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We show how the longstanding problem of the collapse of the charge–exchange
QRPA near the physical value of the force strength can be circumvented. This is
done by including the effect of ground state correlations into the QRPA equations
of motion. The corresponding formalism, called renormalized QRPA, is briefly out-
lined and its consequences are discussed in the framework of a schematic model for
the two-neutrino double beta decay in the 100Mo → 100Ru system. The question of
the conservation of the Ikeda sum rule is also addressed within the new formalism.

1. Introduction

Double beta (ββ) decays occur in medium–mass nuclei that are rather far from
closed shells. The nuclear structure method most widely used in the evaluation of ββ
rates for two-neutrino decay mode (ββ2ν) as well as for the neutrinoless mode (ββ0ν)
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is, therefore, the quasiparticle random phase approximation (QRPA) [1]. These
calculations, in which the ββ2ν matrix elements M2ν are approximated by their
Jπ = 1+ component (i.e., M2ν ≈ M2ν(J

π = 1+)), explain the smallness of the
measured transition rates.4 However, the actual value of M2ν depends sensitively
on the strength gpp of the particle–particle force in the S = 1, T = 0 channel. For
realistic forces of finite range, M2ν passes through zero near gpp = 1, i.e., near
the physical value of this coupling constant. This feature makes the actual value
of M2ν rather uncertain. What is still more distressing is that QRPA collapses

for gpp >∼ 1. One may thus suspect that M2ν goes through zero simply because the
approximation breaks up. In other words, the smallness of M2ν in the QRPA could
be just an artifact of the model. (One should remember that in the Tamm-Dancoff
approximation, i.e., in the absence of the ground state correlations, M2ν always
increases with gpp.) Yet, it has been pointed out more than once that the zero of
M2ν is not engendered by the collapse of the QRPA, but arises instead from the
partial restoration of the SU(4) Wigner symmetry [3].

It has been shown recently that within the QRPA the above behaviour of the
2ν amplitude can be summarized as [4]

M2ν ≈ M2ν(g
pp = 0)

1− gpp/gpp0
1− gpp/gpp1

, with gpp0 ≈ 1, gpp1
>∼ gpp0 , (1)

where gpp0 and gpp1 denote, respectively, the zero and the pole of M2ν . Moreover, it
has been suggested that within the QRPA the 0ν amplitude behaves as

M0ν ≈ M0ν(J
π = 1+; gpp = 0)

1− gpp/gpp0
√

1− gpp/gpp1

+ M0ν(J
π /=1+; gpp = 0)(1− gpp/gpp2 ), (2)

where gpp2 ≫ gpp1 [4]. This means that the Jπ = 1+ component of M0ν exhibits the
zero and the pole at the same value of gpp as M2ν . Thus, the theoretical estimation
of M0ν , and therefore the determination of the limit for the effective neutrino mass
< mν >, is also uncertain as that of M2ν .

Several modifications of QRPA have been proposed in order to change the above
behaviour in a qualitative way, including higher order RPA corrections [5], nu-
clear deformation [6], single-particle self-energy BCS terms [7] and particle number
projection [8]. Yet, none of these amendments inhibits the collapse of the charge–
exchange QRPA. In the present work we show that this can be achieved by in-
cluding the effect of ground state correlations in the QRPA equations of motion.
The corresponding formalism, referred to as renormalized QRPA (RQRPA), was
originally introduced by Rowe [9]. It has been used recently by Catara et al. [10,11],
in the evaluation of the charge transition densities and properties of the charge–
conserving collective states. We briefly outline below the RQRPA formalism for
charge-exchange excitations, and discuss it within a schematic model for M2ν .

4It was found that the contributions of the odd–parity nuclear operators to the ββ2ν -decay are
significant when compared with the experimental data [2].
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2. Calculation

We begin by defining excited states |λJ〉 that are built by the action of the
charge-exchange operators

Ω†(λJ) =
∑

pn

[

Xpn(λJ)A
†
pn(J)− Ypn(λJ)Apn(J̄)

]

(3)

on the correlated ground state |0〉. Here A†
pn(J) = [α†

pα
†
n]

J , and α†
p and α†

n are
quasiparticle creation operators for protons and neutrons. The amplitudes X and
Y , the eigenvalues ωλ and |0〉 are obtained from the equations of motion (EM)

〈0|
[

δΩ(λJ̄), H,Ω†(λJ)
]0 |0〉 = ωλ〈0|

[

δΩ(λJ̄),Ω†(λJ)
]0 |0〉, (4)

with the condition

Ω(λJ)|0〉 = 0, for all λ, J. (5)

The usual QRPA equations result from Eq. (4) when |0〉 is approximated by the
BCS ground state |BCS〉 and Eq. (5) is ignored. In the RQRPA one takes the
ground state correlations (GSC) introduced by Eq. (5) in the EM Eq. (4) partially
into account. First, note that we have now

Ĵ−1〈0|
[

Apn(J̄), A
†
p′n′(J

′)
]0

|0〉 = δpp′δnn′δJJ ′Dpn, (6)

with

Dpn = Ĵ−1〈0|
[

Apn(J̄), A
†
pn(J)

]0 |0〉 = 1−Np −Nn, (7)

where Ĵ ≡
√
2J + 1 and Np (Nn) are the proton (neutron) quasiparticle occupa-

tions

Nt = ĵ−1
t 〈0|[α†

tαt̄]
0|0〉. (8)

The label t stands for p and n.

We define next “renormalized” two quasiparticle operators as

A†
pn(J) = A†

pn(J)D
−1/2
pn , (9)

which satisfy the relation

Ĵ−1〈0|
[

Apn(J̄),A†
p′n′(J

′)
]0

|0〉 = δpp′δnn′δJJ ′ . (10)

The crucial RQRPA assumption is the generalized quasiboson approximation

Ĵ−1

[

Apn(J̄),A†
p′n′(J

′)
]0

≈ Ĵ−1〈0|
[

Apn(J̄),A†
p′n′(J

′)
]0

|0〉 = δpp′δnn′δJJ ′ . (11)

FIZIKA B 5 (1996) 2, 93–101 95
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The RQRPA equations follow straightforwardly after replacing A†
pn(J) by A†

pn(J)

in the expression for Ω†(J) and using Eq. (11) in the EM Eq. (4). We get in this
way [9,11]

(

A(J) B(J)
B
∗(J) A

∗(J)

)(

X(λJ)
Y(λJ)

)

= ωλJ

(

X(λJ)
−Y(λJ)

)

, (12)

where

Xpn(λJ) ≡ Xpn(λJ)D
1/2
pn and Ypn(λJ) ≡ Ypn(λJ)D

1/2
pn , (13)

are the renormalized amplitudes. The submatrices A(J) and B(J) are found as

Apn,p′n′(J) = (ǫp + ǫn)δpp′δnn′ +D1/2
pn [F (pn, p′n′, J)(upvnup′vn′ + vpunvp′un′)

+ G(pn, p′n′, J)(upunup′un′ + vpvnvp′vn′)]D
1/2
p′n′ ,

Bpn,p′n′(J) = D1/2
pn [F (pn, p′n′, J)(vpunup′vn′ + upvnvp′un′)

− G(pn, p′n′, J)(upunvp′vn′ + vpvnup′un′)]D
1/2
p′n′ , (14)

where F and G are the usual particle-hole (PH) and particle-particle (PP) coupled
two-particle matrix elements.

The QRPA equations are recovered from Eqs. (13) and (14) by taking Dpn = 1.
Within the RQRPA one first solves Eq. (5) in the quasiboson approximation [9].
The RQRPA ground state then reads

|0〉 = N0e
S |BCS〉, (15)

with

S =
1

2

∑

pnp′n′J

Ĵ−1

[

Cpnp′n′(J)A†
pn(J)A†

p′n′(J)
]0

. (16)

From Eq. (5) it turns out that the matrix C is the solution of

∑

pn

X
∗
pn(λJ)Cpnp′n′(J) = Y

∗
p′n′(λJ), for all λ, J. (17)

Finally, by making use of this equation, one finds the quasiparticle occupations

Np =
∑

λJn′

Ĵ2ĵ−2
p |Ypn′(λJ)|2; Nn =

∑

λJp′

Ĵ2ĵ−2
n |Yp′n(λJ)|2. (18)

The value of Dpn follows from Eqs. (7) and (18).
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krmpotić et al.: non-collapsing quasiparticle random phase approximation. . .

To evaluate the transition matrix elements for the β∓ decays

〈λJ ||O(J ;±)||0〉 = 〈0|
[

Ω(λJ̄),O(J ;±)
]0 |0〉, (19)

with

O(J ;±) =
∑

i

O(J ; i)t±(i), (20)

we only need their two quasiparticle components

O(J ;±) .
=

∑

pn

[

Λ0
pn(J ;±)A†

pn(J) + (−)JΛ0∗
pn(J ;∓)Apn(J̄)

]

, (21)

where

Λ0
pn(J ; +) = −Ĵ−1upvn〈p||O(J)||n〉,

Λ0
pn(J ;−) = −(−)J Ĵ−1unvp〈p||O(J)||n〉∗. (22)

From Eqs. (3) and (22) one gets

〈λJ ||O(J ;±)||0〉 = Ĵ
∑

pn

[

Λ0
pn(J ;±)X∗

pn(λJ) + (−)JΛ0∗
pn(J ;∓)Y∗

pn(λJ)
]

D1/2
pn .

The corresponding total strengths are

S(J ;±) = Ĵ−2
∑

λ

|〈λJ ||O(J ;±)||0〉|2. (23)

Within the RQRPA the BCS equations have to be solved subject to the condi-
tion that |0〉 has on the average the correct number of particles. This requirement
gives

Nt =
∑

t

ĵ2t [v
2
t + (1− 2v2t )Nt], (24)

Np and Nn being the numbers of active protons and neutrons in solving the gap
equations.

We conclude the presentation of the formalism by noting that: (a) when the
factors Dpn, which are functions of the amplitudes Y, are substituted into the
renormalized matrices A and B, Eq. (12) becomes a nonlinear system of coupled
equations for the X and Y amplitudes; and (b) these equations have to be solved
self–consistently together with the new BCS conditions Eq. (24). This is the price
to be paid in order to take into account the GSC within the QRPA problem in an
appropriate way.

We will resort now to the simplest version of the QRPA for the ββ-decay, called
the single mode model (SMM), in which a single RPA equation is solved with two
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BCS vacua [12], and only one intermediate state Jπ = 1+ enters into the play [4].
Equation (14) reads in this case

Apn ≡ ω0 + ρpρn
[

(u2
pv

2
n + v̄2pū

2
n)F (pn; 1) + (u2

pū
2
n + v̄2pv

2
n)G(pn; 1)

]

Dpn,

Bpn ≡ 2ρpρnv̄pūnvnup[F (pn; 1)−G(pn; 1)]Dpn,

where ω0 = −[G(pp; 0) + G(nn; 0)]/4 is the unperturbed energy. The unbarred
(barred) quantities indicate that the quasiparticles are defined with respect to the
initial (final) nucleus; ρ−1

p = u2
p + v̄2p, ρ

−1
n = ū2

n + v2n. All the remaining notation
is self explanatory. The perturbed energy and Dpn are obtained by solving self-
consistently the set of equations:

ω =
√

A2
pn −B2

pn, Dpn = 1− f
Apn − ω

2ω
, v2t =

Ntf − 3(1−Dpn)

f ĵ2t − 6(1−Dpn)
,

with f ≡ 3(ĵ−2
p + ĵ−2

n ).

The transition ββ2ν matrix element is

M2ν = M0
2νDpn

(ω0

ω

)2
(

1 +
G(pn; 1)Dpn

ω0

)

, M0
2ν =

ρpρnv̄pūnvnup

ω0

|〈p||σ||n〉|2

(25)
with M0

2ν being the corresponding unperturbed (BCS) value.

Numerical calculations have been performed for the 100Mo → 100Ru system,
where the appropriate intermediate state is [0g7/2(n)0g9/2(p)]

1, and Np = 2 and
Nn = 2 (Np = 4 and Nn = 0) for the initial (final) state. We have used a δ-force
(in units of MeVfm3): V = −4π(vsPs+ vtPt)δ(r), with different strength constants
vs and vt for the PH, PP and pairing channels. Thus, instead of the parameter gpp,
we use here the ratio t = v

pp
t /vpair

s , whose physical value is t ≈ 1.5. The remaining

parameters for the SMM have been taken to be v
ph
s = 55, vph

t = 92 and v
pair
s = 55

[3]. The results obtained within the QRPA (dashed lines) and the RQRPA (solid
lines) for ω and for M2ν are shown in Fig. 1. As expected, the QRPA collapses close
to t = 1.5. On the contrary, in the RQRPA, the energy decreases asymptotically
when t → ∞. For the sake of comparison, in the same figure, are also presented the
results for the energy of the lowest Jπ = 1+ state and for the 2ν matrix element
of a full QRPA calculation (dotted lines), as described in Ref. 3. This calculation,
that involves an eleven dimensional model space, both for protons and neutrons,
also collapses. (It is very gratifying that the simple formula Eq. (25) contains the
main physics involved in such relatively sizable calculations.)
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Fig. 1. Energies ω (in MeV) of the lowest 1+ state of 100Tc and the matrix elements
M2ν (in [MeV]−1) for the 100Mo → 100Ru system. The single mode model results
are indicated by the dashed lines for the QRPA and by the solid lines for the
RQRPA. The results of a full QRPA calculation [3] are represented by dotted lines.

3. Conclusions

In summary, we have investigated the importance of GSC effects on the solutions
of the EM for charge-exchange excitations in the renormalized QRPA. The SMM
shows that, contrary to what happens in the usual QRPA, the inclusion of the
GSC in the EM avoids collapse for physical values of the PP coupling strength.
However, the amplitude M2ν still passes through zero in the RQRPA, although
at somewhat higher value of t (or gpp). It is also evident that, in the QRPA, the
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physical mechanisms responsible for the zero and the collapse of M2ν are not the
same. The behaviour of this amplitude in the RQRPA is not anymore delineated
by Eq. (1), and the dependence of the calculated ββ2ν transition rates on gpp is
weakened. In view of Eqs. (1) and (2), all that was just said for the 2ν mode
can be extrapolated also to the 0ν mode. It is well known that the contributions
of intermediate states with Jπ /=1 are quite sizeable in the neutrinoless decay for
physical value of gpp ≈ 1, where it is very likely that the M0ν(J

π = 1+) goes to
zero even in the RQRPA case. But as the dynamical calculation does not collapse
any more, we could now have more confidence in establishing the upper limit for
the neutrino mass. Thus, the effect of the GSC in the EM appear in this context
as particularly relevant. We have also found that a full RQRPA calculation for the
M2ν amplitude agrees qualitatively with the SMM estimate. But, in analysing the
Ikeda sum rule S(Jπ = 1+; +)− S(Jπ = 1+;−) = N − Z, we discovered that it is
not fulfilled within the RQRPA. In fact, the deviations from this condition grow as
the GSC increase (or as the PP strength parameter increases). On the other hand,
we have verified numerically that the similar requisite for the Fermi transitions is
fulfilled in our formalism, when only the states Jπ = 0+ are considered in Eqs. (18).
It should be stressed that the constraints Eq. (24) play a crucial role regarding this
point. When the usual BCS constraint on the number of particles is used [10], the
sum rule for the Fermi transitions is never fulfilled. That the Ikeda sum rule is
necessarily violated in the RQRPA, when the usual BCS occupation numbers are
employed, is seen immediately from the relation

S(Jπ = 1+; +)− S(Jπ = 1+;−) =
1

3

∑

pn

| < p||σ||n > |2(v2n − v2p)Dpn,

which yieldsN−Z only whenDpn ≡ 1. Why the Ikeda sum rule is not satisfied, even
when the condition Eq. (24) is adopted, is still an open question. In summary, we
feel that, before a quantitative comparison of the calculations with the experimental
data could be done, the behaviour of the sum rules in the RQRPA should be
thoroughly elucidated and this is our next goal.

Finally, it should be mentioned that, after our work has been completed, we
have learned that a similar study has been performed by Toivanen and Suhonen
[13].

References

1) H. V. Klapdor-Kleingrthaus, Prog. Part. Nucl. Phys. 32 (1994) 261; A. Faessler, ibid.
32 (1994) 289; M. Moe and P. Vogel, Annu. Rev. Nucl. Sci. 44 (1994) 247;

2) A. Williams and W. C. Haxton, in Intersections between Particle and Nuclear Physics,
ed. G.M. Bunce (AIP Conf. Proc. No. 176, 1988) p. 924; C. Barbero, F. Krmpotić and
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KVAZIČESTIČNA APROKSIMACIJA NASUMNIH FAZA BEZ URUŠAVANJA
ZA DVOJNI BETA RASPAD

Pokazuje se kako se može izbjeći tvrdokorni problem urušavanja kvazičestične
aproksimacije nasumnih faza (QRPA) s nabojskom izmjenom za realne vrijednosti
jakosti sila. To se postiže uključivanjem korelacije u osnovnom stanju u jednadžbe
stanja QRPA. Raspravljaju se rezultati za shematski model dvoneutrinskog dvoj-
nog beta raspada 100Mo → 100Ru. U okviru ovog formalizma takoder se raspravlja
pitanje Ikedinog zbrojnog pravila.
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