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By considering a spin-one particle precession in a magnetic field, we demonstrate
that if very refined measurements were made of both the precession frequency and
the amplitude of spin polarization, these measurements could be used to probe for
compositeness of gauge bosons, discrete time effects and possible Markov environ-
mental effects.

1. Introduction

Certainly the last twenty years of particle physics have been fruitful in achiev-
ing unification of the fundamental interactions in the presence of the standard
SU(3)C×SU(2)L×U(1)Y model in a certain sense of the word [1]. Despite this uni-
fication, there still is room for further speculation regarding the nature of a more
predictive and less phenomenological theory. The guest for the origin of the gen-
eration structure, the origin of the fermion masses and the quark mixing matrix
all suggest that perhaps the standard model is but a clue to the correct theory [2].
Along with these questions, the source of CP violation and the chiral structure of the
weak interactions also prod us to look for new physics beyond the standard model
[3]. Because the fermion masses are small compared to the electroweak breaking
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scale, it suggests that perhaps the group SU(3)C×SU(2)L×U(1)Y is contained in a
GUT group, with perhaps a horizontal symmetry adjoined to the standard model
protecting the masses of the quarks and leptons from acquiring large values. Such
a candidate generation unification group could be anyone of the orthogonal groups
[4]. In addition to this possibility, there also exists the possibility of a unifying tech-
nicolour theory [5] as well as a unifying composite theory [6]. Compositeness seems
like a most fundamental approach, since all systems (atoms, nuclei and hadrons)
have thus far admitted to a composite structure. Two of the most popular schemes
are the rishon model [7] and the scalar-fermion scheme of Fritzsch and Mandel-
baum [8]. In Ref. 6 there are numerous other composite schemes discussed. Some
schemes consider quarks and leptons as composite, while other also consider gauge
bosons and Higgs particles as composite [9]. The experimental problem is to probe
for compositeness using form factors, anomalous moments and rare decays [10].

Another approach to probing composite structure, that we have discussed in
the past, is to consider the fact that at some scale both space and time become
grainy and discrete-like [11]. In this regard, we have discussed both the composite
structure of leptons [12] and gauge bosons [13] using the discrete nature of time
in spin polarization precession measurements. In another study, we have shown
how the discrete nature of time can be used to probe for internal hidden quantum
numbers within an elementary particle [14]. In a recent paper, we have discussed the
spin polarization precession of a spin-1/2 particle using different types of discrete
time theories, along with a theory that admits Markov discrete-time jump processes
[15]. This study suggests that the Markov process adjoined to the usual quantum
theory might generate chaotic fluctuations in the spin-polarization amplitude.

In what follows, we discuss the spin polarization precession of a spin-one particle
in a variety of theories. The first is the usual Schrödinger theory which cannot be
used to probe for composite structure. The second theory is the Schrödinger theory
adjoined to a Markov influence on the underlying preon dynamics. The third theory
is a pure spin-1 Schrödinger theory with Markov influences. The distinction between
the second and third theory will be found in the different chaotic effects on the
spin polarization amplitude. The fourth theory is a discrete time difference theory
with a composite structure of the spin-1 gauge boson. This theory can be used to
probe for compositness. In theories two and three if Markov influences are present
then the second and third theories can be used to distinguish between a pure spin-1
theory and a composite spin-1 theory through a study of the experimental temporal
behaviour of the spin polarization amplitude.

2. Probing for compositness, discrete time effects and

Markov influences

To begin our analysis, we consider a model of w− (spin-1) gauge boson as
consisting of two spin-1/2 preons, each of charge −ep = −e/2 (e = magnitude of
electronic charge), held together by a hypercolour spin-spin coupling [16]. For two
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preons in an external z-component magnetic field B, the hamiltonian reads

H = M0c
2 +

p21
2m

+
p22
2m

+
ep
m

Sz1B +
ep
m

Sz2B + gS1 · S2 (1)

where M0c
2 = rest mass parameter, m = heavy preon mass, q = −ep = −e/2

= charge of each preon, Sz1, Sz2 = z component spin matrices and g = spin-spin
coupling constant.

The Schrödinger equation reads

HΨ = ih̄
∂Ψ

∂t
, Ψ = U(x1, x2)ααT (t). (2)

Here we first consider the two preons in an Sz = 1 state. Equations (1) and (2)
give for the eigenstate in Eq. (2)

(

M0c
2 − h̄2

2m

∂2

∂x2
1

− h̄2

2m

∂2

∂x2
2

)

U(x1, x2) = E1U(x1, x2), (3)

[ep
m

(Sz1 + Sz2)B + gS1 · S2

]

αα = E2αα (4)

(E1 + E2)T (t) = ih̄
∂T

∂t
. (5)

For the spatial equation we consider the infinite square well

V = 0 for 0 ≤ x ≤ L and V = ∞ for −∞ < x < 0 and L < x < ∞.

The antisymmetric spatial function is

E1 = M0c
2 +

n2
1h

2

8mL2
+

n2
2h

2

8mL2
,

U(x1, x2) =
1√
2

(

2

L
sin

n1πx1

L
sin

n2πx2

L
− 2

L
sin

n1πx2

L
sin

n2πx1

L

)

. (6)

From Eq. (4), we have

ΨS = αα,

E2 =
ep
m

h̄B +
gh̄2

4
. (7)

The total energy is

E+ = M0c
2 +

n2
1h

2

8mL2
+

n2
2h

2

8mL2
+

ep
m

h̄B +
gh̄2

4
. (8)
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The solution to Eq. (5) is

T (t) = e−iE+t/h̄.

Thus

Ψ+(x1, x2, Sz1 , Sz2 , t) = U(x1, x2)ααe
−iE+t/h̄. (9)

Similarly for the Sz = 0 and Sz = -1 states

Ψ0 = U(x1, x2)
1√
2
(αβ + βα)e−iE0t/h̄ (10)

with

E0 = M0c
2 +

n2
1h

2

8mL2
+

n2
2h

2

8mL2
+

gh̄2

4
(11)

and

Ψ− = U(x1, x2)ββe
−iE

−
t/h̄ (12)

E+ = M0c
2 +

n2
1h

2

8mL2
+

n2
2h

2

8mL2
− ep

m
h̄B +

gh̄2

4
. (13)

Note that in Eqs. (9), (10) and (12), the spatial function is the same in each case.
We now construct a linear combination of Eqs. (9), (10) and (12) so that

〈Sx1
+ Sx2

〉t=0 = h̄. (14)

This linear combination is

Ψ =

(

1

2
ααe−iE+t/h̄ +

1

2
ββe−iE

−
t/h̄ +

1√
2

(

αβ + βα√
2

)

e−iE0t/h̄

)

U(x1, x2). (15)

When we evaluate 〈Sx1
+ Sx2

〉t using Eq. (15), we integrate over the spatial coor-
dinates x1, x2 from 0 to L; we obtain

L
∫

0

L
∫

0

Ψ+(Sx1
+ Sx2

)Ψdx1dx2 = h̄ cos
epB

m
t. (16)

We now let ep = e/2, m = Mw/2 (heavy preon mass = 1/2 gauge boson mass) and
Eq. (16) gives

〈Sx1
+ Sx2

〉+ = h̄ cos
eB

Mw
t. (17)

Eq. (17) represents the expected value of the x spin polarization with ω = eB/Mw.
Eq. (17) in no way reveals any composite structure of w−. We next consider the
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Markov influence on the individual preondynamics, if each preon has an initial
probability of being up and down of 1/2, 1/2, respectively, we have after n steps
[17] (n discrete time steps) for the probability of up and down P (+)n, P (−)n

P (+)n =
p

p+ q
+ (1− p− q)n

(

1

2
− p

p+ q

)

,

P (+)n =
q

p+ q
+ (1− p− q)n

(

1

2
− q

p+ q

)

. (18)

Here p = probability of a spin-flip down to up in the external B-field and q =
probability of a spin-flip up to down in the external B-field

We now modify Eq. (15) to read

Ψ =
√

P (+)nP (+)nααe
−iE+t/h̄ +

√

P (−)nP (−)nββe
−iE

−
t/h̄

+
(

√

P (+)nP (−)nαβ +
√

P (−)nP (+)nβα
)

e−iE0t/h̄. (19)

Here P (+)n, P (−)n are the same for both preons, also since P0(+) = P0(−) = 1
2 .

Eq. (19) reduces to Eq. (15) at n = 0. Evaluating 〈Sx1
+ Sx2

〉 using Eq. (19), we
obtain (again we integrate over the spatial coordinates)

〈Sx1
+ Sx2

〉 = 2h̄ cos
epB

m
t
[

√

P (+)3nP (−)n +
√

P (−)3nP (+)n

]

. (20)

Again, if we set ep = e/2, m = Mw/2, Eq. (20) reduces to

〈Sx1
+ Sx2

〉 = 2h̄ cos
eB

Mw
t
[

√

P (+)3nP (−)n +
√

P (−)3nP (+)n

]

. (21)

Now, Eq. (21) represents the x spin polarization with a chaotic varying amplitude
and frequency ω = eB/Mw. Note that p, q can depend on B and thus the amplitude
can vary with B. Also, if p = q, then for large time Eq. (21) becomes

〈Sx1
+ Sx2

〉 = h̄ cos
eB

Mw
t. (22)

The assumption p = q = 1/2 for large time suggests a certain statistical equilibrium
that is established for an ensamble of spins plus magnetic field. It also suggests
that the Markov process might only by operative right after the application of the
field. It would suggest that the chaotic fluctuation in Eq. (21) would have to be
measured for very small times (low n). If we now assume a pure spin-1 theory for
gauge bosons, we have the hamiltonian (no spatial effects)

H = M0c
2 +

e

Mw
SzB. (23)
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The spin functions for the three states are

Ψ+ = U(+1)e−iE+t/h̄, E+ = M0c
2 +

e

Mw
h̄B,

Ψ0 = U(0)e−iE0t/h̄, E0 = M0c
2,

Ψ− = U(−1)e−iE
−
t/h̄, E− = M0c

2 − e

Mw
h̄B. (24)

Again

Ψ =
1

2
Ψ+ +

1

2
Ψ− +

1√
2
Ψ0 for 〈Sx〉t=0 = h̄. (25)

Without Markov’s environmental effects, we have

〈Sx〉 = Ψ+SxΨ = h̄ cos
eB

Mw
t (26)

(here we have no internal spatial dynamics). If we include Markov effects, we have
a three state system with a 3×3 Markov transition matrix as follows

M =





+1 0 −1

+1
0

−1



 (27)

If we assume p = probability of going from −1 → 0, 0 → 1, p2 = probability of going
from –1 to 1, q = probability of going from 1 → 0, 0 → −1 and q2 = probability of
going from 1 → −1, we have the following transition matrix

M =





+1 0 −1

+1 1− q − q2 q q2

0 p 1− p− q q
−1 p2 p 1− p− p2



 (28)

If the initial probabilities are

P (+) =
1

4
, P (−) =

1

4
, P (0) =

1

2
,

we have for a n-step Markov process

(P (+1)n, P (0)n, P (−1)n) = (1/4, 1/2, 1/4)Mn. (29)
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If we now include Markov’s effects in Eq.(25), we have

Ψ =
√

P (+)nΨ+ +
√

P (−)nΨ− +
√

P (0)nΨ0 (30)

where P (+)n, P (−)n and P (0)n are calculated from Eq. (29). For the expectation
value of Sx we have

〈Sx〉 =
(

√

P (+)ne
iE+t/h̄,

√

P (0)ne
iE0t/h̄,

√

P (−)ne
iE

−
t/h̄

)

× h̄√
2





0 1 0
1 0 1
0 1 0









√

P (+)ne
−iE+t/h̄

√

P (0)ne
−iE0t/h̄

√

P (−)ne
−iE

−
t/h̄



 (31)

=
h̄√
2

(

2
√

P (+)nP (0)n + 2
√

P (−)nP (0)n

)

cos
eB

Mw
t.

Note that P (+)n, P (−)n and P (0)n are calculated from the 3 × 3 transition matrix
in Eq. (29) after n steps. Since the dependence on n in Eq. (31) is fundamentally
different that in Eq. (21), the comparison of the two results (Eqs. (21) and (31)),
with the experimental variation 〈Sx〉n for small n, could be used as evidence for or
against composite gauge boson structure. Equation (21) would suggest composite
structure while Eq. (31) would not.

Our last theory is that of a discrete time difference theory for spin polarization
precession. We also assume a composite gauge boson structure as in Eq. (1). For
the discrete time Schrödinger equation we have [11]

HΨ = ih̄(Ψ(t+ τ/2)−Ψ(t− τ/2))/τ (32)

(τ = discrete time interval). For the wave function for Sz = 1, we have

Ψ = U(x1, x2)ααT (t). (33)

The solution for U(x1, x2) is the same as in Eq. (6) with

E+ = M0c
2 +

n2
1h

2

8mL2
+

n2
2h

2

8mL2
+

ep
m

h̄B +
gh̄2

4
. (33)

The temporal wave function obeys

E+T (t) = ih̄ (T (t+ τ/2)− T (t− τ/2)) /τ (34)

with the solution

T = e−i2t/τsin−1(E+τ/(2h̄)).
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Thus

Ψ+ = U(x1, x2)ααe
−i2t/τsin−1(E+τ/(2h̄)). (35)

For the Sz = 0, 1 states we have

Ψ0 = U(x1, x2)
1√
2
(αβ + βα)e−i2t/τsin−1(E0τ/(2h̄)),

E0 = M0c
2 +

n2
1h

2

8mL2
+

n2
2h

2

8mL2
+

gh̄2

4
, (36)

Ψ− = U(x1, x2)
1√
2
(αβ + βα)e−i2t/τsin−1(E

−
τ/(2h̄)),

E− = M0c
2 +

n2
1h

2

8mL2
+

n2
2h

2

8mL2
− ep

m
h̄B +

gh̄2

4
. (37)

Again, we construct the linear combination of Eqs. (35), (36) and (37) that gives

〈Sx〉t=0 = h̄. (38)

The linear combination is

Ψ =
1

2
Ψ+ +

1

2
Ψ− +

1√
2
Ψ0. (39)

For the x spin polarization we have

〈Sx1
+ Sx2

〉t=0 =

L
∫

0

L
∫

0

Ψ+(Sx1
+ Sx2

)Ψdx1dx2 (40)

where

Sx1
= Sx2

= h̄/2

(

0 1
1 0

)

.

In Ref. 13 we have evaluated the result in Eq. (40). The calculation gives

〈Sx〉 = h̄/2 cos(a1 − a3)t+ h̄/2 cos(a3 − a2)t (41)

where

a1 =
2

τ
sin−1 E+τ

2h̄
for Sz = +1,

a2 =
2

τ
sin−1 E−τ

2h̄
for Sz = −1,
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a3 =
2

τ
sin−1 E0τ

2h̄
for Sz = 0. (42)

For small τ , Eq. (41) gives

〈Sx〉 = h̄/2 cos

(

epB

m
t+

τ2

24h̄3 (E
3
+ − E3

0)t

)

+h̄/2 cos

(

epB

m
t+

τ2

24h̄3 (E
3
0 − E3

−
)t

)

. (43)

Eq. (43) would suggest two different sinusoidal functions for the x spin polarization
of slightly different frequencies which would generate a slight ”Doppler like” effect
on the frequencies in the x spin polarization superimposed on the average frequency.
If we now allow a Markov influence in Eq. (39) in the form

Ψ =
√

P (+)nP (+)nU(x1, x2)ααe
−ia1t +

√

P (−)nP (−)nU(x1, x2)ββe
−ia2t

+
(

√

P (+)nP (−)nαβ +
√

P (−)nP (+)nβα
)

U(x1, x2)e
−ia3t, (44)

and we evaluate 〈Sx1
+ Sx2

〉, we obtain

〈Sx〉 = 2h̄
[

√

P (+)3nP (−)n cos(a1 − a3)t+
√

P (−)3nP (+)n cos(a2 − a3)t
]

. (45)

Thus, Eq. (45) would signal two different sinusoidal functions for the x spin polar-
ization with slightly different frequencies as well as an amplitude that would vary
in a chaotic fashion for small times as given by Eq. (45).

3. Construction the transition matrix for two and three

states in Markov spin transition

For the two-step Markov process (up and down states), we have the following
transition matrix [18]

M =

(

+ −
+ 1− q q
− p 1− p

)

.

Both p and q would depend on the strength of the magnetic field, and we might
speculate that they have a power law dependence on B. If measurement of the
x spin polarization could be made after n steps, then Eq. (21) could be used to
obtain phenomenological values of p and q. Note also that t = nτ/2, where τ/2
would be the discrete time interval between Markov jumps. For the three by three
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transition matrix in Eq. (28), we have assumed a kind of ”random walk” behaviour
for Markov jumps, that is p = probability of advancing one step, while p2 represent
probability of advancing two steps, q = probability of decreasing spin by one step,
q2 = probability of decreasing spin by two steps. Again, we might expect that
p and q would have a power law dependence on B. With initial probabilities of
1/4, 1/2, 1/4 for the (+ 0 –) state, we may evaluate P (+)n, P (0)n, P (−)n from
Eq. (29) and compare Eq. (31) with an experimental curve after n steps to obtain
phenomenological values of p and q.

4. Conclusion

In the above analysis, we have considered five possibilities for the x spin polar-
ization as a function of n (t = nτ/2) listed in Table 1.

TABLE 1.
Type of theory and corresponding x spin polarization of spin-one gauge boson

after n discrete time steps

Type of theory 〈Sx〉
Normal quantum mechanical
behavior with no environmental 〈Sx〉 = h̄ cos eB

m t
Markov effects

Q.M. + Markov environmental 〈Sx〉 = 2h̄ cos eB
Mw

t
[

√

P (+)3nP (−)n

effects on 2 preon composite +
√

P (−)3nP (+)n

]

gauge boson

Q.M. + Markov environmental 〈Sx〉 = h̄
√

2

(

2
√

P (+)nP (0)n

effects on spin-1 gauge boson +2
√

P (−)nP (0)n

)

cos eB
Mw

t

with no composite structure
Discrete time difference Q.M.
with no Markov environmental effects 〈Sx〉 = h̄

2 cos(a1 − a3)t
(2 preon composite structure + h̄

2 cos(a3 − a2)t
of gauge boson)
Discrete time difference Q.M.

with Markov environmental effects 〈Sx〉 = 2h̄
[

√

P (+)3nP (−)n cos(a1 − a3)t

(2 preon composite structure +
√

P (−)3nP (+)n cos(a3 − a2)t
]

of gauge boson)

If small chaotic variation for small t = nτ/2 are observed for the x spin polar-
ization, then a comparison of the experimental curve with the above predictions for
〈Sx〉 could be used to ascertain which model fits the data. Also, if two sinusoidal-
superimposed curves were found for 〈Sx〉, it would signal an underlying discrete
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time difference theory with a composite gauge boson structure. The experimental
problem is to obtain short enough time intervals so that discrete Markov effects
would show up. This might be obtained when the spin polarization creates a sec-
ondary process whose characteristics are sensitive to small time intervals such as
the cross section for e+ + e− → Z → products. Here the polarization of e+, e−

and of the products should be studied as a function of discrete time to mimic the
spin polarization of the precession particle since the precessing particle induces a
definite polarization at each n.
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PROVJERA CJELOVITOSTI, UČINAKA DISKRETNOG VREMENA I
MARKOVLJEVIH OKOLNIH UTJECAJA MJERENJEM PRECESIJE

SPINSKE POLARIZACIJE

CARL WOLF

Department of Physics, North Adams State College, North Adams, MA 01247, U.S.A.

UDK 538.145

PACS 03.65.-w

Razmatra se precesija čestice spina jedan u magnetskom polju i pokazuje da bi
se vrlo precizna mjerenja frekvencije i amplitude polarizacije mogla primijeniti
za ispitivanje složenosti baždarnih bozona, učinaka diskretnog vremena i mogućih
Markovljevih okolnih učinaka.
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