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We obtain an analytical expression for the quantity, d(x) − u(x), which measures
the SU(2) asymmetry in the light quark sea, by solving analytically the (non–
singlet) evolution equation of QCD, for which Debye’s steepest descent method in
its orginal rigorous form is used. Our solution is consistent with the recent NMC
data concerned, and Regge–behaved as well.

1. Introduction

While the Gottfried sum rule (GSR) [1] had predicted that

SG =

1
∫

0

dx

x
[F ep

2 (x)− F en
2 (x)] =

1

3
, (1)

the recent NMC data have been interpreted [2] to yield a significantly lower value,
viz.

SG = 0.24± 0.016. (2)
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To explain the above discrepancy there has been a profusion of theoretical pa-
pers in recent times [3-6], which invoke either the SU(2) symmetry–breaking in the
light quark sea [3,4] or the i–spin symmetry–breaking between the proton and the
neutron [5,6] as the two alternative theories of GSR–violation. Since the GSR itself
implies respecting the symmetries concerned, some kind of symmetry–breaking has
been, naturally, introduced into its violation as indicated by Eq. (2) above. For
short, we would often refer to the sea symmetry–breaking by the acronym, SSB,
not related to the Goldstone theorem. The i–spin symmetry–breaking between the
neutron and the proton will analogously be designated NPSB.

We mention, in passing, the fact that the cited papers have not made use of
the QCD, which, incidentally, is the reason why we seek here to investigate the
discrepancy, in question, in terms of the QCD evolution equation.

It is, however, of interest to recall that the SSB, in the very sense in which it
occurs in the cited references, corresponds to an inequality occurring in a relatively
early paper of Field and Feynman [7], which reads

d(x)− u(x) > 0 (3)

and which followed from their assumption,

uv > dv (4)

with the subscript v denoting “valence”. It is also to be noted that Eq. (4) also led,
owing to the exclusion principle, to alternative form of Eq. (3), viz.

dd− uu > 0. (5)

The calculated value of SG in Ref. 7 to whit,

SG = 0.27 (6)

seems to be rather close to the one given in Eq. (2). For the data [8] avialable in
1977 were dated by present standards.

So much for the elements of SSB as it occurs in some recent references too [4,6].
Now, the other kind of symmetry–breaking, NSPB, is defined [6] by the inequality,

up /= dn (7)

where the suffices (p,n) denote proton and neutron, respectively. As a measure of
symmetry–breaking, we define

D(x) = d(x)− u(x) (8)
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When the contending models are examined, a substratum common to them
looms large. In fact, Eqs. (4) and (7) are not quite incongruous (except for very
small x, which makes the sea distribution more important). Even the deep inelastic
scattering (DIS) cross–sections for several important processes turn out to be almost
identical whether the SSB–model or the NPSB–model is employed to modify the
naive quark model which is resorted to by either model calculation. The question
that arises in view of the above state affairs is this: is the dovetailing of some
asymmetry to a symmetric (quark) model a compensation for the neglect of possible
hadronic processes ? Such hadronic processes can be entirely ignored when the DIS
is counted at energies which are high enough for interactions to be purely of the
fundamental type. Unfortunately, this energetic criterion is scarcely fulfilled till
now. The sequel to the above question is another riddle. How are we to decide
which is the more viable model ? A futuristic hope of some decision, if and when
more reliable data would be avialable has, however, been expressed by some authors
[6].

2. The SU(2) asymmetry concerned in the light of QCD

Meanwhile, we try a tertium quid – a third something, QCD. It entails no dove-
tailing of a symmetric model and a “corrective” asymmetry. Besides, we calculate
no DIS cross–section here. We just examine, analytically, the x–dependence of dis-
crepancy itself which undoubtedly is the crux of the matter under consideration.
Our choice of QCD for the DIS stems from the precedent set by gluonic correc-
tions to interpret scaling violations in similar processes. Moreover, gluon emission
from a valence quark and its conversion into sea quark pair would let QCD admit
both kinds of symmetry–breaking referred to above. Hence, our incorporation of
any asymmetry of the kind would not be prejudical as it would be to a free quark
model. For ours is a QCD–based model. Altough, both kinds of asymmetry pre-
sumably coexist, we choose the SU(2) sea asymmetry simply for definiteness and
without any predilection.

Accordingly, we recast the inequality of Eq. (3) into an equation, where D
measures the discrepancy referred to above. Note that the Q2–dependence, too,
of the quantities of Eq. (8) will be shown explicitly later on. Note also that we
consider the asymmetry, D, to be a practically–minded measure of the GSR–NMC
discrepancy.

As for the x–dependence of d and u of Eq. (8), empirical expression have been
tried by several authors. In Ref. 7 itself we find one such attempt. We investigate
the x–dependence of D instead, and that also by analytically solving the nonsinglet
evolution equation of QCD. During the calculation of the inverse transform of the
Mellin transformed version of the evolution equation, we use the Debye method of
steepest descent, maintaining all its rigour. Our calculation is entirely free from
the “convergence–crisis” at small x, which crisis has long been known to impair
the non–rigorous but simplified variant of the Debye’s method [9]. It is amusing
to note that rigour has lent a simplicity to our working formula which the over–
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simplified approach lacked. Our earlier success in treating the singlet case of the
coupled evolution Eq. (10) has prompted us to try the following method.

Without any further ado, we write the nonsinglet kind of evolution equation for
the D–function of Eq. (8),

dD(x, t)

dt
= a(t)

1
∫

x

dy

y
PDD(x/y)D(y, t), (9)

where we consider the linear evolution equation valid for D, since it is so for d
and u of Eq. (8) and where we have shown the Q2–dependence of D explicitely by
stipulating

D = D(x, t) (9a)

with

t = ln(Q2/Q2
0), (9b)

Q2
0 being the usual (fixed) reference momentum. Note that we have written a(t) in

Eq. (9) for a(t)/2π to facilatate the writing. To solve Eq. (9) we proceed as follows:
With S for the Mellin transformation variable, the Mellin transformed version of
Eq. (9) becomes

dMD

dt
= a(t)MP (S)MD(S, t) (10)

where

MD(S, t) =

1
∫

0

dxxsD(x, t) (10a)

and

MP (S) =

1
∫

0

dzzsP (z). (10b)

We had to use the convolution theorem of the Mellin transforms to obtain Eq. (10).
We have also assumed

∫

a(t)dt ≃ at, (10c)
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which is permissible when experimental data to be interpreted belong to a region
of approach to the asymptotic realm. Now, in view of Eq. (10c), the solution of Eq.
(10) is trivially found to be

MD(s, t) = A exp(MP (s)at) (11)

where the t–independent object, A, can be eliminated as follows: we assume an
imput distribution,

D(x, 0) ≃ (1− x)d, (12)

which yields, in view of (10a),

MD(S, 0) ≃

1
∫

0

dxxs(1− x)d = B(s+ 1, d+ 1), (13)

where B is the usual symbol for the beta function. Comparing Eqs. (11) and (13),
we obtain

A = B(s+ 1, d+ 1). (14)

Hence, Eq. (11) turns out to be free from A, to wit,

MD(s, t) = B(s+ 1, d+ 1) exp[MP (s, 0)]. (15)

But MP (s), which is defined in Eq. (10b), involves P (Z). To compute P (Z) in
QCD, one must consider all elementary interactions which would contribute to

γ∗ + p → all (16)

where, for definiteness, the DIS is envisaged as an ep–process. The process dictated
by the free quark model are supplemented in QCD by corrections due to gluonic pro-
cess. Incidentally, the gluonic corrections were not incorporated in the calculation
of the DIS–cross–sections in cited references [4,6]. It appears that the hypotetical
symmetry–breaking has been a pragmatic compensation for the emission of correc-
tions. It is hoped that gluonic corrections mitigate the fault of neglecting hadronics
interactions, which are apt to complicate the simple picture of fundamental inter-
actions as long as our DIS data corresponds to the present energy limits, which are
rather low for the interaction to be exclusively fundamental.

To return to the question of the calculation of P (Z), we note that the free
quark model results are significanntly modifed in QCD owing to (i) the propaga-
tor correction and (ii) the vertex correction. We need not go into the details of
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these things, the relevant calculation being standard [11]. Yet, the following points
deserve mention:

First, the gluon being real, the polarization sum is given by

∑

λ

eα(k, λ)e
∗

β(k, λ) = −gαβ +
kαuβ + kβuα

k · n
(17)

where for a lightlike gauge, we also have

k · ǫ = u · ǫ = 0,

u2 = 0. (17a)

Second, one is to consider terms of equal in Q2 which yields

Φµν = −2π

1
∫

−1

d(cosΘ)

∞
∫

0

dk0 · k0

2

1

ν
δ(ρ− x)

(

1 + ρ2

1− ρ

)

×

×
Trγµ(ρkf/ + q/)γνpf/

2k0p0f cosΘ− (Q2
0 + 2k0p0f )

(18)

where

ρ = 1−
Qk0

ν
. (18a)

Third, the singularity at ρ = 1 of Eq. (18) is just cancelled as complete correc-
tions for the vertex and the propagator are incorporated. With these three points
for a cue, one can obtain by some straightforward calculation the expression for
P (Z), which reads

P (Z) =
4

3

1 + Z2

1− Z
, (19)

where a three–flavour model is employed.

Combining Eqs. (10b) and (19), one is led to the expression for Mp(s), viz.,

Mp(s) = c2(R)

[

3

2
+

1

(s+ 1)(s+ 2)
− 2Ψ(s+ 2)− 2γ

]

, (20)
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where c2(R) is a Cassimir operator corresponding to the adjoint representation of
the colour group, Ψ the logarithmic gamma function, and γ the Euler–Mascheroni
constant ≈ 0.577.

The quantity of interest D, which is the intended solution of EQ. (9), is given
by the inverse Mellin transform of Eq. (15), which is

D(x, t) =
1

2πi

∫

C

exp[hf(s, x)B(s+ 1, d+ 1)]ds, (21)

where

h ≃ at, (21a)

f(s, x) = Mp(s)−
s+ 1

h
lnx, (21b)

and C is the integration contour to be specified presently. While formulating the
steepest descent method, Debye had specified C such that on a part C0 thereof,
the following conditions – the so–called Debye conditions – hold:

(1) Im f(s) = constant along C.

(2) There exist some S0 ǫ C0 satisfying
df

ds
|s=s0

= 0.

(3) Re f(s) is a relative maximum at s = s0, s0 being the saddle–point. (Note that
a local maximum is inadmissible inside the domain of analyticity of Re f(s)).

It is to be noted that the customary approach would simplify matters by an
illegitimate assumption that the minimum of Re f(s) corresponds to the maximum
of Im f(s). Actually, Im f(s) is not a maximum but merely a constant there. A
further oversimplification, preferred in that nonrigorous approach, consisted in in-
tegration along the imaginary axis. This had the apparent advantage of real part of
the integration variable being a constant. But, then, it had no way to incorporate
the Debye conditions (1) and (2) which determine the contour in our case. More-
over, a second order Taylor expansion sufficed for the simplified method of steepest
descent; by contrast, we employ a full expansion of f(s) as we would presently see.
While the customary oversimplification of the steepest descent method sacrificed
rigour in more ways than the few we have mentioned, we can nevertheless realize
the reason of its failure to ensure covergence of the solution, particularly at small
values of x. While numerical solutions have been in vogue, for reasons discussed
in Ref. 9, we present this rigorous version of the same Debye method with no
pretension to precision, since numerical methods are excellent in that regard. Our
idea is to assert that the evolution equation can have a well–behaved solution if
hasty oversimplifications are not imposed on the steepest descent method employed
during Mellin inversion.

To return to the calculation, we put
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f(s) = f(s0)− u2, (22)

where u2 is real by virtue of Debye conditions set forth above, s0 being the saddle–
point as defined threin. The selfsame conditions on C0 would make Re f(s) register
a steep fall outside a small neighbourhood of s0. (A small neighbourhood being
intended, the question of indiscrete topology does not arise at all). Now, Eq. (22)
allows a good approximation to Eq. (21), which reads

D(x, t) ≈ exp[hf(s0)]
1

2πi

∞
∫

−∞

exp(−hu2)B(s+ 1), d+ 1)
ds

du
(u)du. (23)

We now employed the power series expansion,

1

2πi
B(s+ 1, d+ 1)

ds

du
(u) =

∞
∑

n=0

anu
n. (24)

Combining Eqs. (23) and (24), we write

D(x, t) ≈ exp[hf(s0)]

∞
∑

n=0

an

∞
∫

−∞

exp(−hu2)undu. (25)

Let us introduce the notation,

Gn =

∞
∫

−∞

exp(−hu2)undu. (25a)

whence

Gn = −Gn, for n = 1, 3, 5, ... ,

implying

Gn = 0, for n = 1, 3, 5, ... .

But

G0 =

∞
∫

−∞

exp(−hu2)undu =

√

π

t
. (25b)

152 FIZIKA B 4 (1995) 2, 145–155



sidhanta: the su(2) asymmetry in the light quark sea

Whence, noticing that

G2n = −
∂

∂h
G2n−2 (25c)

we obtain

G2n =
(π)1/2 · 1 · 3 · 5 · ... · (2n− 1)

2n(h)(2n+1)/2
(25d)

for n > 0.

We obtain from above a series representation for D(x, t) of Eq. (25), to wit

D(x, t) = exp[hf(s0)]

∞
∑

n=0

a2nΓ(n+ 1/2)h−(n+1/2). (26)

But Q2 for a DIS process is large, too, in view of Eqs. (9b) and (21a). The
factor h−(n+1/2) of the general solution (26) ensures that even a lowest order ap-
proximation to Eq. (26), corresponding to n = 0, would be a good enough working
formula for our purpose. It reads

D(x, t) = a0

√

π

t
exp[atMp(s0)]

(

1

x

)s0+1

(27)

where Mp(s0) follows from Eq. (20).

3. Numerical results and discussion

It is, however, of interest to judge the ratioinale of the validity of Eq. (27) by the
hind–sight of Ref. 9, where small x caused some difficulty. The higher order terms
in Wilson coefficients and the anomalous dimensions which cause such difficulty,
as one solves the renormalization group equation written for Wilson coefficients
in accordance with the formal method, clearly correspond to higher n–terms of
our series solution. This is so because the Altarelli–Parisi approach, which we are
following, corresponds to the formal approach under the stipulation,

1
∫

0

dz zn−1P
(0)
NS(z) = γ

(0)
NS(n), (28)

where γ
(0)
NS(n) is the one which occurs in the context of the formal moment equation

of QCD. Since our integer variable n of Eq. (26) makes no contribution for higher
values, our solution is inherently exempted from the danger of divergence which
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was there in the solution given in Ref. 7 as mentioned above. The reason why
our solution is flawless even at small x lies in our meticulous avoidance of any
oversimplification of Debye’s rigorous method of steepest descent.

It follows from the calculations done in Ref. 4 and 6 that if the value of the
integral

1
∫

0

[

d(x)− u(x)
]

dx =

1
∫

0

D(x)dx, (29)

be taken to be equal to 0.140, SG would be given by its NMC value, namely, ≈ 0.24.
But Eq. (29) involves D(x), which, via Eq. (27) involves the unknown parameter
a0. We first fix a0 by way of putting the integral of Eq. (29) equal to 0.140 and
keeping t fixed. Once we fixed a0, we go to compute six different SG values by
varying t. We obtain for SG the set of values 0.24700, 0.24248, 0.24240, 0.24120,
0.24050 and 0.23805, where the average departure from the NMC value of 0.24 is
about 1.2% , the maximum departure being 3% . The consistency obtained with
the simple QCD model may be considered satisfactory.

The numerical computation made use of the relation,

0 =
∂MP

∂s0
−

lnx

h
(30)

which follows when Debye conditions are combined with Eq. (21b). We next find
s0 and Mp(s0), which occur in Eq. (27), by the help of the computer.

We note also a striking similarity between the Regge behaviour found in Ref. 4
and that predicted by the present work.

We conclude that our QCD – based model can explain the asymmetry problem
disscused in Ref. 7 and can reproduce the actual x–dependence of that asymmetry
reasonably well.
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SU(2) ASIMETRIJA U MORU LAKIH KVARKOVA

ABHIJIT SIDHANTA

Department of Physics, Calcutta University, Calcutta–700 009, Indija

UDK 539.12

PACS 12.38.Aw

Dobiven je analitički izraz za veličinu d(x) − u(x), koja mjeri SU(2) asimetriju u
moru lakih kvarkova.
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