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The Dirac equation is modified in order to allow for two mass parameters (called
mR and mL). The massless case is especially interesting and is obtained when the
product of the two mass parameters is null. In particular, the physical neutrino
current can be derived in a more consistent manner than usual. Some possible
applications are discussed.

1. Introduction

This paper presents a modified Dirac equation which allows for two scalar mass
parameters (called mR and mL). The outlined treatment is done before second
quantization. For massless particles (mRmL = 0), the case with mR = 0 and
mL /=0 is well–suited for the description of neutrinos, since the corresponding left–
handed current is conserved in general. The same is not true for the right–handed
current which is, however, physically unobservable. Notation is rather standard
throughout the paper. In particular, and unless otherwise noted, Greek (Latin)
indices run through the values 0,1,2,3 (1,2,3) and the summation convention is
applied to repeated up and down labels. Units are such that h̄ = c = 1.

Some applications are discussed in §5 and §6. A 12–dimensional spinoral formal-
ism is introduced in §5. This affords a compact description of Dirac particles with
three possible mass states (massive, left–handed massless and tachyonic). In §6,
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massless states of two different types are combined into an 8–dimensional spinoral
formalism: this is suited for the study of the electroweak interaction.

2. Dirac equation

In a frame of reference X of real space-time coordinates x = {xµ} and pseu-
doeuclidean metric gµν = diag(+1,−1,−1,−1), the Dirac equation may be written
as follows

iγβ∂βΨ(x) = mΨ(x), m ≥ 0. (1)

Here, Ψ is a complex four–spinor and the Dirac matrices γµ (in a fixed chosen
representation) obey the usual rules [1–9]

γµγν + γνγµ = 2gµνI, (γµ)† = γ0γµγ0, (2)

with I being the 4× 4 identity matrix. Thus, the Ψ solutions of Eq. (1) are eigen-
states of the squared four–momentum operator P2 = i∂αg

αβ i∂β with eigenvalue
m2. For convenience, we further define the Dirac matrix γ5 = iγ0γ1γ2γ3; it is her-
mitian and unitary, and anticommutes with all γµ. Also, we remark the alternative
space-time notation: x = {t, s} with t = x0 and s = {xk}.

Equation (1) can be rewritten in terms of right–handed and left–handed spinors.
To that end, we first introduce the space–index S and the time–index T of the frame
X . Namely [10], S = 0 if {xk} is a right–handed triplet (S = 1 otherwise) and T = 0
if t runs forward (T = 1 otherwise). Then

Ψ(x) = ΨR(x) + ΨL(x), (3)

where ΨR (right–handed component) and ΨL (left–handed component) are given
by

ΨR(x) =
1

2
(I + ǫγ5)Ψ(x), (4)

ΨL(x) =
1

2
(I − ǫγ5)Ψ(x), (5)

with ǫ = (−1)S+T . Finally, the following system of equations [1–9] is seen to be
equivalent to Eq. (1):

iγβ∂βΨR(x) = mΨL(x), (6)

iγβ∂βΨL(x) = mΨR(x). (7)

In the next section, we will examine a possible modification of Eqs. (6) and (7).
This will be especially interesting for the case of massless particles.
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3. Modified Dirac equation

The conventional Dirac theory of §2 can be easily generalized as follows

iγβ∂βΨR(x) = mLΨL(x), (8)

iγβ∂βΨL(x) = mRΨR(x), (9)

with mR, mL ∈ R. Equivalently,

iγβ∂βΨ(x) =
1

2
[(mR +mL)I + ǫ(mR −mL)γ

5]Ψ(x) (10)

so that the Ψ solutions are eigenstates of P2 with eigenvalue mRmL. Except for
tachyons [11] (mRmL < 0), there are four possibilities: (i)mr = mL = 0 (massless);
(ii) mRmL > 0 (massive); (iii) mR = 0 and mL /=0 (massless); (iv) mR /=0 and
mL = 0 (massless).

The case (i) is trivial, as Eq. (10) reduces to Eq. (1) with m = 0. The case (ii)
can be handled as follows. Define:

∆± =
1

2
√
mRmL

[(mR +mL)I ± ǫ(mR −mL)γ
5] (11)

and notice that ∆− is the inverse of ∆+ (and viceversa). Equation (10) reads

iγβ∂βΨ(x) = m∆+Ψ(x), m =
√
mRmL > 0, (12)

and reduces to

iγ
◦β∂βΨ(x) = mΨ(x), (13)

with γ
◦µ = ∆−γµ = γµ∆+ and γ

◦µγ
◦ν + γ

◦νγ
◦µ = 2gµνI. Due to the preceding

anticommutation relations, an invertible matrix Λ exist such that [1–9]

Ψ(x) = ΛΦ(x), (14)

iγβ∂βΦ(x) = mΦ(x). (15)

Therefore, Eq. (10) is solved in terms of a standard massive Dirac equation. In
particular, the conserved current may be written as

Φ†(x)γ0γµΦ(x). (16)

In the cases (iii) and (iv), the above procedure cannot be repeated. In fact, the
right–hand–side of Eq. (10) involves (I ∓ ǫγ5), which are singular. Specifically for
(iii), one has

iγβ∂βΨ(x) =
mL

2
(I − ǫγ5)Ψ(x), (17)
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that is

ΨL(x) = iγβ∂β

[

ΨR(x)

mL

]

, (18)

iγβ∂βΨL(x) = 0. (19)

In general (i.e., for all solutions Ψ of Eq. (17)), the left–handed current

[ΨL(x)]
†γ0γµΨL(x) = Ψ†(x)γ0γµ

[

1

2
(I − ǫγ5)

]

Ψ(x) (20)

is conserved, while the corresponding right–handed current is not. By contrast,
both currents are conserved in the massless case of Eq. (1): then, the conserved
right–handed current is typically discarded [8] in order to reproduce the experimen-
tal evidence for neutrinos. From a theoretical standpoint, discarding a conserved
current is a rather disturbing ad hoc procedure. This is not required here and
ΨR(x)/mL can be interpreted as a physically unobservable “potential” for ΨL (Eq.
(18)), while ΨL obeys the basic equations of massless left–handed Weyl–type neu-
trinos (Eq. (19) and its consequence Eq. (20)). Besides, it is manifest that the
outlined approach is substantially different from that of Majorana [1–9].

4. Tachyonic case

The tachyonic case (mRmL < 0) can be handled similarly to the massive case.
Specifically, define:

Ξ± = − 1

2
√

|mRmL|
[(mR −mL)I ± ǫ(mR +mL)γ

5], (21)

and notice that Ξ− is the inverse of Ξ+ (and viceversa). Equation (10) reads

iγβ∂βΨ(x) = −ǫmΞ+γ5Ψ(x), m =
√

|mRmL| > 0, (22)

and reduces to

iγ̃β∂βΨ(x) = −ǫmγ5Ψ(x), (23)

with γ̃µ = Ξ−γµ = γµΞ+ and γ̃µγ̃ν + γ̃ν γ̃µ = 2gµνI. Also: γ̃5 ≡ iγ̃0γ̃1γ̃2γ̃3 = γ5.
Due to preceding relations, an invertible 4× 4 matrix Ω exists such that [1–9]

Ψ(x) = ΩΘ(x), (24)

iγβ∂βΘ(x) = −ǫmγ5Θ(x). (25)

Here, Eq. (25) can be taken as a possible standard form of the tachyonic Dirac
equation [11]. The related conserved current may be conveniently written as

−ǫΘ†(x)γ0γµγ5Θ(x). (26)
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5. Mass states

As noticed in §3, taking mL /=0 insures that Eq. (10) can be used to properly
describe the physical neutrino current, with no redundancies. If, for this reason, a
non–null mL is imposed in this section, only threee cases are left: the massive case,
the left–handed massless case (iii) and the tachyonic case. In the aforementioned
order, these cases produce Eqs. (15), (17) and (25), which in turn originate the
relevant conserved currents. The present section combines these three equations
into a 12–dimensional spinoral formalism.

It is evident that Eqs. (15), (17) and (25) can be rewritten as follows

iγβ∂βΥσ(x) =
m

2
[(I − ǫγ5)− σ(I + ǫγ5)]Υσ(x) (27)

with m > 0 and σ = −1, 0, 1. Equation (27) describes three mass states (one for
each of the listed values of σ: massive, massless and tachyonic, in that order), cor-
responding to the same value of m. In relationship to Eq. (10), this parameter can

be interpreted as
√

|mRmL| for σ = ±1. For σ = 0, interpretations are unneces-
sary: in this case, the value of m is essentially irrelevant to begin with, as it does
not affect in any ways the left–handed current (see §3 for clarity). At any rate,
the standard massless Dirac equation would differ from Eq. (27), in that it would
require: σ = 0 ⇒ m = 0.

As already anticipated above, Eq. (27) can be interpreted as one that applies
to three different states of the same particle. Hence, it is convenient to modify the
formalism as follows. For any 4× 4 Dirac matrix γ, define

Γ =

(

γ 0 0

0 γ 0

0 0 γ

)

(28)

where 0 is the 4× 4 null matrix. Also, introduce the 12–spinor Υ(x) as the column
of the three Υσ(x) spinors (placed, from top to bottom, in ascending order of σ).
Finally, define

Σ =

(−I 0 0

0 0 0

0 0 I

)

. (29)

Then, Eq. (27) can be cast in the following form:

iΓβ∂βΥ(x) = mWΥ(x), (30)

where

W =
1

2

[(

[]− ǫΓ5
)

−
(

[]+ ǫΓ5
)

Σ
]

, (31)

and [] stands for the 12× 12 identity matrix.
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It is worthwhile remarking that tachyons could be avoided all together, if con-
sidered undesirable. This may be done by imposing mRmL ≥ 0 in §3 and modifying
the developments of this section accordingly (8–spinors in place of 12–spinors, etc.).

6. Massless states for the electroweak interaction

A modification of the treatment outlined in the previous section may be em-
ployed to discuss the electroweak interaction. Consider cases (i) and (iii) of §3 and
rewrite them as follows:

iγβ∂βΥσ(x) =
m

2

[(

1

2
+ σ

)

(

I − ǫγ5
)

]

Υσ(x) (32)

with m > 0, σ = −1/2 (case (i)) and σ = +1/2 (case (iii)). Introduce the 8–
dimensional Dirac matrix notatiom

Γ =

(

γ 0

0 γ

)

, (33)

and furthermore:

Σ =
1

2

(

−I 0

0 I

)

, (34)

Υ(x) =

(

Υ−1/2(x)

Υ+1/2(x)

)

. (35)

Cast Eq. (32) in the form:

iΓβ∂βΥ(x) = mWΥ(x) (36)

with

W =
1

2

[

(

[]− ǫΓ5
)

(

1

2
[]+Σ

)]

, (37)

where [] is the 8 × 8 identity matrix. Equation (36) now describes two different
massless states: a state of type (i) (which generates both a left–handed and a
right–handed conserved current) and a state of type (iii) (which only needs the
left–handed spinor to be physically described; see §3 for clarity).

The result of the aforementioned approach is that of producing a framework
suited for the study of the electroweak interaction. In fact, Eq. (36) implies that a
full spinor (i.e., two spinoral components: left–handed and right–handed) be given
physical significance for the state of type (i). This is the state (electron) which will
acquire mass through the usual symmetry breaking process, and will consequently
lose the separate conservation of left–handed and right-handed currents. At the
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same time, the state of type (iii) can be physically described by its left-handed
spinoral component only: this is the state (neutrino) which shall remain massless
after symmetry breaking.

By comparison, the usual treatment of the electroweak interaction [1,2,6] starts
with an equation like Eq. (36), but with m = 0 (both states of type (i)): thus, there
are no actual theoretical justifications for intoducing only one spinoral component
(left–handed) for the state which remains massless after symmetry breaking. It is,
once again, a rather disturbing ad hoc procedure, breaking the symmetry even be-
fore the symmetry breaking process is supposed to have started! In our treatment,
a distinction arises at the level of equations of motion: a case of type (i) is for
particles which are not truly massless, but acquire mass through some symmetry
breaking process; a case of type (iii) is for truly massless (left–handed) particles.

In order to verify that Eq. (36) is appropriate for the study of the electroweak
interaction, its conserved currents must also be mentioned. Besides the currents
trivially implied by case (i) and case (iii) separately, the following “mixing” currents
are also conserved:

Υ
†(x)Γ0Γµ(Q + Q†)Υ(x), (38)

iΥ†(x)Γ0Γµ(Q−Q†)Υ(x), (39)

where

Q =

(

0
1

2
(I − ǫγ5)

0 0

)

. (40)

7. Conclusions

As discussed at the end of §3, the standard treatment of massless neutrinos
produces an unwanted conserved current, which is discarded. While the procedure
(or theoretical justification) for this elimination may be more or less sophisticated,
the only honest approach is similar to that of Ref. 8: it is a postulate put forth in
order to agree with the experimental evidence. The formulation here outlined gives
the possibility of building this agreement directly into the equation of motion (Eq.
(17)), without having to repeat Majorana’s treatment.
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DIRACOVA JEDNADŽBA S DVA MASENA PARAMETRA

Proširenje Diracove jednadžbe omogućuje uvodenje dva parametra za masu (mR i
mL). Posebno je zanimljiv bezmaseni slučaj koji se dobiva kada je umnožak dvaju
masenih parametara jednak nuli. Ovim se pristupom može izvesti neutrinska struja
na prikladniji način. Raspravljaju se moguće primjene.
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