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{p, q}=\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle_{Q}= \\
& =N_{Q} \sum_{m=-j}^{+j} \frac{(-1)^{j-m}}{\sqrt{[2 j+1]}} \cdot Q^{\left(j_{1} m_{2}-j_{2} m_{1}\right)} Q^{m(2 J+2 j+1)} \times \\
& \times \frac{\binom{2 j}{j+m}_{Q} \cdot\binom{2 j_{1}-2 j}{j_{1}-j+m_{1}-m}_{Q} \cdot\binom{2 j_{2}-2 j}{j_{2}-j+m_{2}-m}_{Q}}{\sqrt{\binom{2 J}{J+M}_{Q} \cdot\binom{2 j_{1}}{j_{1}+m_{1}}_{Q} \cdot\binom{2 j_{2}}{j_{2}+m_{2}}_{Q}}} \tag{17}
\end{align*}
$$

with $2 j=j_{1}+j_{2}-J$ and the norm

$$
\begin{align*}
N_{p, q} & =\sqrt{\frac{\left[2 j_{1}\right]_{p, q}!\left[2 j_{2}\right]_{p, q}![2 J+1]_{p, q}!\left[j_{1}+j_{2}-J+1\right]_{p, q}!}{\left[j_{1}+j_{2}-J\right]_{p, q}!\left[j_{1}-j_{2}+J\right]_{p, q}!\left[-j_{1}+j_{2}+J\right]_{p, q}!\left[j_{1}+j_{2}+J+1\right]_{p, q}!}} \\
& \equiv N_{Q} . \tag{18}
\end{align*}
$$

Finally, we mention that the C.-G. problem for the two-parameter quantum algebra $\mathrm{SU}(2)_{p, q}$ was also analyzed in refernce [5] using the projection operator technique. However, their calculation contains a few errors, for example the expression for their projection operator $p_{m m^{\prime}}^{j}=|j m\rangle\left\langle j m^{\prime}\right|$ is wrong and their C.-G. coefficients do not satisfy orthonormality relations. Hence, the conclusion that C.-G. coefficients nontrivialy depend on both parameters p and q is not correct ${ }^{7}$.

DOREŠIĆ ET AL.: CLEBSCH-GORDAN COEFFICIENTS FOR THE ...

Acknowledgements

This work was supported by the joint Croatian-American contract NSF JF 999 and the Scientific Fund of Republic of Croatia.

References

1) V. G. Drinfeld, Quantum groups, ICM Proceedings, Berkeley, (1986) p. 978;
2) A. N. Kirillov and N. Yu. Reshetikhin, Adv. Series in Math. Phys. Vol. 7, ed. V. G. Kac (Singapore: World Scientific 1989) p.285;
3) A. Schirrmacher, J. Wess and B. Zumino, Z. Phys. C 49 (1991) 317;
4) V. G. Drinfeld, Algebra i analiz 1 (1989) 1 (in Russian);
N. Yu. Resehetikhin, Lett. Math. Phys. 20 (1990) 331;
5) Yu. F. Smirnov and R. F. Wehrhahn, J. Phys. Math. Gen. 25 (1992) 5563;
6) S. Meljanac and M. Mileković, Covariant-tensor method for quantum groups and applications I: $S U(2)_{q}$, Zagreb, preprint 1992 (to be published in J. Phys. A: Math. Gen.);
7) S. Meljanac and M. Mileković, On the Clebsch-Gordan coefficients for the twoparameter quantum algebra $S U(2)_{p, q}$, Zagreb, preprint 1993 (in press, J. Phys. A: Math. Gen.).

CLEBSCH-GORDANOVI KEOFICIJENTI ZA KVANTNU ALGEBRU SU(2) $)_{p, q}$ MIROSLAV DOREŠIĆ i STJEPAN MELJANAC
 Institut Ruđer Bošković, Bijenička c. 54, 41001 Zagreb, Hrvatska

i
MARIJAN MILEKOVIĆ
Prirodoslovno-Matematički fakultet, Zavod za teorijsku fiziku, Bijenička c. 54, 41001
Zagreb, Republika Hrvatska
UDK 53.01: 512
Originalni znanstveni rad

Clebsch-Gordanovi koeficijenti $\mathrm{SU}(2)_{p, q}$ algebre izračunati su pomoću kovarijantne tenzorske metode za kvantne grupe. Pokazano je da Clebsch-Gordanovi koeficijenti ovise o jednom parametru $Q=\sqrt{p q}$.

