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Dedicated to Professor Mladen Paić on the occasion of his 90th birthday

Received 14 November 1994

UDC 530.145

PACS 12.20.Ds

Existence of a scalar constant of motion of the electromagnetic field is considered
and its consequences are analysed.

1. Introduction

The electromagnetic field is a real field. Due to this fact, there is no a scalar
constant of motion of this field in the conventional theory as well as in the dual
symmetrical theory [1]. The Lagrangian density in the dual symmetric theory is
given by

L = K

(

−1

2
FαβF

αβ + F 2 −G2

)

= K
[

(−i∂αΦγ
α)

(

i∂βγ
βΦ

)]

, (1)

where
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Fαβ = ∂αAβ − ∂βAα − 1

2
εαβξζ(∂

ξbζ − ∂ζbξ),

G = ∂αA
α, F = ∂αb

α (2)

Φ =







−Ay iAx

−f iA
−bx iby
bz −iϕ






. (3)

γα are Dirac matrices, K is a constant (1/8π for the EM field) and Aα, bα are
Lagrange’s variables. The quantities Aα make a fourvector, bα a pseudo fourvector
in the case of EM field while in the case of massless Dirac field they compose a
bispinor.

The canonical equations are given by

∂α(F
αβ + gαβG) = 0,

∂α(F̃
αβ + gαβF ) = 0, (4)

F̃αβ =
1

2
εαβξζFξζ , g00 = −g11 = −g22 = −g33 = 1, gαβ = 0, α /=β.

For the bispinor (Dirac) field, they can be written in the form

i∂αγ
αΨ = 0,

Ψ = i∂αγ
αΦ and h.c.e. (5)

The Lagrangian (1) is invariant to the transformation

Φ
′

= eiλΦ where λ is a constant. (6)

That leads to the scalar constant of motion for the Dirac field

Q = qK

∫

(Ψ+Φ+ Φ+Ψ)d3x, (7)

(q is a scalar constant). In the case of the EM field, the transformation (6) makes
a linear combination of vector and pseudovector and as a consequence the corre-
sponding constant of motion is not a scalar one. So, there arises the question of the
existence of a scalar constant of motion of the EM field. In this article, we show
that such a constant does exist, but it is connected with an internal structure of
the field and not the field as a whole. We also analyse some consequences of its
existence.
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2. Scalar constant of motion

General solution of Eqs. (4) for bα = 0, G = 0 (a standard field; G is a scalar)
can be written in the form

Aα =
∑

~k

(Aα
~k
e−ikβx

β

+ c.c.), kβk
β = 0 (L3 = 1). (8)

Due to the transversality of the EM field, we assume in the following A0 = 0

(~k ~A~k
= 0).

We now decompose Aα into two parts in a such way that in the energy–
momentum and spin vectors there are no mixed terms:

~A~k
= ~Aa

~k
+ ~Ab

~k
, (9)

where

~Aa
~k
=

1

1 + i
(Ak1r −Ak1i)~e~k1 +

1

1− i
(Ak2r +Ak2i)~e~k2,

~Ab
~k
=

1

1− i
(Ak1r +Ak1i)~e~k1 +

1

1 + i
(Ak2r −Ak2i)~e~k2, (10)

and
~A~k

= (Ak1r + iAk1i)~e~k1 + (Ak2r + iAk2i)~e~k2,

~e~ki~e~kj = δij (~e~ki − polarization vectors). (11)

The indices “r” and “i” denote real and imaginary parts, respectively.

The energy–momentum fourvector and the spin vector are given by

P 0 =
K

c

∫

( ~E2 + ~B2)d3x = P a0 + P b0 + P ab0 ,

~P =
2K

c

∫

~E × ~Bd3x = ~P a + ~P b + ~P ab, (12)

~S =
2K

c

∫

~E × ~Ad3x = ~Sa + ~Sb + ~Sab,

where

P a0 + P b0 =
4K

c

∑

~k

k20(
~Aa∗
~k

~Aa
~k
+ ~Ab∗

~k
~Ab
~k
),
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~P a + ~P b =
4K

c

∑

~k

~kk0( ~A
a∗
~k

~Aa
~k
+ ~Ab∗

~k
~Ab
~k
), (13)

~Sa + ~Sb =
4K

c
i
∑

~k

k0( ~A
a
~k
× ~Aa∗

~k
+ ~Ab

~k
× ~Ab∗

~k
),

P ab0 =
4K

c

∑

~k

k20( ~A
a∗
~k

~Ab
~k
+ ~Ab∗

~k
~Aa
~k
),

~P ab =
4K

c

∑

~k

~kk0( ~A
a∗
~k

~Ab
~k
+ ~Ab∗

~k
~Aa
~k
), (14)

~Sab =
4K

c
i
∑

~k

k0( ~A
a
~k
× ~Ab∗

~k
+ ~Ab

~k
× ~Aa∗

~k
).

Substitution of Eq. (10) into Eq. (14) gives

P abα = 0, and

~Sab = 0, (15)

in agreement with expressed requirement.

Thus

Pα = P aα + P bα

~S = ~Sa + ~Sb. (16)

The fields determined by ~Aa
k and ~Ab

k satisfy also Eqs. (4). Using these equations,
one finds

∂αj
α = 0, (17)

where1

jα =
2K

c

[

(F bαη + gαηGb)Aa
η − (F aαη + gαηGa)Ab

η

]

. (18)

From Eq. (17) follows the scalar constant of motion

Q = q
2K

c

∫

( ~Eb ~Aa − ~Ea ~Ab)d3x =

1The vector jα is derived in Ref. 2.
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= q
4K

c
i
∑

~k

k0( ~A
b
k
~Aa∗
k − ~Aa

k
~Ab∗
k ), (q − a scalar constant). (19)

Thus one obtains a scalar constant of motion of the electromagnetic field. This
scalar constant of motion does not come from the filed as a whole but from its
internal structure given by Eqs. (9) and (10). Consequently, there exists a scalar
constant of motion of the electromagnetic field associated with the internal structure
of the field.

Let us consider first to the field Aaα. Decomposition of this field according to
Eq. (10) reproduces the field itself:

( ~Aa
~k
)a =

1

1 + i
(Aa

k1r −Aa
k1i)~e~k1 +

1

1− i
(Aa

k2r +Aa
k2i)~e~k2 =

=
1

1 + i
(Ak1r −Ak1i)~e~k1 +

1

1− i
(Ak2r +Ak2i)~e~k2 = ~Aa

~k
, (20)

( ~Aa
~k
)b =

1

1− i
(Aa

k1r +Aa
k1i)~e~k1 +

1

1 + i
(Aa

k2r −Aa
k2i)~e~k2 = 0.

We decompose ~Aa in the following way:

~Aa
~k
= ~Aa

1~k
+ ~Aa

2~k
, (21)

~Aa

1~k
=

1

2
(Ak1r −Ak1i)~e~k1 +

i

2
(Ak2r +Ak2i)~e~k2,

~Aa

2~k
=

−i

2
(Ak1r −Ak1i)~e~k1 +

1

2
(Ak2r +Ak2i)~e~k2. (22)

Notice:
~Aa

2~k
= −i ~Aa

1~k
. (23)

Due to Eq. (23), the mixed terms in Pα and ~S are equal to zero (there is no
“interaction” between these fields). Thus, one gets

P aα = P aα
1 + P aα

2 = 2P aα
1 =

8K

c

∑

~k

kαk0 ~A
a∗

1~k
~Aa

1~k
,

~Sa = ~Sa
1 + ~Sa

2 = 2~Sa
1 =

8K

c
i
∑

~k

k0 ~A
a∗

1~k
~Aa

1~k
. (24)
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Using Eqs. (4), one obtains Eq. (17) with

jαa =
2K

c

[

(F aαη
2 + gαηGa

2)A
a
1η − (F aαη

1 + gαηGa
1)A

a
2η

]

(25)

and the scalar constant of motion

Qa = q
2K

c

∫

( ~Ea
2
~Aa
1 − ~Ea

1
~Aa
2)d

3x = q
8K

c

∑

~k

k0 ~A
a∗

1~k
~Aa

1~k
. (26)

This scalar constant of motion has to be added in Eq. (24).

Introducing new quantities a~k1, a~k2 according to

~Aa
1k =

1

2
√
2Kk0

~c~k =
1

2
√
2Kk0

(c~k1~e~k1 + c~k2~e~k2) =

=
1

2
√
2Kk0

[

(a~k1 + a~k2)~e~k1 + i(a~k1 − a~k2)~e~k2
]

(27)

or

Ak1r −Ak1i =
1

2
√
Kk0

(a~k1 + a~k2),

Ak2r +Ak2i =
1

2
√
Kk0

(a~k1 − a~k2), (28)

Eqs. (26) and (24) change to

Qa =
q

c

∑

~k

(a∗~k1a~k1 + a∗~k2a~k2),

P aα =
1

c

∑

~k

kα(a∗~k1a~k1 + a∗~k2a~k2), (29)

~Sa =
1

c

∑

~k

~k

k
(a∗~k1a~k1 − a∗~k2a~k2),

and

~Sa
~k

~k

k
=

1

c
(a∗~k1a~k1 − a∗~k2a~k2).

According to Eqs. (28) the new parameters a~kl are real.

184 FIZIKA B 4 (1995) 3, 179–195



ljolje: scalar constant of motion of . . .

The sum in the first of Eqs. (29) is also a scalar constant. It is determined by
the field through Eq. (27). Denoting

∑

~k

(a∗~k1a~k1 + a∗~k2a~k2) = ηa~Q, (30)

one may introduce the new parameters ã~kl,

a~kl =
√

ηaQã~kl, l = 1, 2, (31)

so that
∑

~k

(ã∗~k1ã~k1 + ã∗~k2ã~k2) = 1. (32)

Therefore, ãkl may be interpreted as a probability amplitude. On the other side,
ã~kl are nondimensional quantities. Using ã~kl, Eqs. (29) can be written in the form

Qa =
q

c
ηaQ,

P aα =
1

c

∑

~k

ηaQk
α(ã∗~k1ã~k1 + ã∗~k2ã~k2), (33)

~Sa
~k

~k

k
=

1

c
ηaQ(ã

∗

~k1
ã~k1 − ã∗~k2ã~k2) (34)

with
∑

~k

(ã∗~k1ã~k1 + ã∗~k2ã~k2) = 1. (35)

From the second of Eqs. (32) follows that ηaQ has the physical dimension of the

Planck constant. Expressions (33) show a possible physical interpretation in terms
of a quantum particle. a~k1 is the probability amplitude of momentum kα and spin
up and a~k2 is the probability amplitude of momentum kα and spin down. This is
entirely a result of classical physics. No additional principle is applied. Therefore,
some elements of quantum physics are already in the classical physics. There are
two differences from the standard quantum theory. One concerns the constant ηaQ
and the other the number of particles (photons). ηaQ depends on Aα while in the
standard quantum theory it has a unique value equal to the Planck constant. That
is not outside of the classical physics. It would be desirable to know the reason for
this particular value, i.e. for the selection of that particular field. The conventional
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quantum theory doesnot restrict the number of photons to one. It may be achieved
by writing

∑

~k

(a2~k1 + a2~k2) = Nβa
Q (36)

and

a~k1 =
√

βa
Qã~k1, (37)

where N is total number of photons. Then

∑

~k

(a~k1 + a~k2) = N. (38)

It is also possible (within the classical physics) that ã~k1, ã~k2 are integers, i.e.

ã2~kl = nkl, nkl = 0, 1, 2, ..., l = 1, 2. (39)

Then

Qa =
q

c
Nβa

Q,

P aα =
∑

~k

1

c
βa
Qk

α(n~k1 + n~k2), (40)

~Sa
~k

~k

k
=

1

c
βa
Q(n~k1 − n~k2),

∑

~k

(n~k1 + n~k2) = N.

Eqs. (40) are in accordance with the conventional quantum theory (where conser-
vation of photons is mere a matter of arbitrary selection). The selection (39) is
essentially a quantization. Naturally, one may ask for its origin. However, there is
another approach to this problem.

We may decompose the fields ~Aa

1~k
and ~Aa

2~k
similarly to the field ~A~k

. Writing

~Aa

1~k
= ~Aa

11~k
+ ~Aa

12~k
, (41)

where
~Aa

12~k
= −i ~Aa

11~k
(42)
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and

~Aa

11~k
=

1

1− i
~Aa

1~k
=

i + 1

4
(Ak1r −Ak1i)~e~k1 +

i− 1

4
(Ak2r −Ak2i)~e~k2, (43)

Qa

1~k
= q

8K

c
k0 ~A

a∗

11~k
~Aa

11~k
= q

K

c

[

(Ak1r −Ak1i)
2 + (Ak2r +Ak2i)

2
]

,

P aα

1~k
=

8K

c
kαk0 ~A

a∗

11~k
~Aa

11~k
=

K

c
kαk0

[

(Ak1r −Ak1i)
2 + (Ak2r +Ak2i)

2
]

, (44)

~Sa

1~k

~k

k0
=

K

c
2k0(Ak1r −Ak1i)(Ak2r +Ak2i).

Here the ~k-components are also solutions of Eqs. (4). Introducing new parameters
a~k11, according to

~Aa

11~k
=

1

4
√
2Kk0

(1 + i)
[

(a~k11 + a~k12)~e~k1 + i(a~k11 − a~k12)~e~k2
]

(45)

or

Ak1r −Ak1i =
1√

2Kk0
(a~k11 + a~k12),

(46)

Ak2r +Ak2i =
1√

2Kk0
(a~k11 − a~k12),

Eqs. (44) change to

Qa

1~k
=

q

c
(a2~k11 + a2~k12),

P a

1~k
=

1

c
kα(a2~k11 + a2~k12), (47)

~Sa

1~k

~k

k
=

1

c
(a2~k11 − a2~k12).

Analogously, for ~Aa

2~k
we have

~Aa

2~k
= ~Aa

21~k
+ ~Aa

22~k
, ~Aa

22~k
= −i ~Aa

11~k
, (48)

where
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~Aa

21~k
=

1− i

4
(Ak1r−Ak1i)~e~k1+

1 + i

4
(Ak2r+Ak2i)~e~k2, (notice: ~A

21~k
= ~Aa

12~k
) (49)

and

Qa

2~k
=

q

c
(a2~k21 + a2~k22),

P aα

2~k
=

1

c
kα(a2~k21 + a2~k22), (50)

~Sa

2~k

~k

k
=

1

c
(a2~k21 − a2~k22),

where

a~k21 + a~k22 =
√

2Kk0(Ak1r −Ak1i),

(51)

a~k21 − a~k22 =
√

2Kk0(Ak2r +Ak2i).

Inspection of Eqs. (51) and (46) shows

a~k21 = a~k11,

(52)

a~k22 = a~k12.

Then

Qa

2~k
= Qa

1~k
,

P aα

2~k
= P aα

1~k
, (53)

~Sa

2~k

~k

k
= ~Sa

1~k

~k

k
.

Consequently,

Qa
~k
= Qa

1~k
+Qa

2~k
= 2Qa

1~k
,

P aα
~k

= P aα

1~k
+ P aα

2~k
= 2P aα

1~k
, (54)
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~Sa
~k

~k

k
= ~Sa

1~k

~k

k
+ ~Sa

2~k

~k

k
= 2~Sa

1~k

~k

k
.

In these relations appear integers (here 2). The factor 3 one obtains by decom-

position of ~A
11~k

, ~A
12~k

, ~A
22~k

:

Qa
~k
= 3Qa

11~k
+ q

8K

c
k0 ~A

a∗

21~k
~Aa

21~k
,

P aα
~k

= 3P aα

11~k
+

8K

c
kαk0 ~A

a∗

21~k
~Aa

21~k
, (55)

~Sa
~k

~k

k
= 3~Sa

11~k
+

8K

c
ik0 ~A

a∗

21~k
~Aa

21~k
,

where

Qa

11~k
=

q

c
(a~k111 + a~k112),

P aα

11~k
=

1

c
kα(a~k111 + a~k112), (56)

~Sa

11~k

~k

k
=

1

c
(a~k111 − a~k112),

a~k111 + a~k112 =
√

Kk0(Ak1r −Ak1i),

(57)

a~k111 − a~k112 =
√

Kk0(Ak2r +Ak2i).

Following this procedure, after na
~k
steps one obtains

Q~k
= na

~k
Qa

na
~k

+Qa
rest,

P a
~k
= na

~k
P a
na
~k

+ P aα
rest, (58)

where

Qna
~k
=

q

c
(a2na

~k
1 + a2na

~k
2),
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Pα
na
~k

=
1

c
kα(a2na

~k
1 + a2na

~k
2), (59)

~Sa
na
~k

~k

k
=

1

c
(a2na

~k
1 − a2na

~k
2),

ana
~k
1 + ana

~k
2 =

(

1√
2

)na
k−1

2
√

Kk0(Ak1r −Ak1i),

ana
~k
1 − ana

~k
2 =

(

1√
2

)na
k−1

2
√

Kk0(Ak2r +Ak2i). (60)

Sum over the ~k-fields gives

Qa =
∑

~k

na
~k
Qna

~k
+Qa

rest,

P aα =
1

c

∑

~k

na
~k
kα(a2na

~k
1 + a2na

~k
2) + P aα

rest, (61)

~Sa
~k

~k

k
= na

~k
(a2na

~k
1 − a2na

~k
2) +

~Sa
~krest

~k

k
.

Let us now pay attention to the field “b”. Everything what has been done for
the field “a” can also be done for the filed “b”. The previous calculation should
only be repeated after Ak1r − Ak1i is replaced by Ak1r + Ak1i and Ak2r + Ak2i by
Ak2r −Ak2i, and by taking the complex conjugate values. Thus

~Ab

2~k
= i ~Ab

1~k
, (62)

Qb = −q
8K

c

∑

~k

k0 ~A
b∗

1~k
~Ab

1~k
, (63)

and finally

Qb =
∑

~k

nb
~k
Qnb

~k

+Qb
rest,

P bα =
1

c

∑

~k

nb
~k
kα(b2

nb
~k
1
+ b2

nb
~k
2
) + P bα

rest, (64)
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~Sb
~k

~k

k
= nb

~k
(b2

nb
~k
1
− b2

nb
~k
2
) + ~Sb

~krest

~k

k
,

Qnb
~k

= −q

c
(b2

nb
~k
1
+ b2

nb
~k
2
),

b2
nb
~k
1
+ b2

nb
~k
2
=

(

1√
2

)nb
k−1

2
√

Kk0(Ak1r +Ak1i), (65)

b2
nb
~k
1
− b2

nb
~k
2
=

(

1√
2

)nb
k−1

2
√

Kk0(Ak2r −Ak2i).

For the total field we have

Q = Qa +Qb =
∑

~k

(na
~k
Qna

~k
+ nb

~k
Qnb

~k

) +Qrest,

Pα = P aα + P bα =
1

c

∑

~k

[

na
~k
(a2na

~k
1 + a2na

~k
2) + nb

~k
(b2

nb
~k
1
+ b2

nb
~k
2
)
]

+ Prest, (66)

~S~k

~k

k
= ~Sa

~k

~k

k
+ ~Sb

~k

~k

k
=

1

c

[

na
~k
(a2na

~k
1 − a2na

~k
2) + nb

~k
(b2

nb
~k
1
− b2

nb
~k
2
)
]

+ ~S~krest

~k

k
.

In these relations, the numbers na
~k
, nb

~k
are arbitrary. Introducing the quantity

χ, we determine them by the requirements

cχ = a2na
~k
1 + a2na

~k
2 + cχa

~krest
,

cχ = b2
nb
~k
1
+ b2

nb
~k
2
+ cχb

~krest
, (67)

or according to Eqs. (56) and (62)

cχ =
√

Kk02
−na

~k

[

(Ak1r −Ak1i)
2 + (Ak2r +Ak2i)

2
]

+ cχa
~krest

,

(68)

cχ =
√

Kk02
−nb

~k

[

(Ak1r +Ak1i)
2 + (Ak2r −Ak2i)

2
]

+ cχb
~krest

,

where χa
~krest

and χb
~krest

denote complements to the solution with the highest inte-

gers na
~k
and nb

~krest
. Specific value of χ is not determined here. With such na

~k
and

nb
~k
, the expressions (66) change to
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Q = q
∑

~k

(na
~k
− nb

~k
) +Q

′

rest,

Pα =
∑

~k

(χkα)(na
~k
+ nb

~k
) + P

′α
rest, (69)

~S~k

~k

k
=

1

c

[

na
~k
(a2na

~k
1 − a2na

~k
2) + nb

~k
(b2

nb
~k
1
− b2

nb
~k
2
)
]

.

These expressions manifest explicitely granular (particle), quantum–like struc-
ture of the field. There are two kinds of granules, “a” and “b”. These results are
completely within the classical physics. We conclude that the granular properties
of the field are already present in the classical physics. Thus, old dilemma about
corpuscular or wave nature of the electromagnetic field is not eliminatory one since
both properties are present. In modern language, that is called the corpuscular–
wave dualism. These granules are essentially photons. The scalar χ corresponds to
the Planck constant. The “rest” of the field corresponds to the ground state of the
electromagnetic field in quantum electrodynamics (QE). There are no two kinds of
photons in QE.

3. Some examples

We give some examples for the illustration of the structure of the electromag-
netic granules (particles).

1) nb
~k
= 0, na

~k
′ = δ~k~k′ , a~k1 =

√
cχ, a~k2 = 0.

From Eqs. (28), (65), (8), (9) and (10) follows

Ak1i = −Ak1r, Ak2i = Ak2r, Ak2r = −Ak1r, Ak1r =

√

cχ

2Kk0
,

~A = ~A~k
=

1

2

√

cχ

2Kk0

[

(cos kαx
α − sin kαx

α)~e~k1 + (cos kαx
α + sin kαx

α)~e~k2
]

,

~Aa
~k
= ~A~k

, ~Ab
~k
= 0,

~Aa

1~k
=

1

2

√

cχ

Kk0
(cos kαx

α~e~k1 + sin kαx
α~e~k2),
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~Aa

2~k
=

1

2

√

cχ

Kk0
(− sin kαx

α~e~k1 + cos kαx
α~e~k2),

~Aa

1~k
~Aa

2~k
= 0, | ~Aa

1~k
| = | ~Aa

2~k
|, ~Aa

1~k
× ~Aa

2~k
∼ ~k.

Therefore, this “photon” is composed from two right–hand orthogonal and right–

hand circularly polarized waves of equal amplitude (Q = qχ, Pα = χkα, ~S~k
(~k/k) =

χ).

2) nb
~k
= 0, na

~k
′ = δ~k~k′ , a~k1 = 0, a~k2 =

√
cχ.

Ak1i = −Ak1r, Ak2i = Ak2r, Ak2r = Ak1r, Ak1r =

√

cχ

2Kk0
,

~A = ~A~k
=

1

2

√

c

2Kk0

[

(cos kαx
α + sin kαx

α)~e~k1 + (cos kαx
α − sin kαx

α)~e~k2
]

,

~Aa
~k
= ~A~k

, ~Ab
~k
= 0,

~Aa

1~k
=

1

2

√

cχ

Kk0
(cos kαx

α~e~k1 − sin kαx
α~e~k2),

~Aa

2~k
=

1

2

√

cχ

Kk0
(− sin kαx

α~e~k1 − cos kαx
α~e~k2),

~Aa

1~k
~Aa

2~k
= 0, | ~Aa

1~k
| = | ~Aa

2~k
|, ~Aa

1~k
× ~Aa

2~k
∼ −~k.

This “photon” is composed from two left–hand orthogonal and left–hand circu-

larly polarized waves of equal amplitude (Q = qχ, Pα = χkα, ~S~k
(~k/k) = −χ).

3) na
~k
= 0, nb

~k
′ = δ~k~k′ , b~k1 =

√
cχ, b~k2 = 0.

Ak1i = Ak1r, Ak2i = −Ak2r, Ak2r = Ak1r, Ak1r =

√

cχ

2Kk0
,

~A = ~A~k
=

1

2

√

cχ

2Kk0

[

(cos kαx
α + sin kαx

α)~e~k1 + (cos kαx
α − sin kαx

α)~e~k2
]

,
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~Ab
~k
= ~A~k

, ~Aa
~k
= 0,

~Aa

1~k
=

1

2

√

cχ

Kk0
(cos kαx

α~e~k1 − sin kαx
α~e~k2),

~Aa

2~k
=

1

2

√

cχ

Kk0
(sin kαx

α~e~k1 + cos kαx
α~e~k2),

~Ab

1~k
~Ab

2~k
= 0, | ~Ab

1~k
| = | ~Ab

2~k
|, ~Aa

1~k
× ~Aa

2~k
∼ ~k.

This “photon” is composed from two right–hand orthogonal and left–hand cir-

cularly polarized waves of equal amplitude (Q = −qχ, Pα = χkα, ~S~k
(~k/k) = χ).

4) na
~k
= 0, nb

~k
′ = δ~k~k′ , b~k1 = 0, b~k2 =

√
cχ.

Ak1i = Ak1r, Ak2i = −Ak2r, Ak2r = −Ak1r, Ak1r =

√

cχ

2Kk0
,

~A = ~A~k
=

1

2

√

cχ

2Kk0

[

(cos kαx
α + sin kαx

α)~e~k1 − (cos kαx
α − sin kαx

α)~e~k2
]

,

~Ab
~k
= ~A, ~Aa

~k
= 0,

~Aa

1~k
=

1

2

√

cχ

Kk0
(cos kαx

α~e~k1 + sin kαx
α~e~k2),

~Aa

2~k
=

1

2

√

cχ

Kk0
(sin kαx

α~e~k1 − cos kαx
α~e~k2),

~Ab

1~k
~Ab

2~k
= 0, | ~Ab

1~k
| = | ~Ab

2~k
|, ~Aa

1~k
× ~Aa

2~k
∼ −~k.

This “photon” is composed from two left–hand orthogonal and right–hand cir-

cularly polarized waves (Q = −qχ, Pα = χkα, ~S~k
(~k/k) = −χ).
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4. Summary

Any solution of the Maxwell free field equations can be decomposed into parts
which possess corpuscular properties as they are known in the modern quantum
theory. It is a consequence of the scalar constant of motion that is the result of
two Maxwellian solutions. The particles have an internal field structure. This shows
that wave–corpuscular dualism of the electromagnetic field is a phenomenon already
present in the classical physics.
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SKALARNA KONSTANTA GIBANJA I NJEZINE POSLJEDICE

Razmatrano je postojanje skalarne konstante gibanja i analizirani su dobiveni za-
ključci.
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