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In this communication we report certain types of exact solutions of supersymmetric
nonlinear Schrodinger equations and coupled KdV-equations by making an ansatz
for the solution in each case.

1. Introduction

During the last two decades, study of the nonlinear wave phenomena has made
a remarkable stride (Scott et al. [1]). It has been confirmed that several nonlinear
partial differential equations are widely applicable to the various nonlinear phenom-
ena in physics. One must solve nonlinear equations to get a knowledge of the system
but the methods of solving are very few up to this time. Each of the methods, viz.,
Inverse scattering method (Gardner et al. [2]), Hirota’s method (Hirota [3]), Trace
method (Wadati and Sawada [4]) and direct algebraic method (Hereman et al. [5])
has some constraints. Here we present certain type of exact solutions of supersym-
metric nonlinear Schrédinger equation (NLSE, Kulish [6]) and of coupled K-dV
equation (Hirota and Satsuma [7]) by making an ansatz for the solution in each
case following the method suggested by Huibin and Kelin (Huibin and Kelin [8,9]).
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2. Formulation
The supersymmetric NLSE’s (Kulish [6]) read as:
i = — oz + 2kq T + KUV — iVEDT, (la)
iU, = =2, + kqTq — iVE(2qU} + Utq,) (1b)

where ¢(z, ) is the original field and ¥ (z,t), ¥ (x,t) are the fermionic counterparts
introduced through supersymmetry. In the following we will be working with the
real and imaginary parts of (la,b) and so we set

q = up + v (2a)
U =u; + ivg (2b)

whence we have the four nonlinear partial differential equations
ot = —Voza + k[200(ud + v2) + vo(u? + v?)] — \/E[ululx — V1V (3a)
—Vot = —UQgy + k:[2u0(u% + v%) + uo(u% + v%] + \/E[mulm — U V1] (3b)
—v1p = —2U1 e + kup (ud +03) + \/E[Q(uovo — ugU1z) + (U1v0e — v1uoz)]  (3¢)
Uty = — 20100 + ko1 (U2 4 03) — VE[2(uou1e + voviz) + (uitior + v1v0g)] . (3d)

We now look for the travelling wave solutions of (3a — d) that is, we assume that

uo(x,) = uo(z — M) = u(€) (4a)
vo(x,t) = vo(z — At) = v(€) (4b)
ur(z,) = u (z — M) = uy (€) (4c)
vy (2,) = vy (2 — At) = vy (€) (4d)

where A is velocity to be determined. Inserting (4) into (3), we get
—Muge = —voge + k[2v0(ud + v2) + vo(uf + v3)] — VE[urure — vivie] (5a)
Mg = —uoee + k[2uo(ud 4+ v3) + uo(u? + v3)] + VE[viure + uivie]  (5b)
Avie = —2uge + kul(ug + ’U(Q)) + \/E[2(vou1§ —ugvig) + (u1voe — v1uoe)]  (Be)
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—Au1e = —2v1¢e + k‘vl(ug + v%) — \/E[Q(uoulg + vov1g) + (uruoe + v1vee)] . (5d)

To the equations 5(a) — (d), following the method of Huibin and Kelin [8,9], we
make the ansatzs

ug = Z ai(tanh )t v, = Z b;(tanh p)"* (6a,b)
i=0 =0

up = Z ci(tanh )’ v = Z d;(tanh p)* (6¢,d)
i=0 =0

where the integer m and parameters a;, b;, ¢;, d; (¢ = 1,...m) and p are to be
determined. The requirement that the highest power of the function (tanh p&) for
the nonlinear term, say, voud (or ujuie) of 5(a) and that for the derivative term
voge must be equal gives the following relation

m+2=3m [or 2m +1=3m
so here, m =1 so here m = 1] .

For the other equations of the set (5), we obtain m = 1. So the equations (6) can
now be written as

uo = atanh(p€) (7a)
Vo = by + by tanh(ué) (7b)

uy = ctanh () (7c)
v = dy + d tanh(ué) (7d)

where a, by, ba, ¢, d1, do and p are the parameters to be determined. Here in ug
and w1, we have dropped the parameters ag and ¢y and taken a; = a and ¢; = ¢
in order to avoid complexities. In general, one can incorporate ag, cg. Inserting
now equations (7) into (5) and equating the same power of tanh(ug), we get the
following parametric equations

—Aap = k[20] + bid3] + VE[dida]p (8a)
Aoy = Vk(d, ¢) (8b)
Aea = VE(2¢hy — ady) (8¢)

—Xep = k(dib?) — VE(2b1dy + bady ) (8d)
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0 = 2bopu® + k[4b2by + 20502 + 2byd1ds + bod?] — VE(P — d2)p (8¢)
0 = 2apu® + k[2ab? + ad?] + VE(2adyc)p (8f)

0 = 4cp® + k(cb?) + 3Vk(chy — ada)p (89)

0 = ddop® + k(2b1bady + bda) — 3Vk(ac + bady) (8h)

/\a,u = k[?bﬂ)g + 2b1a2 + 4b1b% + b162 + bldg + 2b2d1d2} — \/E(Chdg),u, (87,)

—bosi = k[dabibs + 2ad1ds) — VE(dic)p (87)

—Adap = k(2b1byc) + Vk(ady — 2cby) (8k)

Aep = k[a?dy + dyb3 4 2b1bads)] + VE[2b1dy + bad: ] (81)

0 = —2bopu® + k[2baa® + 263 + ba(c? 4 d2)] — VE[d3 — Plu (8m)
0= —2ap® + k[2a® + 2ab2 + a(® + d2)] — VE(2dac) (8n)

0 = —4cp® + kle(a® + b3)] — 3VE[—byc + adap (80)

0 = —4dap® + k[da(a® + b3)] + 3VE[ac + bads)] . (8p)

Since u1, v1 are fermionic, we must assume fermionic character for the coefficients c,
d1, dy. Due to the fermionic character, it is important to note that ¢ = d? = d3 = 0.
Also note that ug, vg are bosonic. Taking these into consideration, we obtain from

(8)
{)\ + \/68k] I
by
36k
by = +X\(2Vk)

by = (u/Vk)

1 17

¢ = +(u/9%)(A/B)

di = =£9\B
dy = (u/9k)(A/B) F 9a(VEBN)
no= E(=X2/4)
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and two constraint equations relating a, u, A, A, B and k

(12 /81K*)(A*/B%) = +(par/Vk)
and pA? = T(pA) + 8la\(k*/2B?)
where A = [(1/18) — (\/36by)(17/k)*/?]'/2

B

9 1/2
{k {19/(18)2 F (5M/1626,)(17/k) Y2 ()\/36()1)2(17/19)}} .

We thus obtain one type of exact solutions of (1) with one arbitrary parameter y
or A.

We next proceed to obtain exact solutions of the coupled K-dV equations sug-
gested by Hirota and Satsuma [7] that describes the interactions of two long waves
with different dispersions.

These equations look like
U — a(Uggy + Buuy) = 200D, (9a)
D+ Pypy +3ud, =0 (90)

where a, b are arbitrary constants.
We now look for travelling wave solutions of (9) that is, we assume

u(z,t) = u(x — wt) = u() (10a)
O(z,t) = O(z — wt) = (§) (10b)
where w is velocity to be determined. Inserting (10) into (9), we get
—wug — a(ugee + 6uug) = 209D (11a)
—w®P¢ + Peee + 3uPe = 0. (11b)

To the equations 11(a), (b) we again make the ansatz

a;(tanh p€)* (12a)

u

m
i—0

(2

d =Y b(tanhug)’ (12b)

1M

where the integer m, a;, b; (¢ = 1,...m) and p are the parameters to be determined.
The requirement that the highest power of the function tanh(ug) for the nonlinear
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term wuge (or ®P¢) of (11a) and that for the derivative term ugee must be equal
gives the following relation

2m+1=m+3.

So here, m = 2. For equation 11(b) we also get m = 2. Hence the equations (12a),
(12b) now take the form

u = ap + ap tanh pé + ag tanh® pé (13a)

® = by + by tanh € + by tanh? € (13b)

where ag, by, ai, b1, as, bo and p are the parameters to be determined. Inserting

now (13) in (11) and equating the same power of tanh(u&), we get twelve parametric

equations where we get inconsistency in solving the parameters. But if we retain
the highest power of tanh(u) and the parameters a1, by then (13) look like

u = ag + ay tanh? pé (14a)

® = by + by tanh? ué . (14b)

Inserting (14) in (11) and equating now the same power of (tanh u) we get following
six parametric equations

—2wasy + 16aasp® — 12aapas = 4bbobs (15a)
—2wbg — 16ba 1 + 6agby = 0 (15b)
—2asw — 40aasp® — 12aa3 4 12aapay = 4b(b3 — bobs) (15¢)
2by + 40bapu® + 6asbs — 6agby = 0 (15d)
24aasp® + 12aa3 = —4bb3 (15€)
24bypi? + Gaghy = 0. (15f)
On solving, we get
a = (1+84%)/3
ay = —4u°
by = %[2;;2(2@ —1) — 16> + 16p*(1 + a))
by = + [_24‘”“‘4] v
b
w = (1—8u+8u?).
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Thus we obtain one type of exact solutions of (9) with one arbitrary parameter p
(or w) which are different from those obtained by Hirota and Satsuma [7].

3. Conclusion

In our above computations we have shown that the method suggested by Huibin
and Kelin [8,9] is effective in obtaining exact solutions of non-linear partial differ-
ential equations. However, the question of stability of such solutions arises which
is the matter of our present investigation and will be published elsewhere.
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TQCNA RJESENJA SUPERSIMETRICNIH NELINEARNIH
SCHRODINGEROVIH JEDNADZBI I VEZANIH K-dV JEDNADZBI

R. S. BANERJEE

Condensed Matter Physics Research Centre, Department of Physics, Jadavpur
University, Calcutta 700 032, India

UDK 530.145
Originalni znanstveni rad
U radu smo prikazali neke vrste toc¢nih rjesenja supersimetriénih nelinearnih

Schrédingerovih jednadzbi i vezanih K-dV jednadzbi sluzeéi se pretpostavkom o
obliku rjesenja u svakom pojedinom slucaju.
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