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Using the direct method of Clarkson and Kruskal we obtain the similarity reductions
of a system of two linearly coupled Korteweg-de Vries equations, which was recently
studied by Grimshaw and Malomed in relation to the existence of a new type of
gap solitons. Particular solutions of this system, both rational and logarithmic, are
also determined.

1. Introduction

In the study of nonlinear partial differential equations (PDEs) of physical inter-
est, the determination of similarity reductions capable of reducing the number of
independent variables by one, plays an important role [1–3]. In the particular case
of evolution equations in (1+1) dimensions, such reductions transform the PDEs
into ordinary differential equations which are easier to solve, and often permit ob-
taining explicit particular solutions (similarity solutions) of the given PDEs. The
determination of these particular solutions is important as they themselves may be
interesting, they may reflect the asymptotic behaviour of more complicated solu-
tions [2], or they may be used as exact references to test the accuracy of programs
devised to obtain numerical solutions.

There is a large number of PDEs whose similarity reductions have been deter-
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mined [3–18]. Most of them are single PDEs, as the number of systems of PDEs
with known similarity reductions and similarity solutions is relatively small. One of
the systems of PDEs of physical interest, for which no exact similarity reductions
had been previously determined, is the following:

ut − uux + uxxx = −λvx (1a)

and

vt − δvx − vvx − αvxxx = −βλux, (1b)

where u(x, t) and v(x, t) are two wave fields, and α, β, δ and λ are real constants.
This system of linearly coupled Korteweg-de Vries (KdV) equations was recently
studied by Grimshaw and Malomed (GM) [19] in connection with the existence of
a novel type of gap solitons, and the need for further numerical simulations with
this system was pointed out by these authors.

In the present paper, we determine all the similarity reductions of system (1)
which are obtainable by means of the direct method devised by Clarkson and
Kruskal (CK) [3]. Particular solutions of system (1), both rational and logarith-
mic, are also determined. In Appendix A we prove that all similarity reductions of
the system (1), which can be obtained by means of the classical Lie’s method of
infinitesimal transformations, are just particular cases of the similarity reductions
obtained by the CK method. In Appendix B, we prove that the system (1) does not
possess the Painlevé property for PDEs, as defined by Weiss, Tabor and Carnevale
[20], thus clarifying why logarithmic solutions of the system (1) can exist.

2. Similarity reductions

To determine the similarity reductions of the system (1) by the CK method [3],
we begin by substituting the following expressions into (1):

u = U(x, t, P (z(x, t))), (2a)

v = V (x, t,Q(z(x, t))). (2b)

Demanding that the resulting equations be a system of ordinary differential equa-
tions (ODEs) for P (z) and Q(z), it is not difficult to prove that U and V must
have the following form:

U = a(x, t) + b(x, t)P (z) (3a)

V = c(x, t) + d(x, t)Q(z). (3b)

Substituting these expressions into (1), we arrive at the following system of
equations for P and Q:

P ′′′(bz3x) + P ′′(3bxz
2
x + 3bzxzxx) + PP ′(−b2zx)
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+P ′(bzt − abzx + 3bxxzx + 3bxzxx + bzxxx) +Q′(λdzx)

+P (bt − abx − bax + bxxx) + P 2(−bbx) +Q(λdx)

+at − aax + axxx + λcx = 0 (4a)

and

Q′′′(−αdz3x) +Q′′(−3αdxz
2
x − 3αdzxzxx) +QQ′(−d2zx)

+Q′(dzt − δdzx − cdzx − 3αdxxzx − 3αdxzxx − αdzxxx) + P ′(βλbzx)

+Q(dt − δdx − cdx − dcx − αdxxx) +Q2(−ddx) + P (βλbx)

+ct − δcx − ccx − αcxxx + βλax = 0, (4b)

where the primes indicate z derivatives. If we require that these equations be a
system of ODEs for P (z) and Q(z), all the coefficients, and also the independent
terms appearing in these equations must be functions of z only, multiplied at most
by a common factor –the “normalizing coefficient”– which can be cancelled out.

Taking the coefficients of P ′′′ and Q′′′, respectively, as the normalizing coef-
ficients for Eqs. (4a) and (4b), and considering that zx /=0, we found that the
necessary condition for these equations to be a system of ODEs for P (z) and Q(z),
is that the following equations hold:

z(x, t) = kx+Ωt2 − ω0t+ z0, (5)

a(t) =
2Ω

k
t−

ω1

k
, (6a)

c(t) =
2Ω

k
t−

ω2

k
, (6b)

b = αλ, (6c)

d = βλ/α, (6d)

where k, Ω, ω0, ω1, ω2 and z0 are independent arbitrary constants (with the only
condition that k /=0).

Defining:

p(z) ≡ bP (z) = αλP (z), (7a)

q(z) ≡ dQ(z) =
βλ

α
Q(z), (7b)
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and taking into account Eqs. (5) and (6), Eqs. (3) and (4) transform into:

u(x, t) =
2Ω

k
t−

ω1

k
+ p(z), (8a)

v(x, t) =
2Ω

k
t−

ω2

k
+ q(z), (8b)

p′′′ −
1

k2
pp′ +

[

ω1 − ω0

k3

]

p′ +
λ

k2
q′ +

2Ω

k4
= 0, (8c)

q′′′ +
1

αk2
qq′ +

[

δ

αk2
−
ω2 − ω0

αk3

]

q′ −
βλ

αk2
p′ −

2Ω

αk4
= 0. (8d)

Equations (5) and (8) thus constitute a six–parameter similarity reduction of the
system (1) and, as we shall see in the next section, from this reduction an exact
particular solution of the system (1) can be found.

At first sight, the similarity reduction defined by Eqs. (5) and (8) is the only
reduction which can be obtained by the direct CK method. However, we must
remember that this similarity reduction was obtained under the hypothesis that
zx /=0 and, as Lou has observed [10], new results can be obtained by considering
that zx = 0. Consequently, let us consider that zx = 0 in Eqs. (4a) and (4b). In
that case, these equations reduce to:

p′(bzt) + p2(−bbx) + p(bt − abx − bax + bxxx) + q(λdx)+

+at − aax + axxx + λcx = 0, (9a)

q′(dzt) + q2(−ddx) + q(dt − δdx − cdx − dcx − αdxxx) + p(βλbx)+

+ct − δcx − ccx − αcxxx + βλax = 0, (9b)

where we have written p and q instead of P and Q, respectively.

In order to determine the forms of the factors a, b, c and d, we can consider
(without loss of generality) that z(t) = t, and we can take the coefficients of p′

and q′ as normalizing coefficients for Eqs. (9a) and (9b), respectively. In this way,
demanding that the system (9) reduces to a system of ODEs for p(t) and q(t), we
arrive at the conclusion that a, b, c and d must have the following forms:

a(x, t) = a0(t)x, (10a)

c(x, t) = c0(t)x, (10b)

b(x, t) = d(x, t) = 1, (10c)
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where each of the functions a0(t) and c0(t) can take two forms, namely:

a0(t) =

{

0
1/(tu − t)

, (11a)

c0(t) =

{

0
1/(tv − t)

, (11b)

where tu and tv are arbitrary constants. Therefore we obtain that u and v have the
forms:

u(x, t) = a0(t)x+ p(t), (12a)

v(x, t) = c0(t)x+ q(t), (12b)

and consequently Eqs. (9a) and (9b) reduce to the linear equations:

p′ − a0p = −λc0, (13a)

q′ − c0q = −βλa0 + δc0. (13b)

Equations (11) – (13) thus define an additional family of similarity reductions
of the system (1). Taking into account that there are two possible forms for each of
the functions a0(t) and c0(t), and leaving aside the trivial case a0(t) = c0(t) = 0,
we can see that this family includes three types of similarity reductions. The first
one corresponds to the choice:

a0(t) =
1

tu − t
, (14a)

c0(t) =
1

tv − t
, (14b)

the second type corresponds to:

a0(t) =
1

tu − t
, (15a)

c0(t) = 0, (15b)

and finally, the third type corresponds to the choice:

a0(t) = 0, (16a)
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c0(t) =
1

tv − t
. (16b)

In the three cases, it is possible to obtain analytical solutions of the ordinary
equations (13a) and (13b), and consequently from these reductions we can obtain
additional similarity solutions of the system (1).

It is worth noticing that Lie’s method of infinitesimal transformations just per-
mits obtaining particular cases of the similarity reductions already found in this
section (the determination of similarity reductions of the system (1) by Lie’s pro-
cedure is presented in Appendix A).

3. Similarity solutions

A first similarity solution of the system (1) can be determined if the following
values of the parameters k, Ω, ω1 and ω2 are taken in the similarity reduction
defined by Eqs. (5) and (8):

k = (12)−
1

2 , (17a)

Ω = 0, (17b)

ω1 = ω0, (17c)

ω2 = kδ + ω0. (17d)

With this choice of the four parameters, and defining two arbitrary constants Ω0

and Ω1 as follows:

Ω0 ≡
z0
k

(18a)

Ω1 ≡
ω0

k
(18b)

the similarity reduction defined by (5) and (8) reduces to:

u(x, t) = p(z)− Ω1, (19a)

v(x, t) = q(z)− δ − Ω1, (19b)

z(x, t) = 12−1/2(x− Ω1t+Ω0), (19c)

p′′ − 6p2 + 12λq = A1, (19d)

q′′ +
6

α
q2 −

12βλ

α
p = A2, (19e)
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where Ω0, Ω1, A1 and A2 are arbitrary constants. If we now consider the particular
case in which:

A1 = −6α2λ2 − 12
βλ2

α
, (20a)

A2 = 6
β2λ2

α3
+ 12βλ2, (20b)

we can solve the coupled equations (19d) and (19e), and the following similarity
solution of system (1) is obtained:

u(x, t) =
12

(x− Ω1t+Ω0)2
− Ω1 − αλ, (21a)

v(x, t) = −
12α

(x− Ω1t+Ω0)2
− Ω1 − δ −

βλ

α
. (21b)

If we now consider the similarity reduction defined by Eqs. (12), (13) and (14),
the following particular solution can be obtained:

u(x, t) =
±c1 − x+ λt+ λ(tv − tu)ln|t− tv|

t− tu
, (22a)

v(x, t) =
±c2 − x+ (βλ− δ)t+ βλ(tu − tv)ln|t− tu|

t− tv
, (22b)

where tu, tv, c1 and c2 are arbitrary constants (c1 and c2 are positive constants).
In Eq. (22a), the plus sign in front of c1 corresponds to t > tu, and the minus
sign to t < tu. Similarly, in Eq. (22b), the plus sign in front of c2 corresponds to
t > tv, and the minus sign to t < tv. This solution contains, as a particular case,
the simpler solution:

u(x, t) =
±c1 − x+ λt

t− t0
, (23a)

v(x, t) =
±c2 − x+ (βλ− δ)t

t− t0
, (23b)

where c1, c2 and t0 are arbitrary constants (c1 and c2 are positive), and the plus
sign in front of c1 and c2 corresponds to t > t0, and the minus sign to t < t0.

In a similar way, from the similarity reduction defined by Eqs. (12), (13) and
(15), the following particular solution is obtained:

u(x, t) =
±c1 − x

t− tu
, (24a)
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v(x, t) = βλln(ω|t− tu|), (24b)

where tu, ω > 0, and c1 > 0 are arbitrary constants, and the plus sign in front of
c1 corresponds to t > tu, and the minus sign to t < tu.

Finally, from the similarity reduction defined by Eqs. (12), (13) and (16), the
following particular solution is obtained:

u(x, t) = λln(ω|t− tv|), (25a)

v(x, t) =
±c2 − x− δt

t− tv
, (25b)

where tv, ω > 0, and c2 > 0 are arbitrary constants, and the plus sign in front of
c2 corresponds to t > tv, and the minus sign to t < tv.

The existence of logarithmic solutions such as (22), (24) and (25) evidences
that the system (1) does not possess the Painlevé property for PDEs, as defined by
Weiss, Tabor and Carnevale (WTC) [20]. The proof of this fact, using the WTC
procedure, is given in Appendix B.

4. Summary and final remarks

In this paper we have obtained four similarity reductions for the system (1),
and from these reductions five particular solutions were determined. The most
important feature of the first of these reductions (defined by Eqs. (5) and (8)),
is that it allows finding the travelling wave solutions for the system (1). On the
other hand, a distinctive feature of the remaining three reductions (defined by
Eqs. (12) – (16)), is that they lead to logarithmic solutions of system (1), thus
evidencing that this system does not possess the Painlevé property for PDEs, as
defined by WTC. It is worth noticing that only one of the particular solutions
here determined (that given by Eq. (23)) could have been found by means of the
classical Lie’s method of infinitesimal transformations; the remaining four solutions
are not obtainable by Lie’s method (further details on Lie’s procedure are given in
Appendix A). As a final remark, we would like to observe that both, the similarity
reductions and the particular solutions here determined, could be useful in the
development and improvement of numerical schemes devised to obtain numerical
solutions of the system (1).

Appendix A: Similarity reductions by Lie’s method

To obtain similarity reductions of the system (1) by means of Lie’s method
of infinitesimal transformations we have to consider a one-parameter Lie group of
transformations (OPLGT), acting on (x, t, u, v)−space, of the form:

x′ = X(x, t, u, v; ǫ) = x+ ǫξ(x, t, u, v) +O(ǫ2), (A1a)

8 FIZIKA B 5 (1996) 1, 1–15
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t′ = T (x, t, u, v; ǫ) = t+ ǫτ(x, t, u, v) +O(ǫ2), (A1b)

u′ = U(x, t, u, v; ǫ) = u+ ǫη(x, t, u, v) +O(ǫ2), (A1c)

v′ = V (x, t, u, v; ǫ) = v + ǫµ(x, t, u, v) +O(ǫ2). (A1d)

Then we extend this OPLGT to another OPLGT, acting on (x, t, u, v, ∂1u, ∂1v, ∂2u,
∂2v, ∂3u, ∂3v)−space, where ∂ku and ∂kv denote all kth order partial derivatives of
u and v, respectively, defined by Eqs. (A1), and additional equations which define
how the partial derivatives of u and v are transformed. These additional equations
have the following forms:

(ux)
′ = ux + ǫηx(x, t, u, v, ∂1u, ∂1v) +O(ǫ2), (A2a)

(ut)
′ = ut + ǫηt(x, t, u, v, ∂u1, ∂v1) +O(ǫ2), (A2b)

(uxxx)
′ = uxxx + ǫηxxx(x, t, u, v, ∂u1, ∂v1, ∂u2, ∂v2, ∂u3, ∂v3) +O(ǫ2). (A2c)

and similar expressions for (vx)
′, (vt)

′ and (vxxx)
′, which are obtained from Eqs.

(A2) by replacing (u, v, η) by (v, u, µ). The forms of the extended infinitesimals
ηx, ηt, ηxxx, µx, µt and µxxx can be determined by the procedure explained in Ref.
21.

In order to find similarity reductions for the system (1), we have to determine
appropriate infinitesimals ξ, τ, η and µ, in such a way that the extended transforma-
tions (A1)–(A2) leave the surfaces in (x, t, u, v, ∂1u, ∂1v, ∂2u, ∂2v, ∂3u, ∂3v)−space
defined by Eqs. (1), invariant. These two surfaces can be written in the form:

Fu(u, ux, vx, ut, uxxx) = ut − uux + uxxx + λvx = 0, (A3a)

F v(v, ux, vx, vt, vxxx) = vt − δvx − vvx − αvxxx + βλux = 0, (A3b)

and therefore, for (A1) – (A2) to leave the surfaces (A3) invariant, it is necessary
that:

X(3)Fu = −ηux − ηxu+ λµx + ηt + ηxxx = 0, (A4a)

X(3)F v = −µvx + βληx − µx(δ + v) + µt − αµxxx = 0, (A4b)

when Eqs. (A3) are satisfied, and where X(3) is the infinitesimal generator:

X(3) = η
∂

∂u
+ µ

∂

∂v
+ ηx

∂

∂ux
+ µx ∂

∂vx
+ ηt

∂

∂ut
+ µt ∂

∂vt
+

+ηxxx
∂

∂uxxx
+ µxxx ∂

∂vxxx
. (A5)
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Observe that the conditions (A4) will hold when Eqs. (A3) are satisfied. Conse-
quently, in order to write down the conditions (A4) in explicit form, it is not enough
to substitute into them the expressions of the extended infinitesimals (ηx, ηt, . . .,
etc.), but previously we have to substitute Eqs. (A3) and their differential con-
sequences into the expressions of these extended infinitesimals. Proceeding in
this way, Eqs. (A4) transform into lengthy polynomial equations in the variables
u, v, ∂1u, ∂1v, ∂2u, ∂2v, ∂3u and ∂3v. Setting the coefficients of all the terms appear-
ing in these equations equal to zero, we obtain the so-called determining equations,
which is an overdetermined system of equations for the infinitesimals ξ, τ, η and µ.
From these equations, it follows that the infinitesimals have the forms:

ξ = −µ0t+ ξ0, (A6a)

τ = τ0, (A6b)

η = µ0, (A6c)

µ = µ0, (A6d)

where ξ, τ0 and µ0 are arbitrary constants.

Once knowing the infinitesimals, we can determine similarity reductions for the
system (1) by considering the invariant surface conditions:

ξ(t)ux + τ0ut = µ0, (A7a)

ξ(t)vx + τ0vt = µ0. (A7b)

Leaving aside the trivial case µ0 = τ0 = 0, these equations lead to three types
of similarity reductions of system (1), which are classified according to the values
of µ0 and τ0:

• Type 1: µ0 /=0, τ0 /=0,

• Type 2: µ0 = 0, τ0 /=0,

• Type 3: µ0 /=0, τ0 = 0.

If µ0 /=0 and τ0 /=0 it can be proved that Eqs. (A7) imply that for u and v to
be invariant surfaces of the Lie group of transformations (A1), they must be of the
form:

u =
2

k
t−

ω

k
+ p(z), (A8a)

v =
2

k
t−

ω

k
+ q(z), (A8b)

10 FIZIKA B 5 (1996) 1, 1–15
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where we have defined:

z(x, t) = kx+ t2 − ωt+
ω2

4
, (A9a)

k = 2τ0/µ0, (A9b)

ω = 2ξ0/µ0, (A9c)

and p(z) and q(z) are arbitrary functions. If we now substitute (A8) into (1), we
conclude that u and v are invariant solutions of system (1) if p(z) and q(z) satisfy
the following system of ordinary equations:

p′′′ −
1

k2
pp′ +

λ

k2
q′ +

2

k4
= 0, (A10a)

q′′′ +
1

αk2
qq′ +

δ

αk2
q′ −

βλ

αk2
p′ −

2

αk4
= 0, (A10b)

where the primes indicate z derivatives. Equations (A8) – (A10) thus constitute the
first type of similarity reduction of the system (1). We can see that this reduction is
just a particular case of the similarity reduction defined by Eqs. (5) and (8), which
was obtained in Section 2.

If we now consider that µ0 = 0 but τ0 /=0 (type 2), Eqs. (A7) lead to the
conclusion that for u and v to be invariant surfaces of the Lie group (A1), they
must be of the form:

u = p(z), (A11a)

and

v = q(z), (A11b)

where z(x, t) is now defined as follows:

z(x, t) = τ0x− ξ0t. (A12)

Substituting Eqs. (A11) and (A12) into (1), we obtain that u and v are invariant
solutions of the system (1) if p and q satisfy the following system of ordinary
equations:

τ20 p
′′ −

1

2
p2 −

ξ0
τ0
p = −λq (A13a)

and

ατ20 q
′′ +

1

2
q2 + (δ + ξ0/τ0)q = βλp. (A13b)

FIZIKA B 5 (1996) 1, 1–15 11
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Therefore, Eqs. (A11) – (A13) constitute a second type of similarity reduction for
system (1). We can see that this reduction is also a particular case of the similarity
reduction defined by Eqs. (5) and (8).

Finally, in the third case (µ0 /=0, τ0 = 0), the equations (A7) imply that for u
and v to be invariant surfaces of the Lie group (A1) they must be of the form:

u =
x

ω/2− t
+ p(t) (A14a)

and

v =
x

ω/2− t
+ q(t), (A14b)

where ω is the constant defined by Eq. (A9c), and p(t) and q(t) are arbitrary
functions. If we now substitute these expressions into (1), we find that u and v are
invariant solutions of the system (1) if p(t) and q(t) satisfy the ordinary equations:

p′ +

(

1

t− ω/2

)

p =
λ

t− ω/2
(A15a)

and

q′ +

(

1

t− ω/2

)

q =
βλ− δ

t− ω/2
. (A15b)

Equations (A14) – (A15) thus constitute a third type of similarity reduction for
the system (1). We can see that this reduction is a particular case of the similarity
reduction defined by Eqs. (12) – (14), which we found in Section 2. Solving Eq.
(A15), we can obtain the particular solution (23) found in Section 3.

Appendix B: Painlevé analysis of the system (1)

In this appendix we prove that the system (1) does not possess the Painlevé
property for PDEs, as defined by Weiss, Tabor and Carnevale [20]. To do so, we
have to prove that the general solution of (1) cannot be expressed in the form:

u = φα1

∞
∑

j=0

ujφ
j , (B1a)

v = φα2

∞
∑

j=0

vjφ
j , (B1b)

where α1 and α2 are negative integers, and φ(x, t) = 0 defines the singularity
manifold of the system (1). In the following we will use the Kruskal ansatz for the
form of the function φ, namely:

φ(x, t) = x− ψ(t), (B2)
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which allows one to write uj = uj(t) and vj = vj(t) [20,22].

Substituting (B1) into (1), taking into account (B2), and requiring α1 and α2 to
be negative numbers, lead to the conclusion that α1 = α2 = −2. Then, collecting
all the terms containing φj in Eq. (1a), and setting the coefficient of the resulting
φj−term equal to zero, we obtain the first recursion relation:

uj−3,t − (j − 4)ψtuj−2 −

j
∑

k=0

(j − k − 2)ukuj−k

+(j3 − 9j2 + 26j − 24)uj + λ(j − 4)vj−2 = 0. (B3a)

Proceeding in a similar way with Eq. (1b) we obtain a second recursion relation:

vj−3,t − (j − 4)ψtvj−2 − δ(j − 4)vj−2 −

j
∑

k=0

(j − k − 2)vkvj−k

−α(j3 − 9j2 + 26j − 24)vj + βλ(j − 4)uj−2 = 0. (B3b)

These two recursion relations constitute a system of the form:

[

A11 A12

A21 A22

] [

uj
vj

]

+

[

B1

B2

]

=

[

0
0

]

, (B4)

where:

A11 = j3 − 9j2 + 26j − 24− (j − 2)u0 + 2u0, (B5a)

A12 = 0, (B5b)

A21 = 0, (B5c)

A22 = −α(j3 − 9j2 + 26j − 24)− (j − 2)v0 + 2v0. (B5d)

The so-called “resonances” of the recursion relations are the roots of the equation:

A11A22 −A12A21 = 0 (B6)

and, if we take into account that u0 = 12 and v0 = −12α, we find that Eq. (B6)
has three double roots:

j = −1, 4, 6. (B7)

The fact that these are the only resonances already implies that the system (1) does
not possess the Painlevé property, because these three resonances cannot account
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for the six undetermined functions which the expressions (B1) should contain, if
the system (1) had the Painlevé property.

If we now substitute the positive resonances j = 4, 6 into the recursion relations
we obtain a set of compatibility conditions which have to be satisfied for (B1) to be
a valid local representation of a solution of the system (1). For j = 4 the recursion
relations reduce to identities, but for j = 6 the recursion relations are transformed
into the following equations:

v4 = −αλu4, (B8)

ψt = (λ− 2)
β

α
− δ. (B9)

Equation (B8) implies that only one of the functions, u4 or v4 , can be chosen
arbitrarily, not both of them. On the other hand, Eq. (B9) implies that ψ(t) is not
arbitrary, but it must be of the form:

ψ(t) = Ω1t− Ω0, (B10)

where Ω1 is the constant given in (B9), and Ω0 is arbitrary. There are no conditions
on the functions u6(t) and v6(t) and, therefore, these two functions are arbitrary.

We have thus found that the singular manifold expansions (B1) represent solu-
tions of the system (1) if the functions uj(t) and vj(t) obey the recursion relations
(B3), ψ(t) has the form given in (B10), and u4 (or v4), u6 and v6 are arbitrary
functions. The fact that these are the only undetermined functions in the expan-
sions (B1) implies that these expansions do no constitute the general solution of the
system (1) because, according to the Cauchy-Kowalevski theorem [23], the general
solution of the system (1) should contain six arbitrary functions. In fact, from the
results found in Section 3, we already know that there are particular solutions of
the system (1) which involve logarithmic terms, and which, therefore, cannot be
expressed in the form (B1).

If we set the arbitrary functions u4, u6 and v6 equal to zero, the singular man-
ifold expansions (B1) are truncated consistently, and we obtain the solution (21),
which we found in Section 3.
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SLIČNOSNO SMANJENJE LINEARNO–VEZANOG
KORTEWEG – de VRIESOVOG SUSTAVA

Primjenom Clarkson–Kruskalovog postupka dobiva se sličnosno smanjenje dvaju
vezanih Korteweg – de Vriesovih jednadžbi, koje su nedavno proučavali Grimshaw i
Malomed. Odredena su racionalna i logaritamska partikularna rješenja tog sustava.
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