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We have obtained exact solutions of some non-linear partial differential equations
by a new iteration method that was proposed by Blender. As examples, solitary
wave solutions of the Benjamin-Bona-Mahony equation, Joseph-Egra equation, cou-
pled K-dV equations and of the Zakharov-Kuznetsov equation have been obtained.
For the K(2, 2) equation, recently suggested by Rosenau and Hyman (which give
compactons: solitons of finite wavelength), a new type of periodic wave solutions
has been found.

1. Introduction

Recently an iteration method has been suggested by Blender [1] to obtain exact
solutions of some nonlinear partial differential equations. In contrast to the method
of successive approximations of Picard [2], this method looks for the occurrence of
the non-differentiated function (u) and solves for it. Boundary conditions, if any,
are incorporated accordingly. One can use also some free parameters which can
be adjusted at the end if they are not eliminated in the iteration procedure. The
main point is that in some cases this method converges rapidly, typically after two
steps to the exact solution. The convergence properties are not yet known. In this
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communication, we show that exact solutions of some non-linear partial differential
equations such as the Benjamin-Bona-Mahony equation [3], Joseph-Egra equation
[4], coupled K-dV equations, usually known as Hirota-Satsuma equations [5] and the
Zakharov-Kuznetsov equation [6] can be extracted by such an iterative approach.
For the K(2, 2) equation, recently suggested by Rosenau and Hyman [7], which
give compactons, solitons of a finite wavelength, we report a new type of periodic
wave solutions.

2. Formulation

We first proceed to obtain an exact solution of the Benjamin-Bona-Mahony
equation [3], usually known as regularized long wave equation:

ut + ux + αuux − u2xt = 0. (1)

According to the iterative method proposed by Blender [1], we define the iteration
scheme as follows:

un+1 =
1

α
[(un

2xt − un
t − un

x) /u
n
x ] , n ≥ 0. (2)

With the clever choice of the wave ansatz, u0 =sec a(x− ct), the solution converges
within two steps to

u =

(

c− 1

α

)

− a2c

α

[

8 + 12 tan2 a(x− ct)
]

. (3)

Strictly speaking, here the term converges is meant to say converges to the form

of the solution. For example, here u converges to the function tan2 a(x − ct), but
not with the coefficient 12 and the first term of the square bracket equal to 8. This
assertion is true for other cases we have dealt with here.

The boundary condition, u → 0 as | x |→ ∞ gives a = i
√

c− 1/c/2. Then Eq.
(3) represents a one soliton solution

u =
3(c− 1)

α
sech2

[

1

2

√

c− 1

c
(x− ct)

]

. (4)

We next consider Joseph-Egra equation [4], usually known as TRLW equation

ut + ux + αuux + ux2t = 0. (5)

Here the iteration scheme is

un+1 =
1

α
[− (un

x2t + un
x + un

t ) /u
n
x ] , n ≥ 0. (6)
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With the wave ansatz u0 = sec a(x − ct), the solution converges within two steps
to

u =

(

c− 1

α

)

− a2c2

α

[

8 + 12 tan2 a(x− ct)
]

. (7)

The boundary condition, u → 0 as | x |→ ∞ gives a = i
√
c− 1/(2c) and Eq. (7)

then describes a one soliton solution

u =
3(c− 1)

α
sech2

[
√
c− 1

2c
(x− ct)

]

. (8)

We now consider the case of coupled K-dV equations, usually known as the
Hirota-Satsuma equations [5]

ut − a(u3x + 6uux) = 2bφφx (9a)

φt + φ3x + 3uφx = 0. (9b)

The iteration scheme, here, is

un+1 = −1

3
[(φn

t + φn
3x) /φ

n
3x] (10a)

φn+1 =
1

2b
[un

t φ
n
x − aun

3xφ
n
x + 2a (φn

t u
n
x + φn

3xu
n
x)] / (φ

n
x)

2
, n ≥ 0. (10b)

We take as the initial guess,

u0 = sec a1(x− ct)

φ0 = b sec a1(x− ct)

and observe that it converges within two steps to

u =
c

3
− 4a21

3

[

2 + 3 tan2 a1(x− ct)
]

(11a)

φ =
bc

3

(

2 +
1

a

)

− 4ba21
3

[

2 + 3 tan2 a1(x− ct)
]

. (11b)

The boundary condition, u → 0 as | x |→ ∞ then gives

a1 =
i
√
c

2
(12)
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a = −1 . (13)

Equations (11a,b) then take the form

u = c · sech2
[√

c

2
(x− ct)

]

, (14a)

φ = bc · sech2
[√

c

2
(x− ct)

]

. (14b)

We now observe that u and φ will satisfy Eqs. (9a,b) if b is equal to

[−3/2(
√
c− 2)]

1/3
. Equations (14a,b) represent soliton solutions.

So far we have considered the equations in one space and in one time dimensions,
usually termed as [1+1]D equations. We now consider equation of [2+1]D such as
the Zakharov-Kuznetsov equation [6]

ut + uux + u3x + ux2y = 0. (15)

The iteration scheme for this equation is

un+1 =
[

−
(

un
t + un

3x + un
x2y

)

/un
x

]

, n ≥ 0. (16)

With the wave ansatz

u0 = sec a(lx+my − ct),

the solution converges within two steps to

u =
c

l
− a2(l2 +m2)[8 + 12 tan2 a(lx+my − ct)]. (17)

The boundary condition, u → 0 as | x |→ ∞ gives

a =
i

2

√

c

l(l2 +m2)
.

Consequently, Eq. (17) takes the form of a solitary wave solution

u =
3c

l
sech2

[
√

c

4l(l2 +m2)
(lx+my − ct)

]

. (18)

Lastly we consider the K(2, 2) equation, recently suggested by Rosenau and
Hyman [7] which appeared in the course of their study of the role of nonlinear
dispersion in the formulation of nonlinear structures like liquid drops. Such an
equation yields compacton as a particular solution, a soliton of a finite wavelength.
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We try here to construct the exact solution of K(2,2) by the iterative method. The
form of K(2,2) is

ut + (u2)x + (u2)3x = 0

or

ut + 2u(ux + u3x) + 6uxu2x = 0. (19)

The iteration scheme would now be

un+1 = − 1

2(un
x + un

3x)
[un

t + 6un
xu

n
2x] . (20)

With the initial guess u0 = cos 2a(x− vt), the solution converges within two steps
to

u = − v

2(4a2 − 1)
+

[

24a2

2(4a2 − 1)

]2

cos 2a(x− vt). (21)

The condition, u → 0 as | x− vt |→ nπ/a, (n = 0,±1,±2, ...) gives

v =
(24a2)2

2(4a2 − 1)
. (22)

Equation (21) then takes the form

u = −
[

v

(4a2 − 1)

]

sin2 a(x− vt). (23)

Here we observe that for u to satisfy Eq. (19), | a2 | should be equal to (1/16).
Using then Eq. (22) we get v = −3/2. The exact solutions would then be

u = ±2 sin2
[

1

4
(x+

3

2
t)

]

. (24)

Equation (24) represents special types of periodic waves (similar to the form of full
wave rectified output) and not compactons, because here u → 0 as | x − vt |→
nπ/a, (n = 0,±1,±2, ...). Such a periodic wave together with its anti-part (since
amplitude can be +2 or −2) move in the negative direction of x-axis. Here we
observe that the invariance of Eq. (19) under u → −u and t = −t permits negative
counterparts of such periodic waves moving in the positive direction of the x-axis.

3. Conclusion

In our computation, we have shown that a few exact solutions of some nonlinear
partial differential equations can be extracted by a rather simple iterative process.
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But the scheme limits itself where the terms u and its higher power together exist,
for example in the equations K(m,n) = ut + (um)x + (un)3x = 0, where m = 2,
n = 3; m = 3, n = 2 and m = 3, n = 3. Nonlinear Klein-Gordon equation

u2t − u2x + αu+ βu3 = 0

is another example. We also note further that such a scheme fails to give any
solution for variable-coefficient nonlinear equations such as K-dV equation in a
non-uniform medium

ut + γu+ αxux + 6uux + u3x = 0,

generalized K-dV equation

ut = u3x + 6uux + [F (t)x+G(t)]ux + 2F (t)u,

its modified version

ut = u3x − 6u2ux + [F (t)x+G(t)]ux + F (t)u

etc.
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Dobili smo egzaktna rješenja nekih nelinearnih parcijalnih diferencijalnih jednadžbi
pomoću nove iteracione metode, predložene od Blendera. Kao primjer konstru-
irana su solitonska rješenja Benjamin-Bona-Mahonyeve jednadžbe, Joseph-Egrine
jednadžbe, vezanih K-dV jednadžbi, te Zakharov-Kuznetsovljeve jednadžbe. Za
K(2,2) jednadžbu, nedavno predloženu od strane Rosenaua i Hymana (koja daje
kompaktone: solitne konačne valne duljine), pronaden je novi tip periodičkih valnih
rješenja.
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