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A very asymmetric two-center harmonic-oscillator shell model with different depths
of the potential wells was developed in order to study the dynamical effects on the
alpha decay widths. Only the one-dimensional (the z-component) problem was
considered in detail, allowing the use of a numerical procedure for finding the
solution of the Schrödinger equation. It is shown that such a model enhances the
amplitudes of the single particle wave functions in the vicinity of the surface of the
mother nucleus relative to the corresponding single-particle wave functions of the
static one-center harmonic oscillator model. Thus, the intrinsic alpha decay overlap
integrals may increase values of the amplitudes.

1. Introduction

The fission theory was successfully applied [1–3] to alpha decay by using a
phenomenological shell correction to the deformation potential energy, computed
in the framework of macroscopic models [4–6], extended for the nuclear systems
with different charge densities [7,8]. This kind of shell correction, inspired by Ref.

FIZIKA B 5 (1996) 1, 17–28 17
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4, was utilized instead of the standard Strutinsky prescription [9], because the latter
approach can be applied for an asymmetry as large as that of alpha decay of heavy
nuclei.

The fission-like theory of alpha decay is also supported by a time dependent
Hartree-Fock description of the decay process [10], or by models built up on the
large amplitude collective motion concept [11], which propose a decay mechanism
of slow shape deformation from any initial shapes configuration of the studied
many-particle system through shapes that are energetically unfavoured to a shape
corresponding to the two-daughter nuclei in contact. All these descriptions are based
on the modifications of the self-consistent field during the decay process, i.e. on the
dynamical effects on alpha decay process. Nevertheless, one can get some insight
into the dynamics of the process by studying a single particle asymmetric two-
center harmonic oscillator model, at least in the asymptotic regions (two separated
fragments). On this basis, if the two potential wells have same depth, one can draw
the conclusion [12] that alpha particle is formed from nucleons that occupy levels
lying deeply below the Fermi energy, which are usually localized in the bulk, not
near the nuclear surface. This is physically not acceptable [13,14].

The purpose of this paper is to present an asymmetric two-center shell model
with different depths of the potential wells, chosen in such a way that during the
decay process, the small fragment could be formed from nucleons that occupy levels
closely lying to the Fermi energy. From such a model, we expect an enhancement
of the single particle wave functions at the surface of the mother nucleus. In the
previous paper [15], we separated two essential factors in the alpha decay amplitude
of the reduced width: the cluster overlap and the intrinsic overlap integral (see
section IV A and B of Ref. 15). The replacement of the usual one-center oscillator
single particle wave function (see Eq. (50) of Ref. 15) by the two-center ones
leads to an increase in the magnitude of the intrinsic overlap integral and to an
enhancement of the absolute values of the alpha reduced widths, respectively. In
spite of many theoretical shell model calculations [16–18], which show an agreement
between experimental and theoretical absolute alpha decay rates, we believe, there
are many open problems concerning the clusterization and penetration process.
For instance, in Refs. 16–18 the channel radius seems to be to large in order to
describe the penetration process. The barrier penetrability cannot be described by
the Coulomb potential only. Finally, we conclude that our mechanism of increasing
the reduced widths may shed some light on the old problem of discrepancy between
the theoretically evaluated and experimentally determined absolute values of the
alpha reduced widths.

2. The potential and the nuclear shape parametrization

As in Refs. 1–3, we consider a simple parametrization of two intersected spheres
(Fig. 1a). The radius R2 of the small fragment is kept constant R2 = R2f during
the deformation process of the parent nucleus A to the two separated fragments A1,
A2, when R ≥ R1 + R2. The values A, A1 and A2 are the nucleon numbers of the
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parent nucleus, the heavier and the lighter fragment, respectively, A = A1 + A2,

the respective radii are Ro = roA
1/3, R1 = roA

1/3
1 and R2 = roA

1/3
2 , and the

separation distance is R = Ro −R2.

Fig. 1. A simple parametrization of two intersected spheres (see the text).

In cylindrical coordinates, the nuclear surface equation is given by

ρ2 =

{

R2
1 − (Z − Z1)

2, Z > 0
R2

2 − (Z − Z2)
2, Z ≤ 0

′

(1)

where Z1 and Z2 are positions of the two centres.

A harmonic oscillator potential V = V (Z) + V (ρ), for which the equipotential
surface is that of two intersected spheres with radii R1 and R2, has the origin of
the reference frame O’ shifted by Zp with respect to the intersection plane O (Fig.
1b). Therefore, the positions of the two potential minima are: Z ′

1 = Z1 − Zp and
Z ′
2 = Z2 − Zp. The potential V (Z ′) is given by

V (Z ′) =

{

mω2
1(Z

′ − Z ′
1)

2/2, Z ′ ≥ 0
mω2

2(Z
′ − Z ′

2)
2/2 + Uo, Z ′ < 0

, (2)

FIZIKA B 5 (1996) 1, 17–28 19
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and the equipotential V = Vo surface are two intersected spheres with radii

R1 =
1

ω1

√

2Vo
m

,

R2 =
1

ω2

√

2(Vo − Uo)

m
. (3)

Therefore,

Vo = mω2
1R

2
1/2 = mω2

1R
2
2/2 + Uo, (4)

where m is the nucleon mass. The continuity of V (Z) at the matching point Z ′ = 0
leads to

mω2
1(Zp − Z1)

2/2 = mω2
1(Zp − Z2)

2/2 + Uo. (5)

The alignment of the Fermi levels for the separated small and large fragments, allow
to obtain the third equation

λ2h̄ω2 + Uo = λ1h̄ω1, (6)

where λ1 and λ2 are Fermi energies of the two fragments in units of h̄ω1 and h̄ω2,
respectively, λ1 = 6.36 for the proton levels of 212Po and λ2 = 1.5 for alpha particle.
In this way, from. Eqs. (4)-(6) one obtains

h̄ω1 =
{

λ1 +
[

λ21 + (m/h̄2)R2
1h̄ω2(mh̄

−1R2
2ω2 − 2λ2)

]1/2
}

(h̄2/m)R−2

1 , (7)

Uo = λ1h̄ω1 − λ2h̄ω2, (8)

Zp =
{

ω2
2Z2 − ω2

1Z1 ±
[

(ω2
2Z2 − ω2

1Z1)
2

+ (ω2
2 − ω2

1)(ω
2
1Z

2
1 − ω2

2Z
2
2 − 2U0/m)

]1/2
}

/(ω2
2 − ω2

1). (9)

For a given separation distance, R, one gets R1, R2 Z1 and Z2 from the volume
conservation condition. The oscillator frequency h̄ω2 for alpha particle proton levels,

computed with ro = 1.2 fm, leads to h̄ω2 = 41A
−1/3
2 MeV. In this equation h̄ω2 ∼

r−2
o , that means h̄ω2 = 25.8 (1.20/1.16)2 = 27.6 MeV for the radius constant ro
= 1.16 fm. By taking into account that h̄2/m ≈ 41.5 MeV fm2, the parameters of
the nuclear shape, potential and proton levels given in Table 1, have been obtained
from Eqs. (7)–(9), when R was increased from R = Ri = 5.16 fm to R = Rt = 8.86
fm. The quantities of the last six columns in Table 1, will be defined in the next
section.
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TABLE 1.
The parameters of the nuclear shape, potential and the proton levels for alpha

decay of 212Po (R2 = 1.84 fm, h̄ω2 = 27.6 MeV, Ro = 7.036 fm, λ1 = 6.36 and λ2
= 1.5).

R Z1 Z2 Zp Z ′
1 Z ′

2 R1 h̄ω1 Uo

(fm) (fm) (fm) (fm) (fm) (fm) (fm) (MeV) (MeV)
5.53 6.92 1.39 -0.72 7.64 2.11 7.034 8.95 15.46
6.27 6.79 0.52 1.59 5.20 -1.07 7.025 8.98 15.66
7.01 6.76 -0.25 1.06 5.70 -1.31 7.012 9,02 15.92
7.75 6.81 -0.94 0.60 6.21 -1.54 7.000 9.06 16.16
8.49 6.92 -1.58 0.19 6.73 -1.76 6.992 9.08 16.31

q α ξ1 ξ2 ξ vo
9.54 0.464 3.55 0.98 2.57 3.45
9.47 0.465 2.42 -0.50 2.92 3.49
9.38 0.466 2.66 -0.61 3.27 3.53
9.31 0.467 2.90 -0.72 3.62 3.57
9.26 0.468 3.15 -0.83 3.97 3.59

3. One-dimensional Schrödinger equation

The nuclear shape and the corresponding potential V (ρ, Z) have a symmetry
axis reducing the three-dimensional problem to a bidimensional one. Unfortunately,
we are able to solve numerically only a one-dimensional Schrödinger equation. Con-
sequently, we shall consider the Z-component V (Z) of the potential V (ρ, Z) (see
Eq. (2)). We also do not include the l–s coupling. In the asymmetric regions, the
known solutions of the Schrödinger equation with a three-dimensional spherical
harmonic oscillator could be used.

The Schrödinger equation is

d2ψ(Z)

dZ2
+

2m

h̄2
[E − V (Z)]ψ(Z) = 0, (10)

where V (Z) is given by Eq. (2) in which the primes are dropped. It is convenient
to replace the variable Z by the dimensionless one x = αZ (and ξi = αZi; i = 1, 2;
ξ1+ ξ2 = ξ = αR), where α2 = mω1/h̄, and to introduce the asymmetry parameter
q = ω2

2/ω
2
1 . In this way, the potential and Schrödinger equation become

2V (x)

h̄ω1

≡ v(x) =

{

(x− |ξ1|)2, x ≥ ξm
q(x+ |ξ2|)2 + vo, x < ξm

, (11)

d2ψ(x)

dx2
+ [ǫ− v(x)]ψ(x) = 0, (12)

in which

ǫ =
2E

h̄ω1

≡ 2ν1n + 1; vo =
2Uo

h̄ω1

. (13)
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For an asymmetric two-center potential (11), the solution of Eq. (10) is [19,20]

ψν(Z) =

{

C1ν exp[−α2
1(Z − Z1)

2/2] Hν [α1(Z − Z1)], Z ≥ 0
C2ν exp[−α2

2(Z + Z2)
2/2] Hν [α2(Z + Z2)], Z ≤ 0

, (14)

where C1ν and C2ν are the normalization constants and Hν(Z) the Hermite func-
tion. Matching the wave functions ψν(Z) and the derivatives dψ(Z)/dZ at Z = 0,
and using the relation dHν(Z)/dZ = 2νHν−1(Z), we obtain easily

C1ν exp(−α2
1Z

2
1/2)Hν(−α1Z1) = C2ν exp(−α2

2Z
2
2/2)Hν(α2Z2) (15)

C1ν exp(−α2
1Z

2
1/2)

[

Hν(−α1Z1)α
2
1Z1 + 2νHν−1(−α1Z1)

]

=

= −C2ν exp(−α2
2Z

2
2/2)

[

Hν(α2Z2)α
2
2Z2 − 2νHν−1(α2Z2)

]

. (16)

The orthonormality condition of the functions (14), 〈ψν |ψν′〉 = δνν′ becomes

C1νC1ν′Jνν′Z1
+ C2νC2ν′Jνν′Z2

= δνν′ , (17)

where

Jνν′Z1
=

∞
∫

0

exp(−ξ2+)Hν(ξ+)Hν′(ξ+)dZ,

Jνν′Z2
=

∞
∫

0

exp(−ξ2
−
)Hν(ξ−)Hν′(ξ−)dZ, (18)

ξ+ = α1(Z − Z1); ξ− = α2(Z − Z2).

Equations (15)-(17) form a system with three unknown quantities: C1ν , C2ν

and ν. With the help of the relation [20]

(ν − ν′) exp(−ξ2+)Hν(ξ+)Hν′(ξ+) =

=
d

dξ+

{

exp(−ξ2+) [ν′Hν(ξ+)Hν′−1(ξ+)− νHν−1(ξ+)Hν′(ξ+)]
}

(19)

the expressions of the integrals (18) take the form

Jνν′Zi
=

exp(−α2
iZ

2
i )

ν − ν′
{νHν−1(−αiZi)Hν′(−αiZi)

−ν′Hν(−αiZi)Hν′−1(−αiZi)} , i = 1, 2. (20)
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The indeterminacy at ν = ν′ can be removed by l’Hospital’s rule. We obtain

Jνν′Zi
= exp(−α2

iZ
2
i )

{

Hν−1(−αiZi)Hν(−αiZi) + ν
∂Hν−1(−αiZi)

∂ν
Hν−1(−αiZi)

−ν ∂Hν(−αiZi)

∂ν
Hν−1(−αiZi)

}

, (21)

where the formal derivatives relative to ν of the Hermite functions are given by [20]

∂Hν(Z)

∂ν
= ψ(−ν)Hν(Z)−

1

4Γ(−ν)

∞
∑

m=0

(−1)m

m!
ψ(
m− ν

2
)Γ(

m− ν

2
)(2Z)m, (22)

in which

ψ(Z) =
d

dZ
ln Γ(Z). (23)

In conclusion, if we know the Hermite functions Hν(Z) and the derivatives
∂Hν(Z)/∂ν, we have practically solved the problem of any two-center harmonic
oscillator model for highly asymmetric fission.

4. Results

As can be seen from Table 1, the parameters q and vo have a small range of
variation during alpha decay of 212Po. One can choose q = 10 and vo = 3.4 as
typical values. If ξ1 = 3.2 is kept constant, the different separation distances, ξ, are
obtained by varying ξ2. In this way, the matching point x = ξm, the solution with
positive sign of the second order equation,

(ξm − |ξ1|)2 = q(ξm + |ξ2|)2 + vo (24)

is usually different from zero.

The quantum numbers ν1n defined in Eq. (13), obtained for q = 10, vo = 3.4
and ξ1 = 3.2 for various separation distances between the two centers (various
ξ2), are plotted in Fig. 2. This figure shows that for large separation distances,
the well known sequence of the one-dimensional harmonic oscillator energy levels,
corresponding to the large fragment (the daughter nucleus) νd1n = 0, 1, 2, 3, 4, . . .,
is interrupted by the levels of the alpha particle να1n = 2.78, 5.94, . . .. The fact that
these levels are localized in one or another potential well can be seen from Fig.3 in
which the corresponding wave functions at ξ2 = 1 and 3 are plotted. This result for
vo = 3.4 is compared with the preceding one [12] which corresponds to vo = 0, q =
10 (Fig. 4). Now the alpha particle comes from a level lying at the nuclear surface
as it was imposed by Eq. (6).
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The fact that this is a correct result can be checked immediately by introducing
three different potentials v(x) in the Schrödinger equation (12). For v(x) = x2, one
has the following eigenvalues: ǫn = 1, 3, 5, . . . , (2n+1), . . . and ν1n = (ǫn− 1)/2 =
0, 1, 2, 3, . . . , n, . . .. This is a case of the daughter nucleus, because we have used
in Eq. (13) the reference energy h̄ω1. For v(x) = qx2, one can make a change of the
variable by defining ξ2 = qx2. Then Eq. (12) becomes

d2ψ(ξ)

dξ2
+

[

ǫ√
q
− ξ2

]

ψ(ξ) = 0, (25)

Fig. 2. The quantum numbers ν1n defined by Eq. (13), obtained for q = 10, vo =
3.4 and ξ1 = 3.2 for various separation distances between the two centres (without
spin-orbit and l2-terms) for alpha decay of 212Po.
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and it is evident that ǫn =
√
q, 3

√
q, 5

√
q, . . . (2n + 1)

√
q, . . . and ν1n = (

√
q −

1)/2, (3
√
q−1), . . . , [(2n+1)

√
q−1]/2, . . . . If q = 10, one has ν1n = 1.08, 4.24, 7.40

, . . . which is the case of the alpha particle for vo = 0 (Fig. 4). When v(x) = qx2+vo
the Schrödinger equation is

d2ψ(ξ)

dξ2
+

[

ǫ− vo√
q

− ξ2
]

ψ(ξ) = 0, (26)

meaning that ǫν =
√
q + vo, 3

√
q + vo, . . . (2n + 1)

√
q + vo, . . .; ν1n = (

√
q + vo −

1)/2, (3
√
q+ vo− 1)/2, . . .. For q = 10, vo = 3.4, one gets exactly the alpha particle

levels shown in Fig. 2: να1n = 2.78, 5.94, 9.10, . . .. In the same way, we can find
the energy levels ǫn of the three-dimensional harmonic spherical oscillator with a
frequency ω1 or ω2 =

√
qω1 and vo = 0 or 3.4. In units of h̄ω1, one has ǫn = N+3/2

for the daughter nucleus and ǫn = (N + 3/2)
√
q + vo/2 for the alpha particle,

where the principal quantum number N = ν1n + n⊥. For a given shell, N , the

degeneracy is (N +1)(N +2) and the magic numbers are
∑N

N ′=0
(N ′+1)(N ′+2) =

(N + 1)(N + 2)(N + 3)/3. In our case, the results given in Table 2 are obtained.

Fig. 3. (a, a’) The wave functions for ξ2 = 1 (see the text); (b, b’) The wave
functions for ξ2 = 3 (see the text).

From this table one can see that the alpha particle level at 4.74 for vo = 0 is
lying closely to the N = 3 shell, but for vo = 3.4 the alpha particle level at 6.44
is comparable with N = 5 shell in which the proton number Z = 84 has its Fermi
level.
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We conclude that such a model which simulates the nuclear dynamic effects
on alpha decay enhances the single particle wave functions on the surface of the
nucleous, i. e. the alpha reduced widths.

Fig. 4. The result for vo = 3.4 is compared with the previous one [12] which
corresponds to vo = 0, q = 10, ξ1 = 3.2.

TABLE 2.
The energy levels in units of h̄ω1 for a three-dimensional spherical harmonic

oscillator.
ǫn

N Degeneracy Magic numbers vo = 0 vo = 0 vo = 3.4
q = 1 q = 10 q = 10

0 2 2 1.5 4.74 6.44
1 6 8 2.5 7.90 9.60
2 12 20 3.5 11.60 12.76
3 20 40 4.5 14.22 15.92
4 30 70 5.5 17.38 19.08
5 42 112 6.5 20.54 22.24
6 56 168 7.5 23.70 25.40
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MODEL DVO–SREDIŠNJEG HARMONIČKOG OSCILATORA ZA JAKO
ASIMETRIČNU FISIJU

Razvijen je ljuskasti model s vrlo asimetričnim dvo–sredǐsnjim harmoničkim po-
tencijalom i različitim dubinama jama radi proučavanja dinamičkih učinaka na
širine alfa raspada. Ograničavajući razmatranje na jednodimenzionalan problem,
numerički se rješava Schrödingerova jednadžba i raspravlja ponašanje pripadne
valne funkcije u blizini početne jezgre.
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