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We consider the large-N Calogero model in the Hamiltonian collective–field ap-
proach based on the 1/N expansion. The Bogomol’nyi limit appears and the corre-
sponding equation for the semiclassical configuration gives the correct ground-state
energy. Using the method of the orthogonal polynomial, we find the excitation spec-
trum of density fluctuations around the semiclassical solution for any value of the
statistical parameter λ. The wave functions of the excited states are explicitly con-
structed as a product of Hermite polynomials in terms of the collective modes. The
two–point correlation function is calculated as a series expansion in 1/ρ for any
intermediate statistics.

1. Introduction

Recently, much attention has been paid to the quantum N–body Calogero
model in 1 + 1 space-time [1]. The Calogero model belongs to a large family of
one-dimensional quantum integrable models. It also exhibits fractional statistics.
Namely, its ground-state wave function is of a Jastrow type and can be visualized
as the Laughlin wave function [2,3]. More recently, applying the collective–field
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approach to the fractional quantum Hall droplet dynamics, it has been shown that
the density correlation function of the edge state interpolates to the correlation
function of the Calogero model [4]. The Calogero model is closely related to the
matrix models and exhibits an exact equivalence with the collective-field formula-
tion of the d = 1 string theory at the classical level [5]. The collective-field theory
with the cubic Hamiltonian and other higher-order terms in the 1/N expansion was
recently used in deriving a new interesting soliton solution in 1 + 1 dimension [6].
This effective theory can again be recognized as the λ = 1/2 collective-field formu-
lation of the Calogero model. It is, therefore, of considerable interest to study the
general features of the Calogero model in a collective-field theoretical framework.
To the lowest order, the collective-field theory of the Calogero model was shown to
correctly reproduce the first relevant term in the ground-state energy [7,8].

In the present paper, we extend these investigations by including higher-order
terms in the 1/N expansion. We also study the properties of the Calogero model,
concentrating on the excitation spectrum of small fluctuations around the semiclas-
sical configuration ρ0(x), the corresponding wave functions and the first quantum
corrections (the one-loop contribution) to the ground-state energy.

2. Collective–field description of the Calogero model

Before studying of the excitation spectrum, let us briefly recall the essential
features of the collective-field approach to the Calogero model [8]. The approach is
described by the Hamiltonian

H =
1

2

∫

dxρ(x)(∂xπ)
2 +

1

2

∫

dxρ(x)

(

λ− 1

2

∂xρ(x)

ρ(x)
+ λ−
∫

dy
ρ(y)

x− y

)2

+

+
ω2

8

∫

dxdyρ(x)(x− y)2ρ(y)− λ− 1

4

∫

dx∂2
xδ(x− y)|y=x

−λ

2

∫

dxρ(x)∂x
P

x− y
|y=x, (1)

where a dimensionless constant λ determines the strength of the Calogero pair cou-
pling through the relation λ(λ−1) = g. ω is the strength of a harmonic confinement
potential. The collective field ρ(x) is the continuum limit of the dynamical quantity

ρ(x) =
N
∑

i=1

δ(x− xi), (2)

where xi are the positions of N spinless bosonic particles. π(x) is canonical conju-
gate of the field ρ(x):

[∂xπ(x), ρ(y)] = −i∂xδ(x− y). (3)
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From the definition (2) follows that the collective field obeys the normalization
condition

∫

dxρ(x) = N. (4)

The first term in the collective Hamiltonian, quadratic in the conjugate momentum
π, represents the kinetic energy of the system. The second term, rewritten as a
complete square, emerges as a quantum collective-field potential. The last two terms
represent a singular contribution, but, as will be shown later, they are canceled
by infinity zero-point fluctuations of the collective field ρ. To find the ground-
state energy and the corresponding collective motion of the Calogero system in
the large-N limit, we should minimize the energy functional (1) with respect to π
and ρ, obeying the normalization condition (4). However, in our case, owing to the
special features of the model, there is a much more efficient method of solving the
problem.

Performing the 1/N expansion of the collective field ρ(x) in the form

ρ(x) = ρ0(x) + η(x), (5)

where ρ0(x) is the ground-state semiclassical configuration and η(x) a small density
fluctuation around ρ0(x), we can rewrite the collective Hamiltonian (1) up to the
quadratic terms in π and η as

H =
1

2

∫

dxρ0(x)

(

λ− 1

2

∂xρ0(x)

ρ0(x)
+ λ−
∫

dy
ρ0(y)

x− y
− ω

√

N

2
x

)2

+Nω

√

N

2

(

λN

2
− λ− 1

2

)

+

+
1

2

∫

dxρ0(x)(∂xπ)
2 +

π2λ2

2

∫

dxρ0(x)η
2(x)

+
(λ− 1)2

8

∫

dx
(∂xρ0(x))

2

ρ30(x)
η2(x)+

+
(λ− 1)2

8

∫

dx∂x

(

∂xρ0(x)

ρ20(x)

)

η2(x)

+
(λ− 1)2

8

∫

dx
(∂xη(x))

2

ρ0(x)
+

λ(λ− 1)

2
−
∫

dxdy
∂xη(x)η(y)

x− y
+

+
ω2

8

∫

dxdyη(x)(x− y)2η(y)− λ− 1

4

∫

dx∂2
xδ(x− y)|y=x
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−λ

2

∫

dxρ0(x)∂x
P

x− y
|y=x. (6)

There are no terms in the Hamiltonian (6) linear in η(x) as we expand around the
minimum of the dominant, large-N collective potential.

Owing to the positive definiteness of the first leading term, the Bogomol’nyi
limit appears. The Bogomol’nyi bound is saturated by the positive normalizable
solution ρ0(x) of the equation

λ− 1

2

∂xρ0(x)

ρ0(x)
+ λ−
∫

dy
ρ0(y)

x− y
= ω

√

N

2
x, (7)

with the ground-state energy equal to

E0 =
ω

2

√

N

2
[λN(N − 1) +N ]. (8)

We have not been able to obtain an analytic solution to this equation for any
value of λ. However, we can offer the asymptotic behaviour of the semiclassical
configuration ρ0(x). For λ /=1, the expression for ρ0(x) near the origin is

ρ0(x) = A exp

[

x2

λ− 1
(ω

√

N

2
+ λB)

]

, (9)

where A and B are positive arbitrary constants. For x → ∞, we obtain

ρ0(x) = Cx2λN/(1−λ) exp

(

ω

√

N

2

x2

λ− 1

)

, (10)

where C is again a positive constant. It is evident that the character of the solution
depends crucially on the value of the parameter λ. For λ > 1, the solution ρ0 exists
on the compact support only. As is well known, the coupling constant λ specifies the
statistics of the Calogero model. For special values of λ, i.e. λ = 0, we have bosons
and for λ = 1/2, 1 and 2 the model is related to the systems of orthogonal, unitary
(fermions) and symplectic matrix theories, respectively [8]. For the bosonic and
fermionic case, Eq. (7) can be exactly solved. The normalized bosonic distribution,
λ = 0, is given by

ρ0(x) = N

√

ω

π

√

N

2
exp

(

−ω

√

N

2
x2

)

. (11)

It has a tail, in contrast to the fermionic distribution, λ = 1:

ρ0(x) =

√

√

√

√

ω

π

√

N

2

(

2N − ω

√

N

2
x2

)

, (12)

which has a sharp boundary and is defined on the compact support only.
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andrić, bardek and jonke: collective–field excitation . . .

2.1. The reduced Calogero model

Let us now find an interesting collective-field hole excitation of the Calogero
model, which can also be reached by the Bogomol’nyi saturation. Using the identity
for the principal distribution:

P

x− y

P

x− z
+

P

y − x

P

y − z
+

P

z − x

P

z − y
= π2δ(x− y)δ(x− z), (13)

and performing partial integration, we can rewrite the first, leading term in the
Hamiltonian (6) as

1

2

∫

dxρ0(x)

(

λ− 1

2

∂xρ0(x)

ρ0(x)
+ λ−
∫

dy
ρ0(y)

x− y
− ω

√

N

2
x

)2

=

=
1

2

∫

dxρ0(x)

(

λ− 1

2

∂xρ0(x)

ρ0(x)
+ λ−
∫

dy
ρ0(y)

x− y
− ω

√

N

2
x+

c

x

)2

−

−
(

c2

2
+

c(λ− 1)

2

)∫

dx
ρ0(x)

x2

+ωcN

√

N

2
+

cλ

2

(∫

dx
ρ0(x)

x

)2

− cλπ2

2
ρ20(0). (14)

For the symmetric configuration, ρ0(x) = ρ0(−x), representing a hole located at
the origin, ρ0(0) = 0, and the particular value of the constant c given by

c = 1− λ,

the Bogomol’nyi limit appears. The contribution of the squared term in (14) van-
ishes and the corresponding configuration satisfies the enlarged Bogomol’nyi equa-
tion

λ− 1

2

∂xρ0(x)

ρ0(x)
+ λ−
∫

dy
ρ0(y)

x− y
− ω

√

N

2
x+

1− λ

x
= 0. (15)

The role of the new, singular term in Eq. (15) is to compensate for the singularity
produced by ∂x ln ρ0(x) at the origin, x = 0. The corresponding energy is given by

E = E0 +N

√

N

2
ω(1− λ), (16)

and can be lower than E0 for λ > 1. A more detailed discusion of the Bogomol’nyi
Eq. (15) will be given elsewhere. From now on we restrict our investigation to the
case of the ground-state semiclassical configuration ρ0 given by Eq. (7).
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3. Diagonalisation

To find the spectrum of low-lying excitations, we have to diagonalise part of the
collective Hamiltonian (6) that is quadratic in the operators π and η. Let us first
eliminate ρ0(x) in the kinetic-energy part by introducing a modified fluctuation
η̃(x) through

η(x) = ∂x

(

√

ρ0(x)η̃(x)
)

. (17)

In this case the kinetic energy transforms as

1

2

∫

dxρ(x)(∂xπ)
2 −→ −1

2

∫

dx
δ2

δη̃2(x)
. (18)

Next we introduce the normal mode expansion of the fluctuation η̃

η̃(x) =
1

√

ρ0(x)

∑

n

qnϕn(x), (19)

and the corresponding conjugate momentum

π̃(x) = −i
δ

δη̃(x)
=

1
√

ρ0(x)

∑

n

pnϕn(x), (20)

where the operators qn and pn satisfy standard bosonic commutator algebra

[qn, pm] = iδnm, [qn, qm] = [pn, pm] = 0. (21)

The yet unspecified functions ϕn(x) form an orthonormal and complete set in the
sense that the following relations are satisfied:

∫

dx
ϕn(x)ϕm(x)

ρ0(x)
= δnm, (22a)

∑

n

ϕn(x)ϕn(y)
√

ρ0(x)ρ0(y)
= δ(x− y). (22b)

Substituting the relations (19) and (20) into the Hamiltonian (6) and using Eq.
(22a), we obtain the Hamiltonian in the diagonal form:

H = E0 +
1

2

∑

n

p2n +
1

2

∑

n

ω2
nq

2
n−

−λ− 1

4

∫

dx∂2
xδ(x− y)|y=x − λ

2

∫

dxρ0(x)∂x
P

x− y
|y=x, (23)
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if the function ϕn(x) satisfies the integro-differential equation

(λ− 1)2

8
ρ0(x)∂

2
x

(

∂2
xϕn(x)

ρ0(x)

)

− π2λ2

2
ρ0(x)∂x(ρ0(x)∂xϕn(x))−

− (λ− 1)2

8
ρ0(x)∂x

{[

(∂xρ0(x))
2

ρ30(x)
+ ∂x

(

∂xρ0(x)

ρ20(x)

)]

∂xϕn(x)

}

+

+
λ(λ− 1)

2
ρ0(x)∂

2
x−
∫

dy
∂yϕn(y)

x− y
− ω2

4
ρ0(x)

∫

dyϕn(y) =
ω2
n

2
ϕn(x). (24)

It remains to prove that the corresponding eigenfrequencies ωn are given by non-
negative numbers.

We can avoid the manipulation with this cumbersome equation if we realize
that it can be rederived by the simpler eigenequation

ωnϕn(x) = ρ0(x)λ−
∫

dy
∂yϕn(y)

x− y
+ ρ0(x)

λ− 1

2
∂x

(

∂xϕn(x)

ρ0(x)

)

−

− ω√
2N

ρ0(x)

∫

dyϕn(y). (25)

Substituting the expression (25) for ϕn into the right-hand side of the same ex-
pression and using the identity for the principal distributions (13), we easily obtain
the eigenequation (24). The solutions to Eq. (25) indeed form an orthogonal set of
functions in the interval −∞ < x < ∞. To prove the orthogonality (22a), we write
the equation for ϕn(x), multiply it by ϕm(x), and then integrate over the interval

ωn

∫

ϕn(x)ϕm(x)

ρ0(x)
dx = λ−

∫

dydx
∂yϕn(y)ϕm(x)

x− y
+

+
λ− 1

2

∫

dxϕm(x)∂x

(

∂xϕn(x)

ρ0(x)

)

− ω√
2N

∫

dxϕn(x)

∫

dyϕm(y). (26)

If we now write Eq. (26) with n and m interchanged, subtracting it from Eq. (26),
and integrating by parts, we obtain the orthogonality condition

(ωn − ωm)

∫

dx
ϕn(x)ϕm(x)

ρ0(x)
= 0. (27)

For n /=m, the integral must vanish. Technically, the proof of the completeness of
the set {ϕn(x)} in (22b) is outside the scope of the present paper. We, therefore,
omit it and simply anticipate that the solutions to Eq. (25) really satisfy the closure
relation (22b).
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3.1. The correlation functions

We are now in a position to calculate the inverse of the density-density correla-
tion function in the Calogero model. The vacuum state of the operator part of the
Hamiltonian (23) is given by

|0〉 = exp

(

−1

2

∑

n

ωnq
2
n

)

. (28)

This may be reexpressed in terms of η̃(x) using an expression inverse to Eq. (19)

qn =

∫

dxη̃(x)
ϕn(x)
√

ρ0(x)
, (29)

and further simplified using the eigenequation (25). We finally obtain

|0〉 = exp

(

−1

4

∫

dxdyη(x)G−1(x, y)η(y)

)

, (30)

where the inverse of the correlation function is given by

G−1(x, y) = −2λ ln |x− y| − (λ− 1)
δ(x− y)

ρ0(x)
− ω

√

2

N
xy. (31)

By functional integration over η, we can easily check that G−1(x, y) indeed
represents the inverse of the correlation function G(x, y):

〈0|ρ(x)ρ(y)|0〉 = ρ0(x)ρ0(y) + 〈0|η(x)η(y)|0〉 =

= ρ0(x)ρ0(y) +

∫

Dηη(x)η(y) exp
(

− 1
2

∫

ηG−1η
)

∫

Dη exp
(

− 1
2

∫

ηG−1η
) =

= ρ0(x)ρ0(y) +G(x, y), (32)

where we have used the fact that the vacuum expectation value of the fluctuation
η vanishes.

Before proceeding, we should point out that G−1(x, y) is determined up to the
symmetric combination f(x) + f(y) where f(x) is an arbitrary real function. This
is because of the normalization condition (4), the expansion (5) and the symmetry
structure of G and G−1 (31).

According to the expression for the correlation function G(x, y), Eq. (32), we
can rewrite the eigenequation (25) as

ωnϕn(x) =
1

2
ρ0(x)

∫

dyϕn(y)∂x∂yG
−1(x, y). (33)
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Multiplying it by ϕn(z) and summing over n we obtain

G(x, y) =
1

2
∂x∂y

∑

n

ϕn(x)ϕn(y)

ωn
. (34)

Equations (34) and (25) imply that the correlation function G(x, y) satisfies the
following integro-differential equation:

2λ−
∫

dyG(y, z)

x− y
+ (λ− 1)∂x

(

G(x, z)

ρ0(x)

)

= ∂zδ(x− z). (35)

We can convert this equation into the differential equation using the identity for
the principal distribution (13),

G(x, y) = − λ− 1

4λ2π2
∂x

[

1

ρ0(x)
∂x

(

(λ− 1)
G(x, y)

ρ0(x)
+ δ(x− y)

)]

+

1

2λπ2ρ0(x)
∂y

(

ρ0(y)

y − x

)

. (36)

By rescaling the collective field and the correlation function as

ρ0(x) =
λ− 1

λ
ρ̃0(x), (37a)

G(x, y) =
1

λ
G̃(x, y), (37b)

and iterating Eq. (36) (with respect to G(x, y)), we can compute the correlation
function in terms of ρ0(x) to arbitrary order:

G̃(x, y) =
1

2π2ρ̃0(x)
∂y

(

ρ̃0(y)

y − x

)

− 1

4π2
∂x

(

1

ρ̃0(x)
∂xδ(x− y)

)

− 1

8π4
∂x

{

1

ρ̃0(x)
∂x

[

1

ρ̃0
2(x)

∂y

(

ρ̃0(y)

y − x

)]}

+
1

16π4
∂x

{

1

ρ̃0(x)
∂x

[

1

ρ̃0(x)
∂x

(

1

ρ̃0(x)
∂xδ(x− y)

)]}

+ · · · . (38)

Equation (38) is basically the 1/ρ0 expansion and we anticipate that it converges.
We stress that expression (38) holds for λ different from zero and one, i.e. for
generic intermediate statistics.
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At this point we would like to analyse the structure of the static correlation
function G(x, y) in the reduced Calogero model, i.e. in the model without confining
harmonic interaction (ω = 0). In this case, the solution to Eq. (7) is given by the
constant-density configuration ρ = ρ0. It can be readily shown that G(x, y) satisfies
the following second-order differential equation

(

∂2
x +

4λ2π2ρ20
(λ− 1)2

)

G(x, y) = − ρ0
λ− 1

∂2
xδ(x− y) +

2λρ20
(λ− 1)2

∂x

(

1

x− y

)

. (39)

Having in mind the translation-invariance of the correlation function, let us now
rewrite Eq. (39) in momentum space by Fourier transforming the function G(x−y):

G(x− y) =
ρ0
2π

∫

dkeik(x−y)G̃(k), (40)

and the principal-value distribution

P

x− y
=

1

2i

∫

dkeik(x−y)signk, (41)

(

4λ2π2ρ20
(λ− 1)2

− k2
)

G̃(k) =
k2

λ− 1
+

2πλρ0
(λ− 1)2

|k|. (42)

We note that for 0 < λ < 1, the correlation in the momentum space G̃(k) is positive
and depends only on the absolute value of k. It can be written in the form

G̃(k) =
k2

2ω(k)
, (43)

with the dispersion ω(k) given by

ω(k) = λπρ0|k| −
λ− 1

2
k2. (44)

Then we obtain the expression for the correlation function G(x− y)

G(x− y) =
ρ0

2π(λ− 1)

∫

dk
eik(x−y)|k|
2λ
λ−1kf − |k|

, (45)

with kf = πρ0, representing the Fermi momentum. The integral can be recast as
follows:

G(x− y) = − ρ0
λ− 1

δ(x− y) +
2λρ20

(λ− 1)2

∞
∫

0

dk
cos k(x− y)
2λ
λ−1kf − |k|

. (46)
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Using the table of integrals [9], the correlation G(x− y) turns out to be

G(x− y) = − ρ0
λ− 1

δ(x− y)+

+
2λρ20

(λ− 1)2
[ci(α(x− y)) cos(α(x− y)) + si(α(x− y)) sin(α(x− y))] , (47)

where α = 2λkf/(λ − 1) and ci(x) and si(x) denote the sine and cosine integral
functions, respectively. In the fermionic case, λ = 1, the correlation function G(x, y)
given by relation (36) reduces to

G(x− y) = − 1

2π2

1

(x− y)2
, (48)

which in the momentum space agrees with the correlation function found by the
authors of Ref. 10 in the |k| < 2kf sector. In our approach, the other sector |k| >
2kf is absent because of the large-N limit (kf = πρ0 −→ ∞). In the λ = 1/2(2)
case, by expanding the correlation function (43) in the powers of |k|/kf up to the
cubic terms, we easily obtain the result of Ref. 10, again in the |k| < 2kf (4kf )
sector only.

3.2. The eigenvalues and the eigenfunctions

Turning back to the Calogero model with confining interaction, let us show
that there is a cancelation between the divergent vacuum energy 1/2

∑

n ωn of the
harmonic Hamiltonian in Eq. (23) and the divergent last two terms. To this end,
we compute the vacuum energy as

Evac =
〈0|H(2)|0〉

〈0|0〉 , (49)

but this time with the vacuum |0〉 and the harmonic part H(2) of the Hamiltonian
(23) given in terms of the density fluctuation η(x). Using Eq. (7) for ρ0(x), we,
finally, obtain

Evac =
λ− 1

4

∫

dx∂2
xδ(x− y)|y=x +

λ

2

∫

dxρ0(x)∂x
P

x− y
|y=x − ω

2

√

N

2
. (50)

Hence, the total Hamiltonian becomes

H =
ω

2

√

N

2
[λN(N − 1) +N − 1] +

∑

n

ωna
†
nan, (51)

where we have introduced the standard creation and annihilation bosonic operators
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a†n =
1√
2

(√
ωnqn − i√

ωn
pn

)

, (52a)

an =
1√
2

(√
ωnqn +

i√
ωn

pn

)

. (52b)

The ground-state energy obtained in Eq. (51) coincides with the Calogero results
[1]. To find the eigenfrequencies ωn, let us for the moment suppose that the solution
ϕn(x) of the eigenequation (25) can be cast into the form

ϕn(x) ∼ ρ0(x)x
n, (53)

where n is a nonnegative integer. In this case we can evaluate the integral on the
right-hand side of the eigenequation (25) using the formula

xn − yn

x− y
= xn−1 + xn−2y + · · ·+ xyn−2 + yn−1. (54)

Introducing the moments mk of the distribution function ρ0(x)

mk =

∫

dxxkρ0(x), (55)

and using Eq. (7) for ρ0(x), we can reduce the right-hand side of Eq. (25) to

ω

√

N

2
(n+ 1)ρ0(x)x

n + ρ0(x)x
n−2

[

λ− 1

2
n(n− 1)− λ(n− 1)m0

]

−

−λρ0(x)x
n−4(n− 3)m2 + · · ·+ λρ0(x)mn−2 −

ω√
2N

mnρ0(x). (56)

The structure of this expression indicates that the exact eigenfunction ϕn(x) is
given by an appropriate polynomal of x multiplied by the function ρ0(x):

ϕn(x) = ρ0(x)

n
∑

p=0

cnpx
p. (57)

Substituting this expression into Eq. (25) and matching the coefficients of each
power of x, we obtain an algebraic system of n+ 1 homogeneous equations in cnp :

cnn(n+ 1− ω̃n) = 0,

cnn−1(n− ω̃n) = 0,
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cnn−2(n− 1− ω̃n) + cnn

(

λ− 1

2
n(n− 1)− λm0(n− 1)

)

= 0,

cnn−3(n− 2− ω̃n) + cnn−1

(

λ− 1

2
(n− 1)(n− 2)− λm0(n− 2)

)

= 0,

cnn−4(n− 3− ω̃n)+ cnn−2

(

λ− 1

2
(n− 2)(n− 3)− λm0(n− 3)

)

−λcnnm2(n− 3) = 0,

...

cn2 (3− ω̃n) + 6(λ− 1)cn4 − 3λ
n′

∑

k=0

cn2k+4m2k = 0,

cn1 (2− ω̃n) + 3(λ− 1)cn3 − 2λ

n′

∑

k=0

cn2k+3m2k = 0,

cn0 (1− ω̃n) + (λ− 1)cn2 − λ

n′

∑

k=0

cn2k+2m2k − 1

N

n′+1
∑

k=0

cn2km2k = 0, (58)

where ωn = ω̃n ω
√

N/2, and n′ is

n′ =

{

n−2
2 for n even

n−3
2 for n odd.

The moments mk vanish for k odd, because the distribution ρ0(x) is a symmetric
function. A system of homogeneous equations has a nontrivial solution if its deter-
minant vanishes. The determinant of our system (58) is just a product of diagonal
terms (matrix of our system of equations is an upper-triangle matrix)

D = (ω̃n − n− 1)(ω̃n − n)(ω̃n − n+ 1) · · · (ω̃n − 3)(ω̃n − 2)ω̃n, (59)

so it is easy to see that the eigenfrequencies ωn are

ωn =

{

0 for n = 0

(n+ 1) ω
√

N
2 for n /=0.

(60)

The excitation spectrum of the Calogero model is thus determined by the diag-
onalised Hamiltonian

Hexc =

∞
∑

n=1

ω

√

N

2
(n+ 1)a†nan. (61)
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The general excited-state vector can be built by repeatedly acting with the creation
operator (52a) on the vacuum state:

S

{

∞
∏

n

(a†n)
gn

}

|0〉 ∼ S

{

∞
∏

n

Hgn(
√
ωnqn)

}

|0〉. (62)

The integer gn represents the occupation numbers of the n–th oscillator mode, Hgn

is the Hermite polynomial of order gn and S denotes total symmetrization. The
corresponding excitation energy is

E{gn} = ω

√

N

2

∞
∑

n=1

(n+ 1)gn. (63)

This is again in complete accordance with the Calogero result, the only difference
being in N → ∞. It is interesting to note that the excitation spectrum (63) does
not depend on the statistical parameter λ.

Let us now list the first few eigenfuctions ϕn(x) and the corresponding eigen-
frequencies:

ϕ0(x) = c00ρ0(x), ω0 = 0,

ϕ1(x) = c11xρ0(x), ω1 = 2ω

√

N

2
,

ϕ2(x) = (c20 + c22x
2)ρ0(x), ω2 = 3ω

√

N

2
,

ϕ3(x) = (c31x+ c33x
3)ρ0(x), ω3 = 4ω

√

N

2
,

ϕ4(x) = (c40 + c42x
2 + c44x

4)ρ0(x), ω4 = 5ω

√

N

2
,

ϕ5(x) = (c51x+ c53x
3 + c55x

5)ρ0(x), ω5 = 6ω

√

N

2
,

... (64)

The fact that Eq. (25) has an eigensolution ϕ0(x) with a vanishing eigenvalue ω0 is
a consequence of the translational invariance of the Calogero model. We note that
the polynomial structures in ϕn(x) have only even powers of x or only odd powers
of x, depending on n being even or odd. The coefficients cnp are interrelated by the
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system (58) and the free ones can be determined from the normalization condition
(22a). For example,

3ω

√

N

2
c20 = c22(−λN + λ− 1− ω

m2√
2N

),

2ω

√

N

2
c31 = c33(−2λN + 3(λ− 1)),

2ω

√

N

2
c42 = c44(−3λN + 6(λ− 1)),

5ω

√

N

2
c40 = c44(−λm2 − ω

m4√
2N

) + c42(−λN + λ− 1− ω
m2√
2N

),

2ω

√

N

2
c53 = c55(−4λN + 10(λ− 1)),

4ω

√

N

2
c51 = c53(−2λN + 3(λ− 1))− c552λm2,

... (65)

All moments mk can be evaluated using the recurrence relation

mk =
1

ω

√

2

N







[

−(λ− 1)
k − 1

2

]

mk−2 + λ

k/2−1
∑

i=1

mk−2im2i−2 −
λ

2
m2

k/2−1







, (66)

which follows from Eq. (7) and formula (54). Here we list few moments:

m0 = N,

m2 =
1

ω

√

N

2
(λN − λ+ 1),

m4 =
1

ω2

[

λN − 3

2
(λ− 1)

]

(λN − λ+ 1). (67)

We can go on with this procedure. It is obvious that a systematic construction of
all polynomial solutions to the eigenequation (25) can be accomplished.
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4. Comments

Having discussed the eigenfunctions and the corresponding eigenvalues of Eq.
(25) for the general value of the statistical parameter λ, we should briefly analyse
the boson (λ=0) and the fermion (λ=1) case separately. For λ=0, using the explicit
form for ρ0 [Eq. (11)], it is easily verified that the eigenequation (25) reduces to
the differential equation for the Hermite polynomials. So ϕn is given by

ϕn(x) = ρ0(x)Hn





√

ω

√

N

2
x



 , n ≥ 1, (68)

which can be easily recovered from the set (65). This is in accordance with the result
obtained by Jevicki and Sakita in Ref. 11, for a large number of harmonic oscillators.
For the fermionic case (or the matrix model), λ = 1, the equation effectively reduces
to the well-known formula for the Hilbert transform of the Chebyshev polynomials
Un and Tn

−
∫ +1

−1

Tn(y)dy

(y − x)
√

1− y2
= πUn−1(x). (69)

Using the explicit form for ρ0 [Eq. (12)], one can show that ϕn reduces to

ϕn(x) = sin
(nπ

T
t(x)

)

= ρ0(x)Un





√

ω

2

√

2

N
x



 , n ≥ 1, (70)

where t(x) is the time of flight of a classical particle in the harmonic potential, with
T being the semiperiod. This is in exact agreement with the calculations given in
Ref. 12. It can be verified that our set (65) correctly reproduces the coefficients
for the Chebyshev polynomials Un. Hence, our set of orthogonal polynomials cor-
rectly interpolates between the two well-known cases of bosons and fermions and,
for intermediate values of λ, gives the excitation spectrum and the corresponding
normal modes for particles with fractional statistics.

It is interesting that the fermionic case (λ = 1) is closely related to the random-
matrix theory which does not possess kinetic term ∂xρ/ρ in the collective Hamil-
tonian (1). This theory describes dynamics of the eigenvalues of the orthogonal,
unitary and symplectic matrices. Recently, the authors of Ref. 13 reported a sim-
ple result for the correlation of the eigenvalue density at two points in the spectrum.
Now, we are going to show that our correlation function G(x, y), calculated up to
the quadratic term in the fluctuations around the semiclassical configuration ρ0(x),
is in agreement with the Brézin-Zee spectral correlator given in Ref. 13. Having in
mind the relations for G(x, y) (34), ϕn(z) (70), and ωn (60), we easily obtain

G(x, y) =
T

4π2

1

ρ0(x)ρ0(y)
∂t∂t′

(

∑

n

cos nπ
T (t− t′)

n
−
∑

n

cos nπ
T (t+ t′)

n

)

. (71)
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Next, we employ the summation formula [9]

∑

n

cosnα

n
= −1

2
ln 2(1− cosα), (72)

so that G(x, y) can be rewritten as

G(x, y) = − 1

4Tρ0(x)ρ0(y)

1− cos π
T t(x) cos

π
T t(y)

(

cos π
T t(x)− cos π

T t(y)
)2 . (73)

In our case (12) the end points of the spectrum are given by −a and a, and the
time of flight than reads

t(x) =

x
∫

−a

dy

ρ0(y)
=

x
∫

−a

dy
π
T

√

a2 − y2
=

T

π

(

arcsin
x

a
+

π

2

)

. (74)

Inverting this relation, we obtain

x = −a cos
π

T
t(x). (75)

Combination of Eqs. (73) and (75) yields the exact two-point correlation function
of Ref. 13

G(x, y) = − 1

4Tρ0(x)ρ0(y)

a2 − xy

(x− y)2
, (76)

valid for any even potential in which the eigenvalues ”move”. We note in passing
that this result can be rederived from Eq. (36) simply by putting λ = 1.

Finally, it would be interesting to expand the collective Hamiltonian (1) up to
the cubic terms in the fluctuations around the semiclassical configuration ρ0(x).
These cubic interaction terms would provide a basis for systematic perturbative
computations of scattering amplitudes, higher (loop) corrections to the ground-
state energy and the dispersion law.

Acknowledgements

This work was supported by the Scientific Fund of the Republic of Croatia.

References

1) F. Calogero, J. J. Math. Phys. 10 (1969) 2127, 2191;

2) A. P. Polychronakos, J. Nucl. Phys. B324 (1989) 597;

FIZIKA B 4 (1995) 2, 93–110 109
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POBUDENJA KOLEKTIVNE TEORIJE POLJA U CALOGEROVU MODELU

IVAN ANDRIĆ, VELIMIR BARDEK i LARISA JONKE

Zavod za Teorijsku Fiziku, Institut Ruder Bošković, P.P. 1016, 10001 Zagreb, Hrvatska

UDK 531.19

PACS 03.65.Ss, 05.50.-d, 71.10.+x

Razmatran je veliko-N Calogerov model u pristupu kolektivne teorije polja, zasno-
vanom na 1/N razvoju. Bogomolnyev limes daje jednadžbu za poluklasičnu kon-
figuraciju, kao i točnu energiju osnovnog stanja. Korǐstenjem metode ortogonalnih
polinoma, naden je spektar pobudenja malih fluktuacija gustoće oko poluklasičnog
rješenja, za bilo koju vrijednost statističkog parametra λ. Eksplicitno je izvedena
valna funkcija pobudenih stanja kao umnožak Hermiteovih polinoma. Dvotočkasta
korelaciona funkcija je izračunata kao 1/ρ razvoj, za bilo koju intermedijarnu statis-
tiku.
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