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The square modulus of the wave function of the proton has been derived in the
framework of the statistical model. The presence of antiquarks in the sea, which
simulates the screening effect, has been explicitly taken into account. The result-
ing momentum space wavefunction has also been used to estimate the structure
function for the free proton as well as the difference in structure function for the
proton and neutron. The results obtained are in agreement with the corresponding
experimental data and other theoretical estimates. The colour transparency effect
has also been studied with interesting consequences.

1. Introduction

There has been a number of attempts to investigate the structure function of
nucleons. The European Muon Collaboration (EMC) effect [1] has attracted much
attention due to the fact that it describes the deviation of the nucleon structure
function inside a nucleus. The structure function of a free nucleon has been inves-
tigated by Jaffe [2], De Rujula and Martin [3], Signal and Thomas [4] and others
[5-9]. De Rujula and Martin [3] have investigated the structure functions of pion
and nucleon and, from the shape of a nuclear structure function, have shown that
the shape of the pion structure function can be calculated from the nucleon struc-
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ture function using the MIT bag model wavefunction. They have also considered
the effect of the hyperfine splitting due to the one-gluon exchange interaction and
argued that it produces significant effects especially in the ratio of the structure
functions. Modarres [6] has studied the effect of the nuclear structure on the deep
inelastic scattering and the EMC effect in the context of the quark cluster model.
They have incorporated the cluster property by increasing the MIT-bag radius for
various nuclei that will be related to the two-body correlation function via a lo-
cal density approximation. They have also calculated the free nucleon structure
function such that it fits the experimental data and the EMC ratio.

Recently New Muon Collaboration (NMC) [10] suggested differences between
the up and down sea-quark distributions in the proton from the measurement of
the neutron and proton F2 structure functions. They measured Fn

2 /F
p
2 over a wide

range of the Bjorken parameter x. If the sea were perturbatively generated from
gluons which create qq pairs, then near equality of masses (u = d) suggests that
the sea should be SU(2) symmetric. Kumano and Londergen [11] have shown that
prediction for Fup

2 - Fun
2 at momentum transfer Q2 = 4 GeV2 from the set B

of Harriman et al. [12] and the set of Eichten et al. [13] and have shown the
discrepancy between theory and experiment in the region x < 0.4. They have
suggested that the discrepancy is confined to the small region of x where sea and

antiquark contribution are significant. Barone and Predazzi [14] also plotted F lp
2 -

F ln
2 in the context of discussing the EMC effect which suggests that valence quark

distribution has a maximum around x ≈ 1/3.

Though the discussions an colour transparency (CT) have started in the eighties,
it has recently become an exciting subject since it is a new testing ground of models
of nuclei and QCD. It was recently observed that final state interaction (FSI) does
not occur in certain high momentum transfer reactions involving nuclear targets.
Absence of such interaction is attributed to the cancellation of colourfield produced
by a system of closely spared quarks and gluons. The charge screening effects of
QCD occurs due to the colour transparency. The occurence of CT depends on
two factors, the formation of small-size wave packets in high momentum transfer
reactions and the suppression of interaction between such wavepacket and nucleons.
CT was investigated by several authors [15-17]. An excellent review on CT has
been made by Frankfurt et al. [15]. Jain and Ralston [16] have shown that the fully
interacting hadronic basis, which consist of eigenstates of the exact Hamiltonian
in the presence of the nucleus, provides a natural basis to study CT. They also
pointed out that CT ratio can be constant with energy but not at variance with
perturbative QCD. Bott [17] has presented a simple model to predict the centre
of mass energies at which a target nucleus will become transparent to hard and
tripple (Landshoff) scattered proton.

In the present work we have derived a wavefunction for a nucleon in the frame-
work of the statistical model. In the present investigation, the effect of the colour
screening of the valence quark by the corresponding antiquark sea has been ex-
plicitely taken into account, unlike the previous works [18,19]. We have also found
the momentum space wavefunction by Fourier transform of the radial wavefunc-
tion. Using this wavefunction we have also estimated difference between F2 struc-
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ture functions for proton and neutron. The colour transparency ratio has also been
estimated in the context of the model. The results obtained are in good agreement
with the EMC data and other theoretical estimates.

2. Formalism

In the statistical model, a baryon is asumed to consist of three valence quarks
q1, q2, q3 in adition to a sea of virtual cloud q1q1, q2q2 and q3q3 pairs. Only the
valence quarks determine the quantum number of a baryon. The real and virtual
quarks, corresponding to a particular flavour, are assumed to have the same colour,
so that they may be regarded as identical and indistinguishable. Hence, a statistical
ensamble can be formed resulting in a continuous distribution with each valence
quark in the configuration space corresponding to maximum momentum according
to Fermi statistics. This brings about uncertainty in the position of the quark
within the baryon. To take into account the many-body interactions that a valence
quark experiences in its encounter with the large number of corresponding virtual
quarks and antiquarks within the cloud in the baryon, we assume that each valence
quark moves in an average smooth potential (background) of the type V = ar + b
or V = ar2 + b, i.e. linear or harmonic oscillator type. a and b are the interaction
parameters. It is now well known that the constituent quarks inside a baryon are
approximately in a free state of motion within the cloud. Thus each real valence
quark can be regarded as moving almost independently and without any correlation
with the other two real valence quarks. Consequently, we treat each individual quark
separately in our subsequent analysis.

If p represents the maximum momentum of a type of quark (say q1) in the small
volume dτ about r, then it is related to the number density of quarks corresponding
to q1 in a baryon through the relation

nq1
(r) =

p3

3π2
, (1)

where we assume nq1
(r) is the probability density.

As the maximum momentum of the valence quark depends on the average con-
centration of the quark inside the cloud and not on its intrinsic mass, we adopt the
non-relativistic picture in our discussion to investigate the structure of the baryon.

The valence quark q1 experiences an effective background potential Vq1
(r) in

its encounter with virtual quarks and antiquarks (q1 and q1) in the cloud we have,

dnq1
(r)

dr
=

3

2

[

d

dr
(Uq1

(r)) /Uq1
(r)

]

nq1
(r), (2)

where Uq1
(r) = Vq1

(r0)− Vq1
(r) and r0 is unknown radius parameter for baryons.

Considering the background potential Vq1
(r) to be smooth linear type, i.e. Vq1

(r) =
ar + b, we have from (2),
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nq1
(r) = A(r0 − r)3/2. (3)

For the antiquark (q1), we also expect an expression like (2) with similar consider-
ation as in the case of quark (q1), so that

dnq
1
(r)

dr
=

3

2

[

d

dr

(

Uq
1
(r)

)

/Uq
1
(r)

]

nq
1
(r). (4)

In a baryon, all antiquark in the sea of qq pairs are virtual. We consider that the
antiquark are moving in an average smooth background potential which is supposed
to be unknown and we represent the potential as a finite power series in r,

V (r) = a0 + a1r + a2r
2 + · · ·+ anr

n,

so that the redefined smooth potential U(r) becomes,

U(r) = V (r0)− V (r) = a′0 + a1r + a2r
2 + · · ·+ anr

n.

Hence we get

U ′(r) = a1 + 2a2r + · · ·+ nanr
n−1.

Therefore,

U ′(r)/U(r) = (a1 + 2a2r + · · ·+ nanr
n−1)(a′0 + a1r + a2r

2 + · · ·+ anr
n)−1 (5)

which, on expansion, yields

U ′

q
1

(r)/Uq
1
(r) = λ+ µr + γr2 + · · · , (6)

where λ, µ and γ are constants.

Recasting right-hand side of (6) in terms of the number density nq
1
(r) we obtain

f(r) = λ+ a′n
1/3
q
1

+ b′n
2/3
q
1

, (7a)

where a′ and b′ are constants. Assuming high density expansion, the expression
(7a) becomes,

f(r) ≈ λ

so that from (4) we arrive at,

1

nq
1
(r)

dnq
1
(r)

dr
=

3

2
λ = λ′ (7b)
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and obviously λ′ < 0. From (7b) we get

nq
1
(r) = Be−λ′r = B(1− λ′r), (8)

where B is a unknown constant and λ′ is small. With the boundary condition
nq

1
(r0) = 0 at r = r0, we get

nq
1
(r) ≈ B

r0
(r0 − r) = C(r0 − r). (9)

Hence the effective number density of q1 type of quarks is given by

neff
q1

(r) = nq1
(r)− nq

1
(r) = A(r0 − r)3/2 − C(r0 − r). (10)

Similar relations are obtained for neff
q2

(r) and neff
q3

(r).

It is to be noted that neff
qα

(r) represents the effective number density of an
α-type (where α = 1,2 and 3) quarks, due to the screening by its corresponding
virtual antiquarks. As there is a continuous distribution of each type of (effective)
valence quark, there is a continuous distribution of colour for each valence quark.
So for a colourless baryon consisting of three valence quark q1, q2 and q3, we have
the normalization condition

r0
∫

0

[

nqα
(r)− nq

α
(r)

]

4πr2dr = 1. (11)

It is obvious that neff
q1

(r) = neff
q2

(r) = neff
q3

(r), because the analytical forms of

neff
qα

(r) have the same normalization condition given by (11). Consequently, three
constraints in (11) reduce to one.

If Ψ(r) represents the usual Schrödinger type wavefunction describing the
baryon, we have the normalization condition

r0
∫

0

|Ψ(r)|24πr2dr = 1. (12)

Comparing (10), (11) and (12) we get

|Ψ(r)|2 = neff
q (r) = A(r0 − r)3/2 − C(r0 − r). (13)

Hence, we come across a modified version of the nucleon wavefunction unlike in the
previous works [18,19], where the distributions of virtual clouds were assumed to
be of similar type as that of real valence quarks. The expression (13) suggests that
at each point within the baryon, the number density corresponding to each type of
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quarks has been made equal to |Ψ(r)|2, which represents the probability density of
finding a baryon at r. Although the effective number density in principle contains
three constants, C, A and r0, we have effectively only two parameters: A and r0,
because of the (aditional) normalization condition (12).

The parameters of proton can be estimated by adjusting against the experi-
mentally measured value of the electric form factor of the proton. The proton form
factor may be expressed for Q2 → 0, as

F (Q2) =

∫

eiqr|Ψ(r)|2d3r = 1− (0.006− 0.00685Ar
9/2
0 )r2q2. (14)

The relation between the proton form factor and charge radius of proton is, Q2 → 0

F (Q2) = 1− 1

6
〈r2ch〉q2 (15a)

with 〈r2ch〉 = 0.81 fm [20]. Comparing (14) and (15) we get

A =
9.635

r
9/2
0

− 15.96

r
13/2
0

. (16a)

We have fitted r0 to the experimental results for F (Q2) at the intermediate value
Q2 = 0.194 GeV2, against F (Q2) estimated from (14); best fit is found to be at r0
= 1.5 fm which yields A = 0.410 fm−9/2 and C = 0.117 fm−4.

The momentum space wavefunction Ψ(K) is derived by the Fourier transform
of the wavefunction Ψ(r) as

Ψ(K) =
C1

K

r0
∫

0

r Ψ(r) dr sinKr, (15b)

where C1 is the normalization constant and Ψ(K) is found from (13) ignoring an
undetermined phase factor.

To evaluate the integral on the right-hand side of (15b), assuming the above
mentioned values of A and C, it may be noted that Ψ(r) ≈ 0.76 at r = 0, Ψ(r) ≈
0.42 at r = r0/2 and Ψ(r) ≈ 0 at r = r0. Hence it may be asserted that Ψ(r)
varies almost uniformly in the interval of r from 0 to r0. To evaluate the integral in
(16a) approximately, we replace Ψ(r) by Ψav in the integrand which corresponds
to r = r0/2.

Consequently we get,

Ψ(K) =
C1

K
Ψ(r0/2)

r0
∫

0

r dr sinKr. (16b)
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From (16b) we obtain an analytical expression for the momentum space wavefunc-
tion as

Ψ(K) =
C1

K
j1(Kr0). (17)

After normalization, Ψ(r) becomes

Ψ(k) = 2
√
3πr0K

−1j1(Kr0). (18)

It is to be noted that Ψ(K) depends only on r0, the size parameter of the nucleons.
We have investigated the nucleon structure functions with the above Ψ(K) as an
input.

3. Free nucleon structure function

Following the argument of De Rujula and Martin [3], the free nucleon structure
functions in the non-relativistic limit is defined as

F (κ) =
M

8π2

α
∫

Kmin

|Ψ(K)|2dK2, (19)

where M is the mass of the nucleon and Kmin = M |κ− 1/3|.
With our Ψ(K) in (18) as an input, F (x) has been evaluated and the resulting

graph is shown in Fig. 1. The plot of F (x) suggests that the maximum value is
peaked around x = 1/3. Our computed results closely agree with the results of De
Rejula and Martin [3] and of Signal and Thomas [4].

It is also interesting to estimate the difference in F2 structure function for proton
and neutron using the analytical form of Ψ(k) in Eq. (18). Neutron radius is taken
as 1 fm [21]. Pursuing the work by Hoodbhoy and Jaffe [22], we have estimated
F p
2 − Fn

2 and the results are tabulated in Table 1, along with the experimental
results given by EMC group [23] and BCDMS Collaboration [24]. It is to be noted

TABLE 1.
Estimated values of F p

2 − Fn
2 along with the experimental values of EMC [23] and

BCDMS [24].

F p
2 − Fn

2

x Present calculation EMC BCDMS
0.175 0.0060 0.071± 0.009± 0.027 −
0.25 0.0615 0.088± 0.007± 0.020 −
0.275 0.0772 − 0.1029± 0.0025± 0.0116
0.35 0.1078 0.082± 0.007± 0.012 0.0923± 0.0016± 0.0090
0.45 0.1084 0.077± 0.007± 0.009 0.0668± 0.0014± 0.0057
0.55 0.0717 0.046± 0.006± 0.004 0.0451± 0.0010± 0.0032
0.65 0.0133 0.025± 0.005± 0.003 0.2340± 0.0006± 0.0023
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that maximum value of the difference F p
2 − Fn

2 in the present calculation is also in
a good agreement with the NMC data [10]. The discrepancies in the low x-region
may be attributed to the approximation involved in the calculation. It is also to be
noted that the different experimental results are somewhat inconclusive. It would
not be irrelevant to point out that some authors [11] also get similar type of results
and suggested that the discrepancies at small x-region are due to the sea and anti-
quark distributions where they have significant contributions. The present work is
based entirely on theoretical considerations, unlike the parametrisations assumed
by some authors [6,13,14].

Fig. 1. Free nucleon structure function F(x).

4. Colour transparency

The colour transparency (CT) phenomenon depends basically on two factors. As
discussed in Sect. 1, the formation of a small-sized wavepacket, which is a coherent
superposition of physical states, is one of the basic conditions for the occurence of
the CT in a high momentum transfer. In the context of studying the CT, Frankfurt
et al. [15] have pointed out the wavepackets have no significant expansion during the
reaction process, so one may concentrate a b2 dependence of wavepacket-nucleon

66 FIZIKA B 4 (1994) 1, 59–69



bhattacharya et al.: on the studies of the structure function . . .

scattering amplitude, where b2 is the transverse-size configuration characterised
by a length b. In the case of non-relativistic constituent models of hadrons, the
nucleon form factor is the matrix element of the electromagnetic current, at high
momentum transfer. This hard scattering operator (TH) acts on a nucleon to form
a wavepacket. The importance of the final state interaction is measured by the
colour transparency ratio which is defined as,

b2(Q2) =
1

F (Q2)

∫

d3r Ψ∗(r) b2 eiqrΨ(r), (20)

where Q2 is the squared four-momentum transfer.

With our model wavefunction from the expression (13), we have calculated
F (Q2) for proton. Then the CT ratio was also calculated from (20) and b2(Q2)/b2(0)
has been displayed in Fig. 2 along with the similar calculations in the cloudy bag
model [25].

Fig. 2. Colour transparency ratio b2(Q2)/b2(0) is shown. Solid line is the present
work. Dotted line is from the cloud bag model calculation of Ref. 25. Dotted-dashed
line is F (Q2) in the present model.

It is to be noted that our wavefunction provides CT in the range Q2 = 0 to
0.35 GeV2. It is pertinent to note here that the existing models for hadrons provide
very diverse predictions for the emergence of the colour transparency. Is has been
observed that the CT occurs naturally in realistic models like Skyrmion model [26],
cloud bag model [27] etc., whereas some other models [28] provide colour opacity.
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5. Conclusion

The square modulus of the wavefunction for baryon, as suggested and derived
in the context of the statistical model, is used to investigate the structure function
for a free nucleon. It reproduces the experimental observation to a considerable
extent. The nature of the wavefunction allows to replace Ψ(r) by Ψav, which is
a good approximation as evident from the results we obtain. The difference in
proton-neutron structure function, which is estimated in the context of the model,
also exhibits a good agreement with experimental suggestions in the range starting
from x > 0.25. The wavefunction reproduces CT in the range Q2 → 0 to 0.35
GeV2. In view of the simplicity of the model, the results are very encouraging
and the model is found to be reasonably successful in describing some interesting
structural properties of nucleons.
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U okviru statističkog modela izveden je izraz za kvadrat modula valne funkcije.
Eksplicitno je uzeta u obzir prisutnost antikvarkova iz pozadine koja simulira efekt
zasjenjenja. Pomoću Fourierovog transformata valne funkcije odredena je struk-
turna funkcija slobodnog protona i razlika strukturnih funkcija protona i neutrona.
Dobiveni rezultati slažu se s odgovarajućim eksperimentalnim vrijednostima i rezul-
tatima drugih teorijskih ocjena. Proučava se, takoder, efekt transparencije boje i
izvedene su neke zanimljive posljedice.
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