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By considering the leptons to be either a three-fermion composite or a fermion-
boson composite, we discuss the signatures for each model for spin polarization
precession experiments, assuming that Markov jump processes are operative for
the precessing particles in high magnetic fields.

1. Introduction

Certainly one of the major problems in all of modern day physics is centered
around finding a more symmetric and more fundamental theory of weak, strong
and electromagnetic interactions that reduces to the Standard Model in the GeV
range [1]. Technicolor [2], grand–unification [3], supersymmetry [4], compositeness
[5] and supergravity theories [6] all represent alternatives to the Standard Model
that are intended to reveal a deeper level of understanding of the fundamental
interactions. The chiral structure of the weak current, the origin of the quark
masses, the origin of the generations, the origin of the quark mixing angles, the
fundamental mechanism of symmetry breaking and the apparent absence of strong
CP violations all represent challenging problems that a more fundamental theory
should explain [7]. In this note we adopt the pathway of compositeness, mainly
because all previous systems (atoms, nuclei, hadrons) have revealed a composite
structure and it seems natural that the quarks, leptons, gauge bosons and Higgs
particles should also possess a composite structure [8]. The usual manner through

FIZIKA B 5 (1996) 1, 49–56 49



wolf: are the leptons a three fermion composite . . .

which the composite structure of particles is proved is through anomalous magnetic
moments, form–factors and rare decays [9]. We however choose a different window
through which to probe for compositeness, namely by using the corrections induced
by discrete time quantum theory and Markov environmental processes, which give
rise to distinct signatures for spin polarization precession of particles in a strong
magnetic field [10–12]. The rudiments of discrete time quantum theory actually go
back to the pioneering thoughts of Wheeler [13], Finkelstein [14] and Bombelli et
al. [15] who pictured the substratum as a discrete structure with Minkowski space,
and field theory emerging after an averaging process over a discrete combinatoric
world. In field theory both Snyder [16] and t’Hooft [17] have studied discrete lat-
tice versions of QED and quantum gravity, and T. D. Lee [18] used a discrete time
structure to make path integrals more well defined. Actually, Caldirola [19,20] was
the first investigator to study a discrete time difference quantum theory which was
the result of a microscopic uncertainty principle in time, suggesting that due to the
uncertainty between a particle’s sense of time (microuniverse) and the surround-
ing averaged out frame of synchronous observes, a discrete time difference should
replace a time derivative in the quantum equation of motion, expressing the un-
certainty in the response time of the particle to an externally applied Hamiltonian
[21]. We have applied these ideas to electron spin resonance [22], electron spin
polarization precession [23], spectral shifts in hydrogen [24] and in the search for
hidden internal quantum numbers of particles [25]. We have also applied the idea
to the problem of looking for gauge-boson composite structure [26]. The above ap-
plications are really applications of a discrete time difference theory operating in
a background of continuous space-time. Recently, we have discussed pure discrete
time jump processes (Markov processes) and the influence they have on spin po-
larization precession of a composite gauge boson in a magnetic field (Refs. 11 and
12). Our analysis demonstrated that the spin polarization amplitude is sensitive to
the internal structure of the particle being studied, with distinct signatures for a
two–preon composite structure (with identical preons), as oposed to a two–preon
composite structure with different preons. Both of these signatures differ from the
signature produced for a point like (non-composite gauge boson). In the present
note, we extend these models to the problem of lepton composite structure where
the lepton can be three–fermion composite or a fermion–spin-one–boson composite.
The signatures produced in spin polarization precession for these two models are
distinctly different and provide us with a potential probe to the composite structure
of leptons.

2. Lepton composite structure and spin polarization

precession induced by Markov environmental processes

We begin by recalling the approach used in Refs. 11 and 12. We first consider
a system of a three-fermion [27,28] (two identical, one different) composite lepton
in a magnetic field (Bz = B). The Hamiltonian is

((q)I = (q)II = −e1, mI = mII = m1, qIII = −e2,mIII = m2)
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H =
e1
m1

Sz1B +
e1
m1

Sz2B +
e2
m2

Sz3B. (2.1)

For the composite wave function we choose

Ψ↑ =
1√
2
(α(1)β(2)− β(1)α(2))α(3) spin–up state, (2.2)

Ψ↓ =
1√
2
(α(1)β(2)− β(1)α(2)) β(3) spin–down state. (2.3)

Here the two identical fermions are in an anti–symmetric state. Also, if the charge
of the composite lepton is −e and the composite mass m, we have

e1
m1

=
e2
m2

=
e

m
(2.4)

(to insure that the spin–up state has E+ = eh̄B/2m and the spin down state has
E− = −eh̄B/2m).

For the spin–up state (Eq. (2.2)) we have the total wave function including t

Ψ+ =

(

αβ − βα√
2

)

α exp(−
iE+

h̄
t) (2.5)

and for spin–down state

Ψ− =

(

αβ − βα√
2

)

β exp(−
iE−

h̄
t). (2.6)

We now consider a state initially polarized in the x-direction so that

Ψ =
1√
2
Ψ+ +

1√
2
Ψ−. (2.7)

Eq. (2.7) insures < Sx >t=0= Ψ+(Sx1
+ Sx2

+ Sx3
)Ψ = h̄/2.

We now modify Eq. (2.7) at time t to account for Markov environmental jump
processes. For a two (up and down state) step process for each preon we have [29]

Pn(+) =
p

p+ q
+ (1− p− q)n

(

1

2
−

p

p+ q

)

,

Pn(−) =
q

p+ q
+ (1− p− q)n

(

1

2
−

q

p+ q

)

, (2.8)

where the initial probabilities of ± are 1/2 for both up and down state of the
preons. We call Pn(+), Pn(−) the Markov probability for up and down states after

FIZIKA B 5 (1996) 1, 49–56 51



wolf: are the leptons a three fermion composite . . .

n steps of preons 1 and 2 (both identical preons 1 and 2 have same Pn(+), Pn(−)),
and P0n(+), P0n(−) the Markov probability after n steps for preon 3. Here p1 and
q1 refer to preons 1 and 2; and p2, q2 refer to preon 3 in the two-state transition
matrix,

M1,2 =

(

+ −
+ 1− q1 q1
− p1 1− p1

)

, M3 =

(

+ −
+ 1− q2 q2
− p2 1− p2

)

. (2.9)

Adjoining the Markov probabilities to Eq. (2.7), we have assuming the initial prob-
abilities of up and down equal 1/2

Ψ =
√
2
(

√

Pn(+)Pn(−)P0n(+)αβα−
√

Pn(−)Pn(+)P0n(+)βαα
)

exp(−
iE+

h̄
t)

+
√
2
(

√

Pn(+)Pn(−)P0n(−)αββ −
√

Pn(−)Pn(+)P0n(−)βαβ
)

exp(−
iE−

h̄
t).

(2.10)

We now consider

< Sx >= Ψ+(Sx1
+ Sx2

+ Sx3
)Ψ (2.11)

where

Sx1
= Sx2

= Sx3
=

h̄

2

(

0 1
1 0

)

. (2.12)

The result of calculating Eq. (2.11) for the x–spin polarization after n Markov
steps at time t is after much labour

< Sx >= 4h̄
√

Pn(+)2Pn(−)2P0n(+)P0n(−) cos
eB

m
t. (2.13)

Thus the distinctive feature of the three–preon (fermion) model of the lepton in
Eq. (2.13) is an amplitude of < Sx > that varies with n according to the coefficient
in Eq. (2.13).

We now turn to a (fermion–spin-one–boson) composite model of a charged lep-
ton of charge −e and mass m. For the Hamiltonian in a z–component magnetic
field we have

H =
e

m1

Sz1B +
e2
m2

Sz2B (2.14)

assuming again Eq. (2.4). Thus H = eB(Sz1 +Sz2)/m. For the spin one component
we have

U1,1 = basic function of S = 1, Sz = 1,
U1,0 = basic function of S = 1, Sz = 0, (2.15)
U1,−1 = basic function of S = 1, Sz = −1,
α, β = spin 1/2 states of Sz = ± 1

2
.

52 FIZIKA B 5 (1996) 1, 49–56



wolf: are the leptons a three fermion composite . . .

For the spin–up (Sz = 1/2) composite state we have

Ψ+ =

(

√

2

3
U1,1β −

√

1

3
U1,0α

)

exp(−
iE+

h̄
t) (2.16)

the spin–down state is

Ψ− =

(

√

1

3
U1,0β −

√

2

3
U1,−1α

)

exp(−
iE−

h̄
t) (2.17)

E± = ±
eh̄B

2m
. (2.18)

For a combination of Ψ+ and Ψ− that gives < Sx >t=0= h̄/2, we have

Ψ =
1√
2
Ψ+ +

1√
2
Ψ−

or

Ψ =

(

√

1

3
U1,1β −

√

1

6
U1,0α

)

exp(−
iE+

h̄
t)

+

(

√

1

6
U1,0β −

√

1

3
U1,−1α

)

exp(−
iE−

h̄
t). (2.19)

We now replace the numerical coefficients in Eq. (2.19) by Markov probabilities
so as to reduce to Eq. (2.19) at t = 0. This can be done by setting Pn=0 = 2/5 for
probability of Sz = 1 state at t = 0, Pn=0(−1) = 2/5, Pn=0(0) = 1/5 for the spin–1
boson. Also Pn=0(1/2) = 1/2, Pn=0(−1/2) = 1/2 for initial probabilities of spin
1/2 fermion. Thus Eq. (2.19) becomes ammended by the Markov processes for the
S = 1 and S = 1/2 preons

Ψ =

(

√

5

3

√

Pn(+1)Pn

(

−
1

2

)

U1,1β −
√

5

3

√

Pn(0)Pn

(

1

2

)

U1,0α

)

exp(−
iE+

h̄
t)

+

(

√

5

3

√

Pn(0)Pn

(

−
1

2

)

U1,0β −
√

5

3

√

Pn(−1)Pn

(

1

2

)

U1,−1α

)

exp(−
iE−

h̄
t).

(2.20)

Pn(+1), Pn(0) and Pn(−1) are calculated from the 3× 3 transition matrix

M =





+ 0 −
+ 1− q − q2 q q2

0 p 1− p− q q
− p2 p 1− p− p2



. (2.21)
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Here

p = probability of going from −1 → 0 and 0 → 1,
p2 = probability of going from −1 → 1,
q = probability of going from 1 → 0 and 0 → −1,
q2 = probability of going from 1 → −1.

The two state Markov processes Pn(±1/2) are calculated from Eq. (2.8) with
p, q for the spin 1/2 preon.

Using Eq. (2.21), we have [29]

(Pn(+1), Pn(0), Pn(−1)) =

(

2

5
,
1

5
,
2

5

)

Mn. (2.22)

Using Eq. (2.20), we have, after a long calculation, where Pn(+), Pn(−) are
expressed in Eq. (2.8) for spin 1/2 preons

< Sx >= Ψ+(Sx1
+ Sx2

)Ψ (2.23)

Sx1
=

h̄√
2

(

0 1 0
1 0 1
0 1 0

)

, Sx2
=

h̄√
2

(

0 1
1 0

)

(2.24)

< Sx >= h̄

[

5

3

√
2

√

Pn(0)Pn(+1)P
2

n

(

−
1

2

)

−
5

3

√

P 2
n(0)Pn

(

−
1

2

)

Pn

(

+
1

2

)

+
5

3

√
2

√

Pn(0)Pn(−1)P
2

n

(

+
1

2

)

]

cos
eB

m
t. (2.25)

We see from Eq. (2.25) that the variation of the spin polarization amplitude (Sx)
with n is fundamentally different than in Eq. (2.13) for the three–fermion composite
model.

3. Conclusion

The above relations in Eq. (2.13) and Eq. (2.25) are unique signatures for a
three–fermion composite lepton and a fermion–spin-one–boson model of a lepton,
respectively. Numerous authors [30,31] have proposed fermion–scalar models, but
I did not find any fermion–spin-one–boson models in the literature (here the spin
3/2 states are most likely so massive that they won’t appear in the GeV range). A
possibility here would be that the spin 1/2 fermion is the supersymmetric partner
of the spin–one boson, the beautiful feature of such a model would be that the
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supersymmetry would be the required internal symmetry [32] that would keep the
composite light compared to the composite scale. In the three–fermion model, two
of the preons could form a core with the third fermion forming a hydrogen–like
radial excitation with various excited states [33,34]. If high field spin polarization
precession ever became a practical probe to particle properties, the above individual
Markov jump processes for the individual constituent preons composing the leptons
would produce clear signatures for composite structure through Eq. (2.13) and Eq.
(2.25). The above analysis represents a first attempt at probing individual preon
properties, most composite models use the structural features of the composite
system to predict anomalous magnetic moments, form–factors and mixing angles.
It is hoped that keen ingenuity on the part of the experimental community will
make the above measurements possible in the near future. Lastly, the index n in the
Markov process is most likely some function of time and it could very well be that
t = nτ , where τ is the fundamental time interval between Markov jumps. It could
however be that n is an ordering process that refers to a completely independent
time variable. If this were the case, the continuous time of classical physics contained
in the function cos(eBt/m) of Eq. (2.13) and Eq. (2.25) would have to be reconciled
with the independent discrete Markov jump time (n).
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JESU LI LEPTONI SASTAVLJENI OD TRI FERMIONA ILI
FERMIONA I BOZONA

Predvida se razlika u mjerenjima spinske polarizacije u magnetskom polju uz pret-
postavku da su leptoni trofermionske odnosno bozonsko–fermionske složenice.
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