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Abstract. In this paper we consider the Sturm-Liouville equation
'+ (p°6°(x) — q(x))y =0 (1)

on a finite interval I, say I = [0,1], under the assumption that I contains a finite number
of arbitrary type turning points, which are zeros of ¢ in I. According to the four types
of turning points, first we obtain the asymptotic forms of the solutions of (1), and then
based on Hadamard’s factorization theorem we use this asymptotic estimates to study the
infinite product representation of solutions of such equations. Infinite product form of the
solution has a basic application in studies of inverse spectral problems.
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1. Introduction

In the literature dealing with differential equations we encountered a large number
of research papers studying the Sturm-Liouville equation, i.e.,

v+ (0?0 () —q(x))y =0, 0<z <1, (2)

where the functions ¢? and g are referred to as coefficients of the problem, the
function ¢?(z) as the weight, and g(z) as the potential function, which are real
valued functions in [0,1]. We call the zeros of ¢?(z), assumed to be a discrete set,
turning points or transition points (TP) of (2). Let us define I (I_)) by the set
of x € (0,1), where ¢?(z) > 0( ¢*(x) < 0) and x € I if ¢*(x) = 0. The weight
function ¢?(z) is said to be indefinite if I, and I_ each have a positive Lebesgue
measure. In the vast majority of differential equations, especially in equations with
variable coefficients, we can not obtain an exact solution, so we must resort to
methods of approximation. One of the most important approximation methods
are asymptotic methods, representing the solution by an asymptotic form. There
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are in-depth studies for the existence of the asymptotic solution of (2), depending
on parameter p?. In [20], Mingarelli has presented a historical review. There are
fundamental roles of asymptotic techniques for solving differential equations of the
form (2), and also in the analysis and development of the methods of modern applied
mathematics and theoretical physics. Based on transformations to a first order
system, an asymptotic theory has been developed for linear differential equations
by some authors who started from the work of Birkohoff [2], where we see various
diagonal transformations. The mentioned methods can be found in the books by
Wasow [27, 28]. There are important innovations in studies on the asymptotic
approximation of solutions of Sturm-Liouville equations, such as in the results of
Olver [23], Doronidcyn [4], McKelvey [19], Kazarinoff [11], Langer [14], Dyachenko
[5], Wazwaz [29], Tumanov [26], and Kheiri, Jodayree & Mingarelli [12].

On the other hand, an important issue is how to deal with the equations involving
turning points. The importance of asymptotic methods in obtaining the solution of
a Sturm-Liouville equation with multiple turning points has been realized by Olver
([23, 22, 21]), Heading [9], Leung [16], and Eberhard, Freiling & Schneider [6].

But, in asymptotic methods for solutions of differential or integral equations we can
not obtain a closed form for the solution and this is a weakness of these methods.
Indeed, in methods studying dual equations we need a closed form of the solution.
On the other hand, for representing the solution as a closed form first we note that,
based on the results of Halvorsen [7], any solution y(x,\) of (2) with a fixed set of
initial conditions is an entire function of A, of order «, where a does not exceed %,
for each fixed x € [0, 1]. Therefore, by the classical Hadamard factorization theorem
[17]), one can express such solutions as an infinite product, which is a closed form
of the solution, and so this provides us an effective tool for approximation purposes
in the various applications. We can see some applications of such infinite product
representations in [3, 13, 25].

In [18], we considered

v+ (0*¢° (z) — q(x))y =0,

where z € I = [0,1], subject to initial conditions y(0,A) = 1,3(0,A) = 0, under
the assumption that g(x) is Lebesgue integrable on the interval [0, 1], and also ¢?(x)
has m zeros, which are called turning points of the problem, such that one of the
turning points is of odd order, while the others are of even order. In other words, it
is assumed that

(x — :vv)_é“,

s

¢*(x) = o(2)

v=1

where ¢ = 4k + 1 and ¢, = 4k, v = 2,...,m, based on the notations of [6], 1 was
of Type IV, while xo, z3,...,z, were of Type IL. In [18], the solution y(z, \) of (2)
with these assumptions is represented with an infinite product for any « € [0,1]. In
this paper, we consider the same equation (2) on a finite interval I, say I = [0, 1],
subject to arbitrary initial conditions, say, for example, y(0,\) = 0,y'(0,\) =
The equation can also have an arbitrary number of turning points of any kind.
Corresponding to the shape and form of the asymptotic distributions of eigenvalues
we obtain the infinite product representation of the solution of (2) between two
successive turning points.
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2. Notations, fundamental solutions and preliminary results
To provide asymptotic fundamental solutions, let us consider
Yy + (P*¢*(2) — q(x))y = 0, zel=[0,1], (3)

where ¢? and ¢ are real functions, and p? = X is the spectral parameter. Suppose
q € L2[0,1], and without loss of generality, let ¢ be a positive function, and also

(CL‘ - ‘Tv)evv (4)

=k

¢*(xz) = o(2)

v=1

where 0 = 290 < 21 < 22 < - < Xy, < 1 = Xypy1, &y € N, ¢o(x) > 0 for
x € I =10,1], and ¢y is twice continuously differentiable on I. In other words, the
equation has m turning points of order /,.

Turning points are classified into four different types according to the following
definition: For 1 <v <m, let I, . = [Ty_1 + €, Ty41 — €], then

Iy =4k ¢*(2)(z —z,) " <0,
T I, if 4, =4k;¢*(z)(x —z,)"lv >0,
T L if 4, = 4k 4 15 6% (2) (@ — )i <0,

IV, if 4, =4k +1;¢*(z)(x — z,)"lv >0,

is called the type of x,, where it is assumed that x € I, . .
Furthermore, we set

and
2, if T, = III,IV
191) = ; (5)
1, if T, =LII
1, ifT, =11V
2, ifT,=LII

Indeed, we define

[1]51—}—0(%), as A — 0o
[a] = a+ O(p~7°), aeC, and o¢=min{ur,po,. .., tm}-

For pe S,

v
Si={p|largpe [—Zao]}a

it is shown in [6] that for each fixed = € I, ., according to the type of wx,, there

exists a fundamental system of solutions of (3) {ZUT)”l(:C, 0), Zg:’é(x, p)}, which are as
follows:
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e Turning point of type I:

, | ¢(z) |3 epffvlaﬁ(t)\dt[l], Ly 1 < T < Ty
Zua(@p) = : J7 o0t )
| ¢(x) |72 cscmuype’=v 1], 2y <z <yt
r | 9(x) |75 7P LN, g <o <o,
Zua(®,p) = : o J7 60t ’
| p(x) |72 sinTpye P o 1], 2y <z < Tpt1

(tp) 371 CSC T hye

wm(—1+542) 2Hv¢(wv) [1]7

2 T — 1)
Vo 1 1 Ho 2””’@/](1‘ )
ZI . — 3 Mo (=g t+ig) 2 P\ 1
v,2($ 7p) 9 (Lp)z € 402 F(l _ ,va)[ ]7

vl = Jim o5 { [ ¢<t>dt}é_’“ ,

rT—T1 N

and we have
W(p) = W(Zg,l(xu p)u 25,2(:E7 p)) = _2/)[1]7

where W(f(z), g(z)) := f(z)g'(x) — f'(x)g(x) denotes the Wronskian.

e Turning point of type II:

1

| (z) |72 eI O] g < <,

11 _ © @
Zoa®@P) =4 | o) [ esempo eI O] 4y cos e~ 7 190Ny,
Ty < T < Tys1

1

| $(a) |3 {e e PO g cos e o 1PON ],

ZH (z,p) = Ty—1 < T < Xy
| o(z) |_% Sinﬂﬂve_lpfmm”|¢(t)‘dt[1]ava < T < Tyl
V2 pyy 2P )
Zil}{l(xU’p) = Tﬂ—p%_ﬂv CSCWMU(?ZW(}L_Q)F(%(ZU))D]’
\/ﬂ 1 1_ poy 2““¢($ )
ZI (2. p) = gHvgur(z—r5) 2T\
v,Q(I 7p) 2 P € F(l_ﬂv)[ ]a

W(p) = W(Z5 (2, p), Z (2, p)) = —2up[1].
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e Turning point of type III:

ZIH(:zz, )= { | o(x) |*% w [T 16(t) \dt[ 1], 2ot <2<

51 0(@) |78 ese e S POMHE ) 0y <0 <

211 (3, p) = { |p(z)|~2 {e—zpfiuw t)ldt[z] 4 Zelpfil(b(t)‘dt[l]},%ﬂ e,
, 2| ¢(z) |2 sin Thue o P JI, 160 dt+4F F1], @0 < & < Tosa

V2r 1_ 2t ()

)

7 (g ) = o , 1
vt (@0, p) = —5=(1p) 77" cscmu P(l_m[ ],
2 Ty v 2Hv v
288 00np) = Y ) e oo T 2
W(p) = W(Z,1{"(x,p), Z)5 (x,p)) = —2up[1].
e Turning point of type IV:
|¢( ) |72 e L PO gy < p <,
Zi}{(x,p) = T (z) |—§ {ezpjzu |¢(t)\dt*1%[1] (7)

ij |9()|dtteF 1]}, Ty <2 < Xyt

el ¢<x> B S
x,p) = ) )
2sin 5 | ¢(x) |=2 {e—zpfxu PO F N 2 < 2 < 2ps1

(8)

Zy1 (0, p) 5 P? “”CSCWﬂvm[l]a (9)
2850 p) = Y3 oo Tty Ty (10
W(o) = W(Z,Y (2. ), 215 . ) = ~2001) )

Based on the result of Halvorsen [7], the solution y(z, A) of (3) under the initial
conditions on ¥,y at a point ¢, 0 < ¢ < x < 1, is an entire function of A of order
2 if [T]¢(t)|dt # 0. On the other hand, an entire function of finite order I can be
represented as

f(z) = zme?) H(l — D emnta @) G

an

)
n

where a,, are its zeros arranged in an increasing order, h < I, g(z) is a polynomial
of degree ¢ such that ¢ <, and m is the multiplicity of origin as a zero of f(z). For
example, we provide two well-known results for later uses:

oo

sinhz = z H
m2ﬂ'2
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and
a 202 > z
sinhcyz = ¢cv/z H (1+ W) =cz H (1+ 2_2),
m=1 m=1 m
where z,, = 2%, and the domain of the function f(z) = 27 is the complement of a

negative real axis z < 0, while the range of 22 is the right half of the z plane with
the imaginary axis excluded.
Moreover, for the entire function J/ (z) [1]

J(2) = % ITa- ;—72”) v>0, (12)

where

2
~ mm
]2 m2 2

+ O(1), (13)

are the positive zeros of J|(z). By putting z = cv/A, T(1) = 1 in (12) we obtain
1 Ac?
' —
JI(C\/X) =3 H(l - ﬂ)a (14)
and similarly we have

RV = 3 [0 +25) (15)

Jm

3. Asymptotic form of the solution

We consider the following second order differential equation:

y" + (A\*(z) —q(x))y =0, tel=][0,1] (16)
y(0,A) =0, ¥'(0,\) =1, (17)
where A = p? and we suppose that ¢?(z) is of the form (4), that is, the problem

has m turning points x1, xs, ..., Tm,, in I, which are zeros of ¢. The solution of the
problem in I; ., can be obtained by applying the initial conditions to

y(@,p) = Cr(p) Z{} (2, p) + Ca(p) Z{ o (w, p), @ € L.
Consequently, in view of formulas {Z;*Fl1 (z, p), Z;‘FIQ (x,p)} and {Z;*Fl1 (21, p), ng(:zrl, )},
we have

Yoo (@, p) = H(z, p)e= 0" O S5 6@t g (),

y(xla p) = F(x17u17 p) ¢sc Wﬂle(_l)el (L)ﬁlpf(;zl |¢(t)‘thk(xl7 p)7

where H(z, p) and F(z1, 11, p) are obtained using the fundamental solutions accord-
ing to the type of turning point 1 and applying the initial conditions, k is the same
asin /4 =4k or /1 =4k + 1 and

v(w)
Ey(z,p) = [1] + ) ey, ()],
n=1
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such that a2 = a; = —1,00 = —a—1 = 1, Bry(a) (%) # 0,0 < 5 < Bra(w) < Bra(z) <
< Br(z)(x) < 2maxr{Ry(1),R_(1)}, where

x) = /0”” vmax{0, $2(t) }dt, (18)
_ /O " Jmario.— Wt (19)

Furthermore, the integer-valued functions v and by, for e sufficiently small are con-
stant in intervals [0, 21 — €] and |21 + €, 22 —€]. In the following lemma we obtain the
asymptotic solution of the problem (16)-(17) in the interval [z,, Z,+1) by a recurence
relation, back from the solution in the interval (0, x1].

Lemma 1. Let Y, »,..)(,p) be the asymptotic solution of initial value problem
(16) in the interval (xy,xyy1). Then

Yoy (@, p) = H(z, p)e0" W2 IS 1601 By (1 o) — Az, p)Ex(z,p),  (20)

and for x € (xy,Ty41), v > 1, we have

Su—1(,)0v it d
y(zv,zv+l)($7p) —A $1, H CcsC 219 71 -1 O] pz'ﬂi<wu i [b(t)|dt
X <Xy (21)

% 2w <auiTy=111,1v (= 1% %e(*l)évil(b)%pfzxv W(t)'thk(fE,p),

where r is the number of turning points x; < x,,, which are of type I11 or I'V.
Furthermore,

y(@1,p) = Flx1, pun, p) escrppe D" O[T 6O R, (4, p), (22)

and for x, > x1, turning point II or IV, we have

1 _ (L b [ 9 Uy
y(z0, p) :ﬁF(ﬂﬁmump)e(Q Do) (5= (=D W e [ 1t ooy Hcsc o

T;<Ty

% e( 1S ) p >, i<y 1+1 [p(t)|dt Zz i <wmy:Ty=II1I, v (=1)% T Ek(xmp)
Similarly, for x, > x1, turning point of type I or 111, we have
cse quH cse %

z;<Ty

:isF(x'leu”LhLp)e(zfﬁv)bﬂ'(iéJr%) ( 1)91 )01pf ‘qb t)|dt

Y(xv, p) 5

X 6( 1)5U 1( )6UPZz <zy l+l [p(t)|dt Zx i <wmy:Ty=III, IV( 1)6v%Ek($v,p)

where s is the number of turning points x; < x,, which are of type 111 or IV.

Proof. Clearly, (20) and (22) are evident as mentioned above. Now we fix x €
(21, x2), then by using of {ZzT21 (z, p), Z2T722(;v, p)} and Cramer’s rule we can determine
the connection coefficients A(p), B(p) such that

y($1,z2)($7p) = A( )Z2 1(1: p) +B( )Z (LL' p)
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The continuation of the solution y(z, \) to the interval (z2,z3) satisfies

y(mz,ms)(xa p) = A(p)Zgjzl (ZE, p) + B(p)Z;zz(:E, p)'

This procedure can be used to calculate the solution in the remaining intervals.
Now we suppose that ¥z, z..)(%,p) = D, z,1) (€, p)Ex(x, p) is the asymptotic
form of the solution of initial value problem (16)-(17) in the interval (z;,2;y1),
1 =1,2,...,m, with x,,41 = 1. By the above procedure and according to the
fundamental solution form introduced in Section 2, we can easily show the following
assertions:

i: If z, is a turning point of type I, then

Diesonsn) (@ 0) = Doy oy (@0, p) csC mprpe? S 121
ii: If x, is a turning point of type II, then
L d
D(quzv+1)($7 p) = D(1v717mv)(‘rv7 p) CSC T fiye P Lz, 16 "
iii: If z, is a turning point of type III, then
1 x d LI
D(mu,mwrl)('rvp) = ED(wv,l,mu)(Iva p) CSC 2 Pf [$(0) e+

iv: If z, is a turning point of type IV, then

1 ’U L T ur
D(mv,zu+1)($7p) D(mv lzv)({L'U,p)CSC Pf [#(E)ldt = .

And this proves the lemma. O

Example 1. Let y(x, p) be the solution of (16)-(17) and suppose that the first turning
point x1 is of type IV (that is, of order Iy = 4k + 1) and other m — 1 turning points
are arbitrary. Using the fundamental solutions {Z{Y (x,p), Z{% (x,p)} one can get

y(:v, p) = (le,‘{(ovp)zll,g(‘rv p) - le,‘{(‘rv p)le,g(Ovp))v MS (07 xl);

—2p
then from (7) and (8) we conclude

- W{epﬁf [0t — emp S5 16D g e (0

y(:li,p - 2p ,5171)7

or

lp(x)¢(0)| = er J3 190t
2p

Furthermore, by virtue of (9) and (10) we get

y(z, p) = (x,p), x€(0,21). (23)

|¢(O)|7%\/ 27Tp%’“12“1 P(x1) csemug o S 9]t
_ E
y(z1,p) = 41—\(1 Ml) k(z,p)-
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Using Lemma 1 we calculate

=1
y(o. p) = [PEOONT Tl o [ loateon [2 1008~ 0 ) 0 < o <y
4p 2
(24)
We note that (24) can also be obtained directly.
Now for a turning point of type IV, using Lemma 1, the solution in the interval

(Xy, Tyt1) 18 of the form

—1
1 |o(x)p(0)]| = T Ty @y _um ThL;
y(zy,mv+1)(x7 p) :2_k % cse 9 cse Tep Jo lomldt=5 H ese 929, —1

22<T; <Ty

Sy — Sy Ti41 Sy L
xe(_l) 1(‘) pzxi<a¢y Ii+ |¢(t)‘dtezzggzi<zv:Ti:III,IV(_1) T

x ez, |¢(t)‘dt7%Ek(;v, p).

(25)
Furthermore, for a turning point of type 111, we have
-1
1 0)|= v yr i
Yeesanan) (@:P) :ﬁw s % s 7”; op T L6l I cse 2
P

22<2;<Ty
_ @iq1 .
% 6(71)% I(L)‘S"’pri@v mi+ |¢(t)‘dtezz2§zi<zv;n:1u,1v(*1)%Tﬂ
x t dt
« P Joy |@)dt+ 4 Ep(z, p).

Similarly, for a turning point of type 11, we obtain

1 |p(2)(0)] 2w =1 - T
y(zy,mv+1)(x7p):yTCSCTCSCTFuvepIO l¢(t)ldt— 5 H 0S¢ 55—

225 <Ty

Sy—1(,\8 i1 5
X 6(71) v vpzmi<mv o, |¢(t)‘dtezzzgzi<zu:7‘i:111,1v(71) v

« e J7, eIt gy (3, p).

(26)
And for a turning point of type 1, we have
1
1 [p(x B! s T
Y0wo zor) (T 0) = o %Cse 5 CSC 7Ty eP Jo 1o(D)]dt H csc o

T2<x; <Ty
X e(—l)“”*l(b)‘;vpzzi@v :;41 W’(t)|dtezx2§zi<zv:n:111,1v(—1)%%
x e o POl R, (2, p).
Indeed, according to Lemma 1 for a turning point of type I1 or IV, we obtain
1 9(0)]~ 2\/2mpaTH1 28y () ese s, P S 1B(D)]dt (20, )um (3~ )
2¢ AP(1 — pa)

X H csc 27;7—i1 R el (27)

T <Toy

y(xv, p) =

1)51/ L

% eri<zv:Ti:III,IV(_ 1 Ek(fbvyp)-
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And for a turning point of type I or 111, we have

—1 1_
1 |¢(0)| 24/ 27T(Lp)2 “12”1’¢($1)CSC7T/LU epfozl |¢(t)\dte(2—19u)wf(—%+”7”)
25 AT — )

T _1\6v—1 S Tit1
X H csc 2191_%116( D ()P, cwy Jui T 1O(B)]dE

Sy Lm

X eZzi<mv:Ti:IU,Iv(71) TEk($v,p)-
(28)

4. Infinite product representation

Now let y(x, A) be the solution of initial value problem (16)-(17). For each fixed
x € I, the function y(x, A) has a set of zeros, {\,(x)}, such that y(x, A, (z)) = 0.
Therefore, these zeros are correspond to the eigenvalues of the associated Dirichlet
problem for equation (16) on [0, z].

First, let 0 < = < x1, where x; is the first turning point; then the Dirichlet problem
associated with (16) on [0, z] has a sequence of negative eigenvalues, {\,(z)}, if 21
is of type I or IV, and a sequence of positive eigenvalues if z1 is of type I1 or I11,
such that Hadamard’s theorem yields:

- A

where the constant B(x) does not depend on A but may depend on z. By substituting
p by ip in (20) and using ([15, Theorem 7]) or ([24, p. 26]) and [8] from y(x, A) = 0,
we see that each function A, (x) has the following asymptotic:

1

(P (a) = i + O,
0

0<z<a. (30)
In order to estimate B(z) we rewrite (29) as follows:
e N =B [[(1 -
, An ()

n=1
—B@T] % (31)

:Bl(x)Hm7

with

where z,, = R’j—’(rm).

2
We note that on any compact subinterval of (0, 1) the infinite product ] A_Z(;) is
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absolutely convergent since

—Z

Am

2 1
) :1+O(W)’

where the function /\:nz(g;) continues and such that the O-term is uniformly bounded
in .

For x = x1, from (22), the eigenvalues of Dirichlet’s problem associated with (16)
have the following distributions:

—~

1 1 — —nﬂ- + (M — E) l
()5 (o) = S O (32

Then

y(e1,A) = E() [T -

n>1

/\n(xl))’

by Hadamard’s theorem.
Now, due to the following distribution of positive zeros of the Bessel function of
order pi, jn, n=1,2,... [1]

2

Eeoney oG

2
the infinite product [] m is absolutely convergent. Therefore we have

Jn

y(@1,A) = Er(2) [

)

_ 2
where FEi(z) = E(z)]] m'

The Dirichlet problem associated with (16) on [0, ], when z € (z1,22), has a
sequence of positive and negative eigenvalues, {(1 — 6z, ;)v/An1(z) = (1 = 6z, ;)

'%1(90)}201:17 {a- 6w1,11) —Ani(z) = (1 - 6“1”)7‘”1(58)}201:1, respectively, where
¢ is the Kronecker delta function. Without loss of generality, we assume that the
function r(x) changes its sign and as a result we will have both positive and negative
eigenvalues. From the asymptotic solution (21) we have

nm— I 1
Un1(z :m74+0(_)7
T T et

and
nrt— o

1
T x :—74 — ).

Similarly to the previous interval, by Hadamard’s theorem, we have

y(x,\) = F(x) H(l—L)H(l—#), r1 < T < Ta.

Tn () Up,1(7)

n=1 ’ n=1
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Due to the following distributions [1]:

Jn 1
—"—— =14+ 0(—),
R (2)up () (n2 )
=2
—Jn 1
—_JIn 14 0(=
R? (z1)rp1 () + (n2 )
where En, n=12,..., are the positive zeros of J{(z), we conclude that the infinite

products [] m and [] m are absolutely convergent, 1 < x < x3.

Then, we may write

y(z,\) = Fi(z) H AN=7Tm (;))R% (z1) H R_Q‘_(x)(u]?; () — \)

)

where

x1)rn1(z)
Now, let z € (x4, Ty41), T > T2, and x,, is a turning point of type II or IV. In this
case, the Dirichlet problem associated to (16) on [0,z] has a sequence of positive

and negative eigenvalues, {1/ Any(2) = Uno ()21, {V/ =M (@) = Tno(2)}25 1,

respectively. From the asymptotic form of the solution, (21), we have

_ I —j2
Fi(z) = F(2) H R2 (2)up () H R?(

U () = nm — Zauﬁmig;wv:Ti—IH Iv(_l)évg + O(l),
Ezi<zU:Ti:IV,II fxilﬂ lp(t)]dt + f o(t)|dt n
o (1) = — nm — Zml<m;<mv =1y (= 1)6 % n O(l)
Y vicayietin Jo, |0 )dt + fo " lo(t)|dt n

For x € (24, Ty41), T, > @2 of type I or 111, the Dirichlet problem associated with
(16) on [0, z] has a sequence of positive and negative eigenvalues with the following
distributions:

u (JJ) :TLTF B ZmlSwiﬁmv:Tizlll,IV(_l)éu% 4 O(l) (33)
D i< Ti=IV,IT ;fl lp(t)|dt n
NT = cu<u —1)0vz 1
Tm,(.%') — _ Z 1<z <mo: Ty =I1L,IV ) 4 +O(—).

> vicanmimtint Jy, lO@)|dE+ [T 16(0)]dE + [i |(t)|dt n
(34)

By Hadamard’s theorem for z, < x < x,41, T, > 2 of type II or IV, we have

g\ = Ca) [0 - —2)a - —2),

S T () Unyp (T)
By the following distributions:
=2
Jn 1
—_Jdn 14 0(=
R (2)uny(z) + (n2 )
_jn 1
R N Y
R? (24)rny (T) + (n2 )
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where En, n =1,2,... are the positive zeros of J;(z), we conclude that the infinite
5721 75‘71

products [] R ()o@ and [] ) e absolutely convergent for each z €

(Ty, Tyt1). We write

y(e, ) = (@) ] (A~ rnv(ij))R% () 10 (ttno () :;\)Ri(gc),

n>1 Jn n>1 Jn

with

H _]n )
L) U (T R2 (240 ()

Similarly, for a fixed z € (2, 2y41), where z,, is of type I or III,

— TnolT % T U (T) — 2 Ty
y(x,\) = Ay (=) [[ (A ;2))R ( )H (tno () 3/\)R+( )
n>1 n n>1 5

)

where

H R2 _]n

T‘nU

Furthermore, for z5 < z, < x,,, we have

(A — va(:vv))R% (v) (U (20) — )‘)R2 (zy)
y(xvvp) = M'U('r) H ~ H 7;2 - ) (35)
m>1 Jm m>1 m
where 7,,,,m = 1,2, ..., is the sequence of positive zeros of J o3 and
nm+ (Wv B Z$1S$i<$viTi:III,IV(_1)5U ) 1
’U,nv(l'v Tl + O(_)7 (36)
D<oy etV Ja, | B(E)]dE n
P () = — W= 3 ) s <y T=11L IV(_l)(su% n (l) (37)
o s <y Ti=1IL1 ;fl lo(t)|dt + [ [6(t)|dt n’

Now, we prove the following lemma.

Lemma 2. Let ¢ € (zy,Tyy1), and let 2, be a turning point of type II or IV.
Suppose

m27r2 m7r2

Ri(x) 2R3 (x)

U (T) = +0(1), m2>1

Let jn, n=1,2,..., be the positive zeros of J|(2); then for fived x in (., T,41) the
following infinite product is an entire function:

(umo(z) = \)RY ()
H 72 - ’

m>1 .7777,



62 H. MARASI, A. SOLTANI AND A. JODAYREE AKBARFAM

Moreover,
(Umfu(x) _ )\)RQ (ZZT) logn
11 — = = 2J{ (VAR (2)) (1 + O( E),
mo1 Jm "
uniformly on the circles |\ = 2(;)

Proof. From (13) we can obtain

Zl(umv(x)j_z)‘) _1| Z|/\+O

m>1 m m>1 Jm

Therefore, on any bounded subset of a complex plane it is uniformly convergent and
this yields that the infinite product converges to an entire function of A\, whose roots
are precisely umy(z), m > 1. Now by using of (14) we have

1 AR? (z)
AR @) = T - 2=,
Consequently
(umv (m)—)\)R2 (1)
S umv
)\RTS (@) =2 H N
H(l - Jm ) R2 ( -
Furthermore,
~2
o (2) =X [tmo (@) = g2 (x)l 0(1)]
) - = .
" A IRz o~ A IRz =
Therefore, on the circles || = —gﬁ the uniform estimates
1 .
U () — A 1+O(ﬁ)’ if m=n,
N 1 .
W_A 1+O(m), 1fm7§n,

hold. But if @y, m,n > 1 are complex numbers satisfying

1

|amn| = O(W

)’ m#n’

then for each n > 1 we have (for more details, see [25, p. 165])

logn

[T (+am)=1+0(

m>1,m#n

).
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Therefore,

IT ‘et =2 — 0801 o(h) =14 022,
m>1 (o) - A

and hence

logn

0 (tmo () - NEE) o p (/3R (2))(1 + O

))-

n

O

Lemma 3. Let x € (xy,%yp41), and let x, be a turning point of type 11 or IV.
Suppose

m2m? mm?
muv = - O(1 s > 1.
(@) = —pra s Y apr gy TOM ™
Let jn, n=1,2,..., be the positive zeros of J|(z); then for fited z in (x,,Ty41) the

following infinite product is an entire function:

2
m>1 Im

A — Too (2)) R (24
[[ Qo rm @R ),

Furthermore,

0 A= wmn EDEZ(20) _ o 300 AR ()1 + O(lo%))’

n3r?

uniformly on the circles |\ = ()

Proof. This follows from (15) and using the method of the preceding lemma. O

If z € (zy, Zp+1) and z, is a turning point of type I or III, similar results can be
_ 2 _ 2
obtained for the infinite products [[,,,~, %;M and [[,,,>, w.

Lemma 4. Let x € (24, %y11), and let z, be a turning point of type I or II1. Suppose

m2m? mm?(py + 1)
U (Ty) = +0(1), m>1.
@)= ) T R OV
Let Ty, m = 1,2, ... be the positive zeros of Juv+%(z),' then for fized x in (xy, Tys1)

the following infinite product is an entire function:

U (To) — N R2 (2,
L]

m>1
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Moreover,

T Lol - VIEED ki, 4 2) (R (o) VR 0D

m>1 m

logn

)-

Proof. It can be easily proved from the infinite product representation of .J,, +3 (2)
(see [1]) and using the method of Lemma 2. O

X Ty w3 (Ry(z)VA) (1 + O(

Now we can prove the following main results for the infinite product representa-
tion of solutions of (16)-(17).

Theorem 1. Suppose y(x,A) is the solution of (16)-(17) for 0 < x < z1. We have

Y@, )) = [6(2)6(0)[ R () T 2= 2ml2),

2
V4
m>1 m

where zm = 705, R_(x) and A\p(z),m > 1, were obtained in (19) and (50),
respectively.

Proof. Using (31) and (23), we have

y(z,A) = Bi(z) H A _;m(x> = |¢($)§£O)|T el o |¢(t)thk(x,P).

Therefore, we obtain

By (x) = |$(x)(0)| 2 R_(x).

Similarly, we have the following theorem.
Theorem 2. For x = z1,

9O Y@ (o yim [[ A=Al 2 )

T1,A) = -
v, ) 211 Ja

)
n>1

where R_(x) is defined in (19), jn,n = 1,2,... represents the positive zeros of the
Bessel functions of order p1, Ap(x1) obtained in (32) and

vler) = Jim 6 H@){ [ ol
Tr—T1 1

Theorem 3. Suppose y(x,\) is the solution of (16)-(17) for x, < x < Tyt1, Such

that x, is a turning point of type I1 or IV. We have

17

y(@, ) =55 716@o0)] F RE (@) R (@) ese L T ese 51

A — Tow () RZ (2 U () — N R2 (x
><H( (z)) ()H( ()~2)+()

72 A
m>1 Jm m>1 Jim



INFINITE PRODUCT REPRESENTATION 65

where k is the number of turning points x; < x,, which are of type III or IV,
Ry(x), R_(x), 9, {timo(xy)} and {rmv(zy)} were defined or obtained in (18), (19),
(5), (36), (37), respectively.

Proof. By making use of (14), (15) we find
eR- (zo)VX 1

. cos(R x\/X—E O(—
e TIRTETEW L IO Tt

T (R (@) VN ((R-(2,)VA) = )}

as A — oco. By lemmas 2 and 3 on the circles |A\| = min{ RZQ(’;Z L R2 (x)} we have

72

(A — va(x))Rz— (zo) (Umo () — )‘)RQ (z)
H 52 H =

m>1 Jm m>1 Im
4R7(acv)\/x 1
=< {cos(Ro(z)VA — Z) + O(==)},
TR (z,)R2 (x)V/X 4 VA

as A — co. Now by applying the asymptotic expansion of y(z, A) in (25) or (26) we
get
y(@,\)
=T (@) R2 (x4) (umo (2)=A)R3 ()
[Lisi ———Ilws1 — =

i i

Cyp(z,\) =

L mH1 T

—r 0@ F R (@) R @) ese L T eso i

22<z; <Ty

Similarly, we can prove the following theorem.

Theorem 4. Suppose y(x, ) is the solution of (16)-(17) for x, < x < Tyi1, Such
that x, is a turning point of type I or III. We have

|¢( Vo (0 )7%R%(x)R_%(xv)csc% H csc 227_2

22<w; Ty

y(@,A) = 2k4

% H - va RQ* (I) H (Umv(ilf) i /\)R?F(xv)

9
m>1 Jm m>1 Jm

where k is the number of turning points x; < x,, which are of type 111 or IV, and
Ryi(x), R_(x), %, {tmo(@)} and {rm,(x)} were defined or obtained in (18), (19),
(5), (33), (34), respectively.

Theorem 5. For x = x, x, > x2, we have

1 /AL () |p(0)] 2
2¢ AT (po + %)

Y(Ty, ) =

" 1 v T
Y(xy)RY (24)R2 () csc Tl H oS¢ 55

T2<w; <Ty—1

A — oo (T ) RZ (2 U (To) — N R2 (2,
XH( (12)) ()H( () = M RY (20)

72
m

9
m>1 Jin m>1
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where s is the number of turning points x; < x,, which are of type 11l or IV, and
Ry(x), R_(x), 9, {timo(xy)} and {rmv(zy)} were defined or obtained in (18), (19),
(5), (36), (37), respectively.

Proof. From ([1, §9.2.1] ) we can obtain
B 1
21\/ Ry (zy)R_(xy)

So, from (35), (27) or (28), lemmas 2 and 3 we see that

Y(o, A)
(A=Tmo (z0))R2 (z4) (wmaw (20)=A)R3 (24)
Hle Hle -

= =2
Tm

it
VAL (1) |0(0)] % ok i

= Y(zy)RY (24)R2 (24) H oS¢ 55,1

21 <2;<Ty—1

AT (po + %)

epr (z0)+tpRy (w0)— 752 L[l] .

Tss (VAR (20)) T} (R ()

M,(z) =

O

This completes a canonical display of the solution of (16)-(17) for different modes
of turning points.
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