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ZI"-convergence and convergence of positive series*
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Abstract. In 1827, L. Olivier proved a result about the speed of convergence to zero of
the terms of convergent positive series with nonincreasing terms, the so-called Olivier’s
theorem (see [17]). T.Saldt and V. Toma in [20] made the remark that the monotonicity
condition in Olivier’s theorem can be dropped if the convergence of the sequence (nay) is
weakened by means of the notion of Z-convergence for an appropriate ideal Z. Results of
this type are called a modified Olivier’s theorem.

In connection with this, we will study the properties of summable ideals Z", where h: RT —
R* is a function such that > h(n) = 4o0 and " = {ACN : 3, h(n) < +oo}.
We show that Z"-convergence and Z"*-convergence are equivalent. This is not valid in
general.

Further, we also show that a modified Olivier’s theorem is not valid for summable ideals
I" in general. We find sufficient conditions for a real function h: R* — RT such that a
modified Olivier’s theorem remains valid for the ideal Z".
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1. Introduction

We recall the basic definitions and connections that will be used throughout this
paper. Let N be the set of all positive integers, Ng = NU {0}, and R the set of all
positive real numbers. A system Z, ) # Z C 2V is called an ideal, provided that T is
additive (A, B € Z implies AUB € T) and hereditary (A € Z, B C A implies B € 7).
The ideal is called nontrivial if I # 2Y. If T is a nontrivial ideal, then Z is called
admissible if it contains the singletons ({n} € Z for every n € N). The fundamental
notation shall be used is Z-convergence introduced in the paper [14] (see also [5],
where Z-convergence is defined by means of the dual notion to the ideal so-called
filter). The notion of Z-convergence corresponds to the natural generalization of the
notion of statistical convergence (see [8, 19]).
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Definition 1. Let (z,,) be a sequence of real (complex) numbers. We say that the
sequence I-converges to a number L, and write T —limz,, = L, if for each € > 0 the
set Ac ={n : |z, — L| > €} belongs to the ideal T.

In what follows, we assume that Z is an admissible ideal. Then for every sequence
(x,,) we immediately have that lim,,_, . 2, = L (classic limit) implies that (z,,) also
Z-converges to a number L, but the opposite is not true. In other words, for an
admissible ideal Z we have Z¢;, C Z, where Zy;, is the ideal of all finite subsets of
N and Zy;,-convergence coincides with the usual convergence.

Let Zg = {ACN : d(A) =0}, where d(A) is the asymptotic density of A C N
(d(A4) = lim, 00 M, where #M denotes the cardinality of the set M).
The usual Zz-convergence is called statistical convergence. For 0 < ¢ < 1, the
ideal .V = {ACN: Y .4a79<oo} is an admissible ideal. The ideal M =
{A CN: > ca % < oo} is usually denoted by Z..

Z-convergence satisfies usual axioms of convergence i.e., the uniqueness of the
limit, the arithmetical properties, etc. The class of all Z-convergent sequences is a
linear space (see [14]).

The claim in the following proposition is a trivial fact about preservation of the
limit.

Proposition 1 (see [14]). Let I;,Z> be admissible ideals such that Ty C Zy. If
I, —limz, = L, then Io — limx,, = L.

Whenever 0 < g < ¢’ < 1, we get
Tin G I ¢ I C . C Ty, (1)

For a function h: R* — RT, such that > _h(n) = oo and ), .4 h(n) = 0,
an ideal Z" = {ACN : ¥ _,h(n) < oo} is called a summable ideal. For any
function h, the ideal Z" is admissible, so Tiin C .

Another type of convergence related to an ideal Z, the so-called Z*-convergence,
was defined in papers [13] and [14].

Definition 2. Let T be an admissible ideal on N. A sequence (x,,) of real (complex)
numbers is said to be T*-convergent to L if there exists a set H € T such that for
M =N\ H={m; <mg <--} we have limy_,o0 T, = L, where the limit is in the
usual sense.

It is easy to see that for an admissible ideal Z we have that Z*-convergence
implies Z-convergence. The converse is not true (see [14], where the authors give
a characterization of ideals Z, for which Z- and Z*-convergence are equivalent by
means of the property (AP)).

Definition 3. An ideal (not necessarily admissible) T C 2V is said to satisfy the
condition (AP) if for every countable family of mutually disjoint sets {Ay, Aa, ...}
belonging to T there exists a countable family of sets {By, Ba,...} such that the
symmetric difference A;ABj is finite for j € N and B = Ujoil B;cl.
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The property (AP) is similar to the property (APO) (see [6, 9] and [18]). All
ideals in (1) have the property (AP). There exist many examples of an ideal that
does not have the property (AP) (see e.g. [3, 14]).

Proposition 2 (see [14]). The statement Z*—lim x,, = L follows from T—limz, = L
if and only if T satisfies the property (AP).

An ideal Z (not necessarily admissible) is called a P-ideal if for each sequence
(A,) of sets belonging to Z there exists a set Ay, € Z such that A, \ A is finite for
all n € N.

The notions of P-ideal and ideal with the (AP) property coincide (see [4]).

In [17], Olivier proved the so-called Olivier’s Theorem about the speed of con-
vergence to zero of the terms of convergent positive series with nonincreasing terms.
Specifically, if (a,) is a nonincreasing positive sequence and Y.~ ; a, < 0o, then
lim, oo na, = 0 (see also [1, 12]). In [20], authors made a remark that the
monotonicity condition in Olivier’s theorem can be dropped if the convergence of
the sequence (na,) is weakened by means of the notion of Z-convergence. They
proved that for every positive real sequence (a,) such that Y | a, < oo, we have
Z. — limna, = 0.

In [11], there is a similar result for the ideals 780 (0 < ¢ <1). For every positive
real sequence (a,,) such that 2 a? < oo for 0 < ¢ < 1, we have 79 _lim na,, = 0.
The stronger condition of convergence of positive series also results in the stronger
convergence property of the summands.

Results of this type are called a modified Olivier’s theorem. In [2, 7, 15] and
[16], there is an extension of the results in [20]. Moreover, in [16], there is a nice
historical context of the object of our research.

In connection with the above results, we will study the properties of summable
ideals Z" for a function h: RT — RT such that Y, h(n) = co. We will show
that the notions Z"- and Z"*-convergence are equivalent. It is clear that a modified
Olivier’s theorem is in general not valid for summable ideals.

If we limit ourselves to a large class of ideals Z¢ for a function g: RT™ — R™ such

that ) ﬁ =o0 and 79 = {A CN: > ca ﬁ < oo} we will find sufficient
conditions for the real function g for the modified Olivier’s Theorem to remain valid.

2. Olivier’s theorem for ideals 77

First of all, we prove some properties of summable ideals. Let h: RT — RT be a
function with the following properties:

Z h(n) =oco0 and Z h(n) = 0.

neN ned

Then the system

Ih:{ACN : Zh(a)<oo}

a€A
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is an admissible ideal, so Z¢;, C Z". The ideal Z" is called a summable ideal. It is
easy to see that for a constant function h(z) = ¢, z € R* we have Zy;, = ", and
we also obtain the same for function h(z) = x, z € RT.

More interesting for our purposes are the admissible ideals Z" such that Z" #
Ztin, i.e., they contain an infinite subset of N.

The following theorem gives a characterization of such ideals.

Theorem 1. 7" # Ztin if and only if liminf, . h(n) = 0.

Proof. Suppose I" # Z¢in. Then there exists an infinite set M = {m; < my <
.-} & N such that

i h(my) < co.
k=1

From this we see that limg_o, h(mg) = 0; since h is positive, we have
liminf, o h(n) = 0.

Suppose that liminf,, o, h(n) = 0. Then there exists a set M = {m; < mqy <
-+ } C N such that limg_,o h(my) = 0. It means that we can construct an infinite
set M' = {my, < my, < ---} € M with property h(my,) < o for every i € N.

Consequently, we have
=1
Z h(mkz) < Z ?7
mkiGM' =1

therefore, the infinite set M’ belongs to Z" and so " # Zy;,. O

There exist positive functions g, h: RT — RT such that g # h and 79 = Z". The
following theorem gives sufficient conditions for functions g, h: Rt — R* to valid
I9 =1,

Theorem 2. Let g,h: RT™ — R such that Y.~ g(n) => .7 h(n) = cc. If

n=1
0< llnrr_lggfhgg < liyrlrlsolip% < 00,
then 79 = I".
Proof. The condition (n)
. n
0< h’rl;,Il)SOlip % < 00

implies that there exists such real number K > 0 that for every n € N we have
0<—=% <K,

therefore, g(n) < Kh(n). Let M € I". Then Y, ., h(n) < co. Immediately, we

have
Z gln) <K Z h(n) < oo,

neM neM
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therefore, M € Z9 and so Z" C 79.
Analogously using the condition
g9(n)

O<lgg£fm < 00,

we obtain 79 C Z". O

Problem 1. It would also be interesting to have the necessary conditions for the
functions g, h: Rt — RT such that 79 = I".

The next theorem shows that Z"- and Z"*-convergence are equivalent. See also
[10], where it is proved that each summable ideal is P-ideal, thus it has the property
(AP) that is a sufficient and necessary condition for Z"- and Z"*-convergence to be
equivalent.

Theorem 3. Let h: Rt — Rt be a real function. Then I"- and I"* -convergence
coincide.

Proof. It sufficies to show that for any sequence (x,) of real numbers such that
I" —limz, = L, there exists a set M = {m; < my < ---} C N such that N\ M € Z"
and limy_ 00 Zm, = L. Without loss of generality, we can assume that (x,) is not
convergent in the usual sense, but it is Z"-convergent. For any positive integer k,
let g, = 2% and

1
Ak:{neN : |xn—L|>2k}.

It is clear that A; C Ay C--- C A, C---, and there exists ng € N such that A,, is
an infinite set. As Z" — limz,, = L, we have A, € I", i.e., > nea, h(n) < oo.

Therefore, there exists an infinite sequence n; < no < --- < ng < --- of positive
integers such that for every k£ = 1,2,... we have
1
n>ng
neAy
Put
oo
H = U [(nk7nk+1> ﬁAk] .
n=1
Then
STham) < ST hm)+ D> h(n)+ -+ Y h(n) 4+
neH n>ni n>no n>ng
neA; neAs nEAy
<Lidliily
2 22 2k
< 00.

Thus, H € Z". Put M = N\ H = {m; < my < --- < my, < --- } and we show that
limg o0 Tm, = L.
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Let € > 0. Choose kg € N such that =i~ < e. Let my > mg,. Then my belongs

2kg
to some interval (n;,njy1) where j > ko, and does not belong to N\ A; (j > ko).
Hence my, belongs to N\ A; and then |z, — L| < ¢ for every my > my,, thus
limy o0 T, = L. O

Corollary 1. Ideals I" for a real function h: Rt — R have the property (AP).

The next proposition shows that all bounded real sequences are not Z"-conver-
gent.

Proposition 3. Let h: Rt — RT. Then there exists a bounded real sequence (x,,)
that is not I"-convergent.

Proof. Since ) .\ h(n) = oo, there exists a decomposition of N into two sets Ny

and N5 such that
Z h(n) = Z h(n) = co.

neN; neNg

For instance, let (n;) be a sequence of nonnegative integers such that
h(?’LZ‘,1 + 1) + h(’ni,1 + 2) + -4+ h(nl) > 1.
Define

Ny = U {’ﬂ : ni,1<n§ni},
1€Ng
i is odd

U {n : nji—1 <n<n;}.

1€Np

7 is even

Ny

It is clear that Ny, Ny ¢ Z".
Define a sequence (x;,) as follows:

0 ifneN,
Ty =
1 ifnéeNs.

The sequence (x,,) is real bounded sequence which is not Z"-convergent. O

Corollary 2. An ideal I for any real function h: Rt — R* is not a mazimal
ideal.

Proof. It follows from Theorem 2.2 in [13] that an admissible ideal Z is the maximal
ideal if and only if each bounded real sequence () is Z-convergent. On the basis
of the previous proposition, we have a contradiction. O

It is a natural question whether summable ideals Z” for a function h: RT — R*
can be used in a modified Olivier’s theorem in the following way:

If 3, cn hl(an) is a convergent positive series for a function 2: Rt — R and for
a positive sequence (ay,), then Z" — lim na,, = 0.
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It is easy to see that such modified Olivier’s theorem is not fulfilled in general.
Consider a function h: Rt — RT, h(z) = 2? and the sequence (a,), a, = + for
n € N.

Let g: Rt — RT be a function such that

Zi—oo and Z% 0. (2)

neN g(n) neh

Then the system of subsets of N, which denotes Z9 = {A CN: EneA oy < oo}

is again an admissible ideal. Ideals Z¢ seem to be more convenient for a modified
Olivier’s theorem.

If we put a function g: RT™ — R*, g(x) = z, we have the same result as in [20]
for a function g(x) = 27 for 0 < ¢ < 1 we obtain the same result as in [11].

The following example shows that a modified Olivier’s theorem is not valid in
general for an arbitrary function g: R™ — R and an associated ideal Z¢ with the
function g having properties (2).

Example 1. Put g: Rt — R™, g(z) = logy(x+1). It is easy to see that the function
g is an increasing function such that

1
Y = and liminf ———— =0.
ngl logy(n + 1) n—oo logy(n+1)

We show only that Y, m

have logy(z + 1) < x, and so % < log2(++1)'

= o0. [t is easy to see that for all x > 1 we

Using integrals for the last inequality,

we obtain
IR e
00 = —dz < —dx
1 1 logy(z+1)
Hence >, m = 0o. The ideal

1
Ii,ogz(erl) — {A CcN : Z m < OO}
acA

is the admissible ideal, for which a modified Olivier’s theorem is not valid. It sufficies
to find a positive sequence (ay) such that Y~ logy(a, + 1) < oo, but et
limna,, # 0. Take the set B = {2’C -1 : ke N} and consider the following positive

sequence (an):
1 .
= ifn € B,
ap =4 "
{1 ifne N\ B.

on

Let us count

Z log,(n + Z log,(n + 1) Z log,(n + 1)
n=1

neB neN\B

—ilo #+1 + > o i+1
_k:1 g2 2k_1 gQ 2n .

neN\B
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First, we show that the series Zzozl log, (ﬁ + 1) is convergent. From the in-
equality

0 <logy(z+1) < 2z,
for all x € R™ we have

log, (1 + 1> < L
2k —1 2k —1
Since the series Y oo, ﬁ is convergent, we also see that the series
e log, (2’&7171 + 1) is convergent.
In the same way, we also show convergence of the series ZneN\B log, (% + 1),
We will show that Iiog“’(“_l) — limna,, # 0. By using Definition 1 for any ideal I,

we have that a real sequence (x,) is I-convergent to zero if for each € > 0 the set
Ac ={n €N : |z,| > e} belongs to the ideal Z. In our case, it means that fore =1

and the sequence (nay,) the set Ac.—y = {n € N : na, > 1} belongs to et p
sufficies to realize that Ac—1 O B and B ¢ Ié0g2($+1). Count

1 > 1 =1 1
D v Sl B ey e il B v B
= log,(z + 1) P logy(2F — 1+ 1) = log, 2 = k

The next theorem gives a sufficient condition for a real function g: Rt — R¥
such that a modified Olivier’s theorem is true for an associated ideal Z9 with the
function g.

Theorem 4. Let a function g: RT — R have the following properties:
(i) g is nondecreasing,
(i1) g(nt) < g(n)g(t) for allm € N and t € RT.

If > 1 glay) is a convergent series for a positive sequence (ay), then 9 —lim na,, =

0.

Proof. We proceed by contradiction. Then there exists a positive sequence (ay,)
with >°°° ; g(a,) < oo such that the equality 79 — lim na,, = 0 does not hold. Then
there exists g9 > 0 for which A,;, = {n € N : na, >¢eo} ¢ Z9. Hence from the
definition of ideal 79 we get ZneAEO ﬁ = oo. For n € A., we have na, > &o.

Using properties (i) and (ii) we have
0 < g(e0) < g(nan) < g(n)g(an),

1
— < n f As .
g(EO)g(n) < g(ay) for every n € A,

Therefore,

Therefore, it must also be >~ | g(a,) = 0o, and this is a contradiction. O
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Problem 2. To find the necessary condition for a function g: Rt — RT such that
a modified Olivier’s theorem s true for an associated ideal 9 with the function g.
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