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By allowing a spin system to evolve according to discrete time dynamical processes,
we calculate the value of the wave function at any time, given the initial value of
the wave function. We also calculate the value of the x spin polarization at any
discrete time and compare it with the value of the x spin polarization for the
continuous-time case.

1. Introduction

For the ever searching student of quantum theory one persistent trademark of
quantum processes stands out, namely, the discrete nature of quantum jumps and
discrete nature of the eigenspectrum of a particle confined to a limited region of
space and subject to quantum laws. It is only natural to ask if space and time
themselves might be discrete in nature at some level and if the continuum is some
low energy average when the space-time points are close together. To the mathe-
matician, the subject of combinatorics and graph theory provide a natural setting
to express a discrete space-time picture of the world [1,2]. Wheeler [3] quite long
ago emphasized the discrete nature of space and time at some level and Finkelstein
[4] has constructed an imaginative picture of a ”quantum net” wherein the world
is discrete and the continuum of space-time and quantum fields emerges after an
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averaging process. In a historical sense both Synder [5] and t’Hooft [6] suggested
the use of a discrete space-time lattice to study the properties of QED and quan-
tum gravity wherein a finite lenght renders these theories finite and calculable. In
a quite another direction T.D. Lee [7] has advocated the calculation of path inte-
grals in terms of a finite discrete time so as to eliminate the arbitrary nature of
the measure in the path integral approach. In the above investigations a truly dis-
crete space-time lattice structure was introduced that merges with the continuum
when the separation between adjoining points goes to zero. Bombelli et al. [8] have
discussed how a discrete causal set merges to the continuum of Minkowski space
through the algebraic and topological relationship of points.

If space and time themselves do form a continuum, but a particle’s position
and time coordinate are uncertain due to a microscopic uncertainty principle that
forbids a response of the wave function at the time and point of application of
the Hamiltonian, then finite differences should replace derivates in the quantum
equations of motion and the theory becomes a discrete space-time difference the-
ory [9]. We have applied this idea to electron spin resonance [10], electron spin
polarization [11], spectral shifts in hydrogen [12], as well as neutron interferome-
try [13]. Actually, at a submicroscopic level both of the above mentioned notions
of discreteness might be operative. If this is the case, then we might ask if there
is a fundamental discrete space-time dynamics, or is dynamics itself governed by
a stochastic or Markov type process. A Markov process seems most fundamental
since it does not in any way depend on the past history of the particle but is only
sensitive to the transition from one point to the next. In what follows, we study the
temporal evolution of a spin system in a z component magnetic field using three
different dynamical schemes of discreteness. The first is a discrete time difference
modified Schrödinger approach originally pioneered by Caldirola [14,15] and later
studied by Santilli et al. as fitting into a Lie admissible structure [16,17]. We next
study the time evolution of the spin system in a dynamical scheme that replaces
the Schrödinger equation with a truly discrete time theory. In the third scheme we
consider the spin system to evolve according to the usual continuous time theory
with an environmental Markov influence with each jump representing a discrete
time jump. In all these schemes we evaluate the expectation value of the x spin po-
larization and compare it with that calculated in the normal Schrödinger approach.
At present, experimental studies find it difficult to probe for the discreteness. It is
hoped that the following calculations will provide a motivation for the experimental
community to look for observational consequences of discretness in physics through
spin polarization phenomena.

2. Spin polarization precession in discrete time physics

We begin our analysis by considering a discrete time difference theory of the
form suggested in Refs. 14-17. The Schrödinger equation is replaced by

HΨ = ih̄
[Ψ (t+ τ/2)−Ψ(t− τ/2)]

τ
, (2.1)
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where τ is discrete time interval.

For the Hamiltonian of a spinning electron in a z component magnetic field we
have

H =
eh̄

2m

(

1 0
0 −1

)

B. (2.2)

The eigenstates are

Ψ =

(

a1
a2

)

T (t).

Eq. (2.1) gives

eh̄

2m

(

1 0
0 −1

)

B

(

a1
a2

)

T (t)=E

(

a1
a2

)

T (t)=

(

a1
a2

)

ih̄
[T (t+ τ/2)−T (t− τ/2)]

τ
.

(2.3)
The eigenvalues are

E± = ±
eh̄B

2m
,

with wave functions

Ψ+ =

(

1
0

)

exp

[

−
2

τ
sin−1(

E+τ

2h̄
)it

]

(2.4)

Ψ− =

(

0
1

)

exp

[

−
2

τ
sin−1(

E−τ

2h̄
)it

]

.

For a state that was initially polarized in the x direction we have

Ψ =





1√
2
exp

[

− 2

τ sin−1(E+τ
2h̄ )it

]

1√
2
exp

[

− 2

τ sin−1(E−
τ

2h̄ )it
]



 . (2.5)

For the x spin polarization at time t we have

< Sx >= Ψ+SxΨ = Ψ+ h̄

2

(

0 1
1 0

)

Ψ =
h̄

2
cos

(

4

τ
sin−1 eBτ

4m

)

t (2.6)

where

ω =
4

τ
sin−1

(

eBτ

4m

)

≃
4

τ

[

eBτ

4m
+

1

3!

(

eBτ

4m

)3

+ ...

]

. (2.7)

We see here, as in Ref. 11, that the spin polarization frequency has the usual
continuous time value plus corrections due to the discrete time difference dynamics
embodied in Eq. (2.1).
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As a second approach to the discreteness we assume that the temporal compo-
nent of the wave function advances in truly discrete time steps. Then Eq. (2.1) is
replaced by

HΨ(tn) = ih̄
[Ψ (tn + τ/2)−Ψ(tn − τ/2)]

τ
(2.8)

where we assume the discrete time points to be given by

tn =
nτ

2
, tn +

τ

2
=

τ

2
(n+ 1), tn −

τ

2
=

τ

2
(n− 1).

By choosing units that τ/2 = 1, we have

HΨn =
ih̄

2
[Ψn+1 −Ψn−1] . (2.9)

We assume

Ψn =

(

a1
a2

)

Un.

We still have for the spin component wave function for the eigenstates (+, −)

Ψ+ =

(

1
0

)

, E+ =
eh̄B

2m
, Ψ− =

(

0
1

)

, E− = −
eh̄B

2m
(2.10)

and for the discrete time difference component of the wave function we have for E+

E+U+n =
ih̄[U+n+1 − U+n−1]

2
. (2.11)

With the substitution

U+n = crn

we obtain

E+ =
ih̄r

2
−

ih̄r−1

2

r2
(

ih̄

2

)

− rE+ −
ih̄

2
= 0

r± =
E+ ±

√

E2
+ − h̄2

ih̄
= −

iE+

h̄
∓

i

h̄

√

E2
+ − h̄2.
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Hence

r+ =





E+

h̄
+

√

E2
+

h̄2
− 1



 exp

(

i3π

2

)

r− =





E+

h̄
−

√

E2
+

h̄2
− 1



 exp

(

i3π

2

)

. (2.12)

In the original units

r+ =

(

E+τ

2h̄
+

(

E2
+τ

2

4h̄2
− 1

)1/2
)

exp

(

i3π

2

)

r− =

(

E+τ

2h̄
−
(

E2
+τ

2

4h̄2
− 1

)1/2
)

exp

(

i3π

2

)

. (2.13)

Since τ is expected to be small we have

E+τ

2h̄
≪ 1,

then

r+=

(

E+τ

2h̄
+i

(

1−
E2

+τ
2

4h̄2

)1/2
)

exp

(

i3π

2

)

≈−
iE+τ

2h̄
+

(

1−
E2

+τ
2

4h̄2

)1/2

≈ 1−
iE+τ

2h̄
.

(2.14)
Also

r− ≈ −
(

1 +
iE+τ

2h̄

)

. (2.15)

We note that

(r+)
n≈
(

1−
iE+τ

2h̄

)n

=exp

[

n lne

(

1−
iE+τ

2h̄

)]

≈exp

(

−
iE+nτ

2h̄

)

=exp

(

−
iE+tn

h̄

)

.

(2.16)
Since

nτ

2
= tn, (for large n).

This is the usual continuous time solution for large n. In the case of discrete time
we have both solutions r+, r−, thus

U+n =
1√
2
(1− ǫ1) exp

(

−
iE+nτ

2h̄

)

+
ǫ1√
2
(−1)n exp

(

iE+nτ

2h̄

)

(2.17)
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for large n, nτ/2 → tn

where ǫ1 is a small variable parameter measuring the contribution of the solution
(r−)

n.

[

−1

(

1 +
iE+τ

2h̄

)]n

= (−1)n expn ln

(

1 +
iE+τ

2h̄

)

≈ (−1)n exp

(

iE+nτ

2h̄

)

for large n, nτ/2 → tn.

In constructing the solution in Eq. (2.17) we have included both the solutions
r+ and r− from Eq. (2.13). Since discrete time corrections to spin polarization
precession frequencies and the sinusoidal dependence of the x spin polarization
must be small from known measurements [18-20], contributions from the r− solution
must also be small since the known continuous results require only the solution r+
in the continuous limit

nτ/2 → tn (n large).

We have first assumed that ǫ1 is only measurable to first order and to ensure
normalization at n = 0, we must have

U+n(n = 0) =
1√
2
.

For the first order effects in ǫ1, the form of the solution in Eq. (2.17) is the only
one allowable to ensure

U+n(n = 0) =
1√
2
,

and similarly for U−n(n = 0), where normalization requires

(U+n(n = 0))2 + (U−n(n = 0))2 = 1.

Thus at n=0

U+n =
1√
2
.

Also for E− we have

U−n =
1√
2
(1− ǫ2) exp

(

−
iE−nτ

2h̄

)

+
ǫ2√
2
(−1)n exp

(

iE−nτ

2h̄

)

. (2.18)

At n=0 we also obtain

U−n =
1√
2
.
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If we evaluate < Sx > we have for an equal mixture of U+n and U−n

< Sx >n=0=

(

1√
2
,
1√
2

)

h̄

2

(

0 1
1 0

)

(

1√
2
1√
2

)

=
h̄

2
at n = 0.

Here we have assumed a linear superposition of Eq. (2.17) and Eq. (2.18) for the
spin function to give < Sx >n=0= h̄/2. For any n we have

< Sx >=

(

U∗
+nU

∗
−n

) h̄

2

(

0 1
1 0

)(

U+n

U−n

)

(

U∗
+nU

∗
−n

)

(

U+n

U−n

) (2.19)

< Sx >=

h̄

2
(1− ǫ1 − ǫ2) cos

(

eB

m

nτ

2

)

+ (ǫ1 + ǫ2)
h̄

2
(−1)n

[

1− ǫ1 − ǫ2 + (−1)n(ǫ1 + ǫ2) cos

(

eB

m

nτ

2

)] . (2.20)

Setting
(nτ

2
→ t

)

we obtain

< Sx >=

h̄

2
(1− ǫ1 − ǫ2) cos

(

eBt

m

)

+ (ǫ1 + ǫ2)
h̄

2
(−1)n

[

1− ǫ1 − ǫ2 + (−1)n(ǫ1 + ǫ2) cos

(

eBt

m

)] . (2.21)

If we have ǫ1 = ǫ2 = 0, we have the usual continuous time value for < Sx >.

Eq. (2.21) represents a formula which has small chaotic variations of < Sx >
due to the term

(ǫ1 + ǫ2)
h̄

2
(−1)n

which arises in the truly discrete time formalism. Thus, any small unexplained
chaotic fluctuations from the usual continuous value of

< Sx >=
h̄

2
cos

(

eB

m

)

t (2.22)

might be evidence for an underlying discrete time dynamics. Eq. (2.21) represents
a formula that can be used to ascertain both the qualitative and quantitative de-
viations from the continuous time formula for x spin polarization as a function of
time.
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In the third approach to a discrete time quantum dynamics we assume a Markov
process operative between the up and down spin states. If p = probability of a jump
from the down to the up state, q = probability of a jump from the up to the down
state, and if the probabilities at t=0 are 1/2, 1/2 for the up and down states, we
have after n steps

P (+)n =
p

p+ q
+ (1− p− q)n

(

1

2
−

p

p+ q

)

(2.23)

P (−)n =
q

p+ q
+ (1− p− q)n

(

1

2
−

q

p+ q

)

. (2.24)

Here P (+)n = probability of the up state after n steps and P (−)n = probability
of the down state after n steps. We also assume thet the Markov jump process is
operative in addition to the usual quantum Schrödinger formalism and write the
wave function as

Ψ(t) =





√

P (+)n exp
(

− iE+

h̄ t
)

√

P (−)n exp
(

− iE
−

h̄ t
)



 . (2.25)

Here t = nτ , where τ is a fundamental interval of time.

For the x spin polarization we have

< Sx >= Ψ+ h̄

2

(

0 1
1 0

)

Ψ = h̄
√

P (+)nP (−)n cos

(

eB

m

)

t. (2.26)

We see that the effect of the Markov process is to alter the amplitude of the x spin
polarization in a chaotic manner. The distinct signature of a Markov process would
be an amplitude that fluctuates in a manner according to Eq. (2.26).

3. Conclusions

We have seen that Eq. (2.6), Eq. (2.20) and Eq. (2.26) give distinct formulae for
the x spin polarization which have very specific signatures in each case. According
to Eq. (2.6), the frequency of precession would be a nonlinear function of the
external magnetic field, Eq. (2.20) would describe a behaviour for < Sx > that is
almost like the continuous time case except for the chaotic term varying as

(ǫ1 + ǫ2)(−1)n
h̄

2

in the numerator and the term

(−1)n(ǫ1 + ǫ2) cos

(

eB

m

)

nτ

2
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in the denominator. The small parameters ǫ1, ǫ2 specify to what degree the second
discrete time solution in Eq. (2.15) contributes. Eq. (2.26) would simply give a
chaotic variation of the amplitude of the x component of spin polarization with
the usual x component spin precession term providing a uniform background for
the chaotic behaviour of the amplitude. Probably the best way to look for these
discrete time effects would be to study the secondary effects generated by this spin
precession. Such an effect might be the polarization induced by precessing particles
in colliding e+ e− pairs that generates a neutral current. The cross sections for
various particle channels are sensitive to the polarization induced by the precession
of particles (electrons, protons, etc.). With a continuous beam of initially unpolar-
ized e+ e− the products of the reaction would mimic the polarization at the time
the reaction occured, i.e. the temporal behaviour of the spin precessing particles in
the magnetic field. Another probe to these discrete time effects might be the study
of secondary effects generated by a spin precessing particle in the atmosphere of a
pulsar where B is high. In this setting we might have an electron spin resonance
effect that could absorb outgoing gamma rays and leave missing lines in the emis-
sion spectrum. A careful spectral analysis of the gamma ray spectrum from the
pulsar might thus be a probe of the discrete time effects. More concrete evidence
for the discreteness might be found in experiments that probe for 4π rotation of a
spinor to generate constructive interference in a neutron interferometer or electron
interferometer [21-26]. The basic idea is outlined in Ref. 27 where two coherent
beams of unpolarized particles are considered, allowing one to propagate through
a magnetic field in a z direction and allowing the other to propagate without a
magnetic field and then recombining them to interfere constructively. The beam in
the magnetic field must undergo a 4π rotation of its phase. Since the parameters
used in constructing the interferometer are known (magnetic field B, path line L)
a comparison between the predicted phase change required for constructive inter-
ference and that which is experimentally observed can be made. In Ref. 27, a value
of 716.8 ± (3.8) degrees was found experimentally assuming the usual continuous
time precession frequency. The discrepancy could be attributed to discrete time ef-
fects and also possibly to a violation of the perfect SU(2) symmetry for spinors. It
is hoped that the experimental community might suggest further tests for discrete
time effects that lead to tests for the discrete time quantum dynamics.
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PRECESIJA SPINSKE POLARIZACIJE KAO PROBA OSNOVNOG
PORIJEKLA KVANTNIH POJAVA
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Dozvoljavajući razvoj spinskog sistema u skladu s dinamičkim procesima diskretnog
vremena, izračunali smo vrijednost valne funkcije u bilo koji trenutak uz danu
početnu vrijednost. Takoder smo izračunali vrijednost polarizacije x spina za bilo
koji diskretni trenutak i usporedili ga s vrijednošću za slučaj neprekinutog vremena.
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