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We have solved the integro-differential equation for a system of A identical bosons
interacting via two body potentials by applying a perturbative method up to the
second order. Calculated binding energy has been compared with a solution by
projection method. The perturbative solution is found to be fairly reliable for a
soft potential and it improves with increasing particle number (A), whereas other
numerical methods become very difficult with increasing particle number. Thus
perturbation method becomes a useful alternative for large particle number and
soft potentials.

1. Introduction

Hyperspherical Harmonic Expansion Method (HHEM) is one of the techniques
for solving the few body Schrödinger equation in an essentially exact manner. But
the complexity of the formalism increases rapidly and the calculation becomes
prohibitively extensive (both in memory and computer time requirements) as the
number of particle increases. Thus for more than four particles the equations cannot
be solved easily without introducing approximations. Moreover the expansion basis
of the hyperspherical harmonics is truncated to a finite set for practical purposes
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and the truncation is determined by convergence of binding energy. For potentials
which have a strong short range repulsion, the convergence is very slow and a large
number of partial waves are to be included, making the calculation of the matrix
elements and in general the numerical solution very difficult.

The difficulty arising out of the convergence requirement has been avoided by
an alternative formulation [1-2] resulting in an integro-differential equation (IDE)
in two variables for a system of many bosons interacting via two body interactions
in which all correlations higher than two body correlations are disregarded. The
IDE has since been extended to few nucleon system with realistic potentials. It
can be shown [2] that the IDE for three particles is equivalent to the Faddeev
equation. The IDE has the same structure for all particle numbers (A) and its
explicit complexity does not increase with A. However the kernel function involves
a sum over the partial waves and numerical difficulties in calculating this function
arise for large A. This makes the numerical solution of the IDE a difficult task. The
IDE has been solved [2] by direct integration using the adiabatic approximation
(AA), for the three and four nucleon ground state, with several test potentials. A
variational solution of the IDE, decoupled by AA, has been solved [3] for A = 3, 4.

Both these methods involve very complex computer codes requiring large mem-
ory and CPU time. For A > 4, the variational method becomes less reliable due
to numerical instabilities. An alternative approach, referred to as the projection
method, has been applied to expand the unknown solution of IDE, Pl(z, r), for

a fixed value of r, in a suitable complete basis of Jacobi polynomials (Pα,β
K (z)),

leading to a system of coupled differential equations [4]. However, this approach
has the disadvantage that the convergence with respect to the order of the Jacobi
polynomial is slow and in a sense the advantage gained by reducing the Schrödinger
equation into an IDE is lost. However, one has to remember that although there
is no explicit convergence requirement in the IDE, the kernel function involves the
sum over K [see Eq. (4) below], whose convergence is again rather slow.

In the present work, we investigate a simple minded perturbation solution of
the IDE. In sharp contrast to the other approaches for the solution of the IDE, the
perturbation approach is both simple and easy to compute, so that one can solve
the IDE for a fairly large number of particles on a small personal computer. We
have solved the IDE by this method for A ≤ 14 with three standard S-projected
nucleon-nucleon potentials having varying softness and compared the results with
those obtained by the projection method.

In Section 2, we describe the method employed. Calculated ground state binding
energy (BE) and comparison with results by EAA (Extreme Adiabatic Approxima-
tion) have been presented in Section 3. Finally we draw our conclusion in Section 4.

2. Method

The integro-differential equation (IDE) for a system of A identical bosons of
mass m, interacting through two body potential V (rij), has the form,
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The variable r is the hyper-radius and z is defined through rij = r
√

(1 + z)/2,
rij being the (ij) pair separation. Subtraction of the hypercentral potential V0(r)
defined by

V0(r) =
1
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0
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∫
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V (r
√

(1 + z)/2)wl(z) dz (6)

from both sides of Eq. (1) makes the right side small and is taken as a perturbation
term:
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πl(z, r) . (7)

We have introduced a perturbation parameter λ (constant) on the right side to
take into account various orders of perturbation. This parameter will be set equal
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to 1 at the end. We express E and Pl(z, r) in perturbation series as,

E = E(0) + λE(1) + λ2E(2) + . . . (8)

Pl(z, r) = P
(0)
l (z, r) + λP

(1)
l (z, r) + λ2P

(2)
l (z, r) + . . . (9)

Substituting Eq. (8) and (9) in Eq. (7) and separating various orders (by equating
coefficients of equal power of λ on both sides) we get the zeroth order equation as,
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where, V ′(r, z) = V (r
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(1 + z)/2)− V0(r).

The second order equation is,
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The zeroth order equation is separable in r and z:
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The quantum number µ represents different radial excitation modes for a fixed K.
The z equation, which corresponds to the hyper-angular motion, is just the Jacobi

differential equation such that Z(z) is the Jacobi polynomial Pαβ
K . It satisfies the

equation

(1−z2)
d2Pαβ
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dz2
+[β−α−(α+β+2)z]

dPαβ
K (z)

dz
+K(K+α+β+1)Pαβ

K (z) = 0. (14)

The unperturbed ground state energy is obtained by the lowest lying solution
of Eq. (13) for which the quantum numbers K and µ are denoted by K0 and µ0.
It is clear from Eq. (13) that the lowest energy is obtained for K = K0 = 0 and

µ = µ0 = 0. Therefore the unperturbed ground state radial wave function Φ
(0)
K0µ0

(r)

has no nodes. The unperturbed ground state energy is E(0) = E
(0)
K0µ0

.

We expand the nth order wave functions in terms of the complete set of zeroth
order wave functions,
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Substituting Eq. (15) with n = 1 in Eq. (11), multiplying by Pαβ
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and using the orthogonality relation of Jacobi polynomials [5] we get the first order
perturbation energy to be
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For K = K0 = 0, VKK0
(r) = 0 and hence E(1) = 0. So there is no first order

energy shift for the ground state. The second order energy shift is obtained by
substituting Eq. (15) with n = 2 in Eq. (12) and using the orthogonality of Jacobi
polynomials [5], as
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Up to second order the ground state energy is given by E(0) + E(2).
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We first solve the unperturbed radial Eq. (13) for various values of K and µ,

obtaining E
(0)
Kµ and Φ

(0)
Kµ(r) for each (K,µ). Using these quantities in Eq. (18), E(2)

is calculated. The matrix elements of V are obtained by numerical integration. The
expansion (15) has been restricted for convenience to the bound state solutions
of Eq. (13). For large A and moderate K, the effective hyperradial well of Eq.
(13) is deep enough to support a large number of radially excited bound states
and so the expansion basis is reasonably complete. Hence one can expect that
the perturbation calculation will be better for large A. On the other hand, as
A increases, α increases rapidly (for ex. for A = 14, α = 17), and the weight
function wl(z) become an extremely singular function of z. This makes all the
numerical methods very difficult for larger values of A. Since wl(z) is required only
for the calculation of the second-order matrix elements, the problem is less serious
for perturbation method. Such integrals can be evaluated with careful numerical
techniques without an enormous increase of the computation time.

We have calculated the ground state binding energy of identical boson system
containing several particles and interacting via the standard S-projected two body
potentials. The perturbation result is compared to a solution of Eq. (1) by a projec-
tion method [4], which can be considered as an essentially exact method, provided
convergence is achieved with respect to addition of partial waves.

For our calculation, we have chosen three simple test potentials, namely,
Baker [6], Volkov [7] and Malfleit-Tjon MT-V [8] potentials. The Baker poten-
tial is the softest of the three, there being no repulsive core. The Volkov potential
has a mildly repulsive core, whereas the MT-V potential has a very strong repulsion
at short interparticle separation. These potentials have been chosen in order that
a study of the reliability of the perturbation treatment for various core repulsion
can be made.

The chosen potentials are commonly used semi-realistic nuclear potentials. We
have taken the mass of the particle to be the nucleon mass. Thus our model becomes
a travesty of the several nucleon system. However there are two important differ-
ences: the Coulomb interaction active between pairs of protons in a real nucleus has
been disregarded. Secondly the components of the space wave function other than
the totally symmetric one (which in general, has the largest contribution in the
ground state) have also been neglected, that is the spin and isospin of the particles
have been disregarded. Hence we get binding energy (BE) much higher than what
would be expected for real nuclei. The motivation for the present calculation is to
see under what condition the perturbation result is expected to be reliable.

The calculations have been performed on the Hallmark II (based on 80486 pro-
cessor with an EISA bus) computer. Integration of Eq. (17) was done by Gauss
quadrature and that of Eq. (18) by Simpson method, with mesh size 0.05 fm.
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3. Results and comparison to the projection method

In Table 1 we present the ground state BE up to second order perturbation for
various particle numbers and the chosen potentials. The last column contains the
BE calculated by the projection method. It can be seen that the perturbation result
is close to the projection result for soft potentials, while the difference is appreciable
for the harder potentials. This can be understood from the fact that higher par-
tial waves play increasingly more important role as the potential becomes harder.
As the two body potential becomes more strongly repulsive at short separation,
it prevents the interacting particles to come too close together, thereby invoking
higher hyper-angular momentum of the system. On the other hand the zeroth-order
perturbation corresponds to the hypercentral approximation which is the same as
the first (K = 0) partial wave. Thus in the perturbation approach higher partial
waves are not adequately represented, thereby making the approximation worse for
harder potentials. Moreover the residual part obtained by subtracting the hyper-
central part from the full potential can no longer be treated as a small perturbation
for potentials with a strong short range repulsion.

In the absence of more accurate results, we are comparing the perturbation re-
sults with those by the projection method, although the latter did not fully converge
for harder potentials, which require large number of partial waves. Furthermore the
calculation of the potential multipole

+1
∫

−1

V

(

r

√

1 + z

2

)

Pαβ
n (z)wl(z)dz

needed in the projection method, is very tricky and involves relatively large errors
for large particle number (A) and higher partial waves. This is so because the
weight function gradually resembles a δ-function centred at z = −1 as A increases
(see Eq. (3)).

What is more interesting is the observation from Table 1 that the perturbative
approximation becomes progressively better as the particle number (A) increases
for both soft and hard potentials, the percentage difference gradually decreasing
as A increases. However for the Volkov potential, the relative error apparently
decreases, then again increases. This is probably due to the fact that the projection
results for large A did not fully converge for relatively harder Volkov potential, as
explained earlier. In view of this, the apparent rapid improvement of perturbative
result for the hardest potential chosen (MT-V) as A increases is illusive and the
actual error is larger.

One can observe from Table 1 that for the MT-V potential, the perturbation
result for smaller number of particles differs by a very large amount from the
projection value. This is due to the fact that the hypercentral part, V0(r), is quite
small for such potentials and the zeroth order Eq. (13) has only a small number of
bound states. Since in our perturbation expansion we have included only the bound
states of the unperturbed Hamiltonian for feasibillity of numerical calculation, a
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TABLE 1.

Potential Particle Calculated ground state binding energy

number Perturbation method Projection method

Baker 7 300.1976 299.3907
8 451.5261 450.129
9 636.635 635.444

10 857.745 856.380
12 1410.182 1408.525
14 2114.145 2112.222

Volkov 7 200.1364 190.5221
8 285.808 276.7622
9 386.640 379.6151

10 512.193 499.149
12 822.088 788.4306
14 1200.589 1144.8553

MT-V 8 123.7994 249.728
10 281.0164 405.667
12 576.432 604.552

Comparsion of calculated ground state energy by perturbation and projection methods.

substantial contribution coming from the continuum states is disregarded whenever
the hypercentral potential supports only a few bound states. On the other hand,
for large A, the zeroth-order equation has a large number of bound states and
the perturbative expansion is more complete. Thus for large particle numbers the
perturbative technique becomes a viable alternative.

4. Conclusion

We conclude by noting that the perturbation result is fairly reliable for soft
potentials, but not so when the two body interaction has a strong short range re-
pulsion. However, the perturbation result gradually improves as the particle number
increases. This is of a practical importance because serious numerical difficulties
arise with other methods for large A.
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Originalni znanstveni rad

Koristeći perturbativni razvoj do drugog reda riješili smo integro-diferencijalnu
jednadžbu za sistem od A identičnih bozona interagirajući ih preko dvočestičnog
potencijala. Izračunate energije vezanja usporedene su s rješenjem dobivenim pro-
jektivnom metodom. Nadeno je da je perturbativno rješenje pouzdano za slabe
potencijale a pobolǰsava se povećanjem broja čestica. S druge strane numeričko
rješavanje drugim metodama postaje vrlo otežano s porastom broja čestica. Dakle,
perturbativna metoda postaje korisna alternativa kod velikog broja čestica i slabih
potencijala.
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