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By considering a series of composite models for the charged leptons, we demonstrate
that with influence of perturbations generated by Markov process in high magnetic
fields, we can arrive at criteria which allow us to discriminate amongst the models
using spin polarization precession.

1. Introduction

In the field of elementary particle physics, despite the great achievements of the
past thirty years, we are now in need of both new ideas and new experiments to
probe for a more predictive and less phenomenological theory [1]. The preference
for left over right in weak interaction, the origin of the generations, the origin
of quark and lepton masses, and an understanding of the Higgs sector with its
associated symmetry breaking and its effect on theories of quark mixing and CP
violations represent some of the nagging problems that a more fundamental theory
than SU(3)C×SU(2)L×U(1)Y standard model must resolve [2,3].

Amongst the proposals to go beyond the standard model, Technicolour has
been suggested as a theory of the composite structure of Higgs particles [4], and
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Grandunification has been proposed as a theory that unites the coupling into one
coupling constant at higher energy as well as putting quarks and leptons into the
same multiplet [5]. In addition to these two proposals, supersymmetry [6] has been
suggested as a solution to the hierarchy problem invented to stabilize the elec-
troweak scale and G.U.T. scale, and superstring theory [7] is an attempt to unify
all forces in ten dimensions with the low energy standard model appearing after
compactification of six of the dimensions. The other attempt at unification is that
of compositeness which suggests that all quarks, leptons, qauge bosons and Higgs
particles are really composites of fundamental preons with new forces, such as hy-
percolour, binding the preons together and generating an effective standard model
when viewed at low energy [8,9]. Compositeness seems like a very natural assump-
tion for a theory of quarks, leptons and gauge bosons since all previous systems
(atoms, nuclei, hadrons) have revealed a composite structure and perhaps the next
step is to uncover the composite structure of leptons and quarks [10]. One of the
major problems with a composite theory of quarks and leptons is that the maximum
size of a quark and lepton suggests a binding energy for the composite system that
far exceeds the mass of the quark and lepton [11]. This suggests that the system is
protected by either a chiral–flavour symmetry or supersymmetry from acquiring a
mass that far exceeds the known quark or lepton mass. Numerous composite mod-
els have been proposed [12–14] with the three fermion and fermion–boson models
being the most popular. The principle probes to compositeness include the study of
anomalous magnetic moments, modifications of form factors and rare decays [15].
In previous notes, we have suggested a different probe to compositeness, namely if
space and time attain a discrete or grainy–like nature at some scale, the composite
structure of leptons and gauge bosons should show up in spin polarization preces-
sion experiments [16–19]. We have also demonstrated that composite particles will
exhibit spectral shifts from a spin flip in external magnetic fields due to composite
structure in a discrete time difference quantum theory [20,21]. The idea of discrete
time quantum theory goes back to the historic papers of Caldirola [22,23] but also
has its roots in the pregeometric ideas of Wheeler [24], Finkelstein [25] and Bombelli
et al. [26]. Another way of putting a discrete time notion into quantum theory is
through the idea of Markov jump processes [27]. We have shown how Markov effects
on individual preons should show up in spin polarization precession experiments
and in fact the details of how a spin polarization amplitude varies for short time
intervals would serve as a window through which to study the composite structure
of the precessing particle [19]. In Ref. 18 we discussed how Markov effects on a two
preon composite gauge boson would leave definite signatures in spin polarization
precession experiments and in a subsequent note [28] we discussed the signatures
that a three fermion and a fermion–boson system would produce due to Markov
jump process. In what follows, we study a series of models of composite lepton
structure using the effect that Markov process have on spin polarization preces-
sion. We also discuss a Rishon model without the need for hypercolour [29,30], and
in closing we point out that the random chaotic effects produced in a spin polariza-
tion precession in high magnetic fields offers a clean distinct probe for composite
lepton structure.
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2. Signature of composite models of the leptons using spin

polarization precession

As mentioned in the Introduction, we seek to explore a variety of composite
charged lepton models with the intent of demonstrating that each generates distinct
signatures in spin polarization precession due to environmental Markov effects that
effect individual preons in high magnetic fields. The justification for such a study
is motivated by the “Procrustean Principle” [31] which states that systems in the
low energy world are unavoidably “open system” due to non–local string modes
interacting with localized string modes (particles). I might also remark that not
all interactions are “Hamiltonian”, there is always the possibility of environmental
effects that canot be put in hamiltonian form [32]. To begin our discussion of
composite models, we first review a model appearing in Ref. 28, two identical
fermions and one different. The charge and masses are

qI = qII = −e1, qIII = −e2, mI = mII = m1, mIII = m2.

For the hamiltonian in an external magnetic field we have

H =
e1
m1

Sz1B +
e1
m1

Sz2B +
e2
m2

Sz3B. (2.1)

To insure that the spin up state has E+ = eh̄B/2m (m is the mass of charged
lepton) and the spin down has E− = −eh̄B/2m, we have [28] e1/m1 = e2/m2 =
e/m (−e is charge of lepton, m is mass of lepton).

Here we do not include the internal dynamics which must generate the rest mass
of the charged lepton. For the spin up state we write

Ψ↑ =
1√
2
(α(1)β(2)− β(1)α(2))α(3)e−iE+t/h̄ (2.2)

and for spin down

Ψ↓ =
1√
2
(α(1)β(2)− β(1)α(2))β(3)e−iE

−
t/h̄. (2.3)

Here we have anty–symmetrized the spin function of the two identical fermions. We
now consider a two step Markov process that influences each spin, calling:

Pn(+) is the probability of spin up for fermions 1 and 2,
Pn(−) is the probability of spin down for fermions 1 and 2,
Pn(+) is the probability of spin up for fermion 3,
Pn(−) is the probability of spin down for fermion 3 (n refers to number of steps).
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For a two step Markov process [27], we have P0(±) = 1/2

Pn(+) =
p

p+ q
+ (1− p− q)n

(

1

2
− p

p+ q

)

Pn(−) =
q

p+ q
+ (1− p− q)n

(

1

2
− q

p+ q

)

(2.4)

(after n steps).

Here p is probability of jump from − to + and q is probability of jump for +
to −. The two state transition matrix is

M =

(

+ −
+ 1− q, q
− p, 1− p

)

(2.5)

for preons 1 and 2, and

M =

(

+ −
+ 1− q, q
− p, 1− p

)

(2.6)

for preon 3.

Here p, q, p, q depend on the external magnetic field B. To take into account
Markov effects, we modify the spin function in Eqs. (2.2) and (2.3) and take the
linear combination necessary to generate spin precession in the xy plane [18]

Ψ =
1√
2
Ψ↑ +

1√
2
Ψ↓

Ψ =
√
2

(

√

Pn(+)Pn(−)Pn(+)αβα−
√

Pn(−)Pn(+)Pn(+)βαα

)

e−iE+t/h̄

+
√
2

(

√

Pn(+)Pn(−)Pn(−)αββ −
√

Pn(−)Pn(+)Pn(−)βαβ

)

e−iE
−
t/h̄. (2.7)

Here the Markov probabilities Pn(±) are the same for preons 1 and 2, Pn(±) refers
to preon 3.

We now evaluate

< Sx1
+ Sx2

+ Sx3
> (2.8)

for the wave function in Eq. (2.7). Using the matrices for

Sx1
= Sx2

= Sx3
=

h̄

2

(

0 1
1 0

)

,
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we have

< Sx1
+ Sx2

+ Sx3
>= 4h̄

√

P 2
n(+)P 2

n(−)Pn(+)Pn(−) cos
eB

m
t. (2.9)

We see for small n (initial step), Eq. (2.9) gives us chaotic fluctuations in the
< Sx > spin amplitude. We also note that t may define one time scale and n other
scale. How they are related could be found from experiment by measuring < Sx >
at each t and seeing how it functionally depends on n from Eq. (2.9). It may not
be a linear relation although at large n it may converge to a linear relation. We
also note from Eq. (2.9) that all 3 fermion composite models of the charged leptons
would generate the same form for < Sx > as in Eq. (2.9) as long as two fermions are
identical, and flavour, colour and hypercolour degrees of freedom are not present
in the 3 preon spin function.

The next model of a charged lepton that we study is actually a version of a
3 preon model developed by Wetterich [33], namely an isodublet of preons with
charges (−2/3, 1/3)(P1, P2). A charged lepton would be a P1P1P2 composite. The
problem we have is to develop a composite wave function including spin and flavour.
In the first version that we study we borrow from the quark model and choose a
symmetric spin–flavour function used for the proton with µ = P1, d = P2, the spin
up state for a charged −e lepton is

Ψ↑ =
1√
18

(

↑
2P1

↓
P2

↑
P1

+ ↑
2P1

↑
P1

↓
P2

+ ↓
2P2

↑
P1

↑
P1

− ↑
P1

↓
P1

↑
P2

− ↑
P1

↑
P2

↓
P1

− ↓
P1

↑
P2

↑
P1

− ↑
P2

↓
P1

↑
P1

− ↑
P2

↑
P1

↓
P1

− ↓
P1

↑
P1

↑
P2

)

e−iE+t/h̄

(2.10)

where ↑
P1

is basis function of preon p1 with spin up, etc. and the spin down state is

identical in flavour but with each spin arrow reversed. Equation (2.10) is actually
the symmetric SU(6) wave function for the proton with quarks replaced by preons
of the Wetterich model. We will assume the breakdown

SU(6) → SU(3)Flavour × SU(2)Spin

and actually, as far as Eq. (2.10) is concerned, the wave function only contains
the SU(2)Flavour subgroup of SU(3)Flavour. We now assume the two–state Markov
process operative for both preon 1(-2/3) and preon 2(1/3). Calling P1n(±) and
P2n(±) the 2 state Markov probabilities after n steps for P1(−2/3) and P2(1/3),
respectively, with initial probabilities at n = 0 of P10(±1/2) = P20(±1/2) = 1/2,
we can modify Eq. (2.10) to read

Ψ↑
e−

=
2

3





2
√

P 2

1n
(+)P2n(−) ↑

P1

↓

P2

↑

P1
+ 2
√

P 2

1n
(+)P2n(−) ↑

P1

↑

P1

↓

P2

+2
√

P 2

1n
(+)P2n(−) ↓

P2

↑

P1

↑

P1
−

√

P1n(−))P1n(+)P2n(+) ↑

P1

↓

P1

↑

P2

−−−−−−−−−−−−



 e
−iE+t/h̄

.

(2.11)

In Eq. (2.11) we replace each coefficient in Eq. (2.10) by the Markov corrected
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term, that is

−
↑
P1

↑
P2

↓
P1√

18
→ −

√

P1n(+))P1n(−)P2n(+)
↑
P1

↑
P2

↓
P1

× 2

3
etc.

(E± = ±eh̄B/2m, −e is charge of lepton, m is mass of lepton).

We find at n = 0, Eq. (2.11) reduces to Eq. (2.10). We also construct the spin
down state in a similar manner and take the linear combination

Ψ =
1√
2
Ψ↑

e−
+

1√
2
Ψ↓

e−
. (2.12)

Using Eq. (2.12) to evaluate < Sx1
+ Sx2

+ Sx3
>

(

Sx1
= h̄/2

(

0 1
1 0

)

etc.

)

, we

obtain

< Sx1
+ Sx2

+ Sx3
>=

2

9

h̄

2
(2) cos

eB

m
t

×





−12
√

P 3
1n
(+)P1n(−)P 2

2n
(−)− 12

√

P 3
1n
(−)P1n(+)P 2

2n
(+)

+6
√

P 2
1n
(+)P 2

1n
(−)P2n(+)P2n(−)



 . (2.13)

The variation of the amplitude in Eq. (2.13) is distinctly different than that of Eq.
(2.9). We also note that the spin polarization amplitude would vary the same way
for “all spin–flavour preon models for e− generated from a generic SU(6) model
independent of the preon charges as long as there are just two flavours in the
function of Eq. (2.10)”. Another amazing property of Eq. (2.13) is that if spin
precession was studied for protons at small n, the fluctuation in the amplitude
would be the same as that in Eq. (2.13). This is because the protons spin flavour
function is identical to Eq. (2.10) only with q(P1) = 2/3 and q(P2) = −1/3.

If we calculate the magnetic moment of the electron using Eq. (2.10), we find

Uz
e−

↑ = Ψ+(U1 + U2 + U3)Ψ,

where Ψ is given by Eq. (2.10), and U1, U2, U3, refer on the magnetic moment
operators of the first preon, second preon and third preon. The result is [34]

Uz
e−

↑ =
1

3
(4UP1

− UP2
) = − eh̄

2me
(2.14)

UP1
is magnetic moment of P1, UP2

is magnetic moment of P2.

If we set

UP1
= − 2e

3mP1

(

h̄

2

)

,
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UP2
=

e

3mP2

(

h̄

2

)

,

we have −8e/9mP1
− e/9mP2

= −e/me

If mP1
= mP2

= m, then

− e

m
= − e

me
and m = me. (2.15)

In this case the total bare mass due to constituent preons is 3me. This suggests the
internal binding energy is 2me to generate the effective mass of the electron of me.

To exhibit the difference between a SU(6) based model and SU(2)Spin×
SU(2)Flavour model, we now consider the two preons to have the flavour function
[34]

ΨF =
(P1P2 − P2P1)√

2
P1 (2.16)

and the spin function

ΨS =
1√
2
(↑↑↓ − ↑↓↑) (2.17)

for spin up.

For spin down we have

ΨS =
1√
2
(↓↑↓ − ↓↓↑). (2.18)

If we multiply Eq. (2.16) and Eq. (2.17), we obtain

Ψ↑ =

↑
P1

↑
P2

↓
P1

2
−

↑
P1

↓
P2

↑
P1

2
−

↑
P2

↑
P1

↓
P1

2
+

↑
P2

↓
P1

↑
P1

2
(2.19)

and for spin down

Ψ↓ =

↓
P1

↑
P2

↓
P1

2
−

↓
P1

↓
P2

↑
P1

2
−

↓
P2

↑
P1

↓
P1

2
+

↓
P2

↓
P1

↑
P1

2
. (2.20)

In Eq. (2.19) we should multiply by e−iE+t/h̄ and in Eq. (2.20) we multiply
by e−iE

−
t/h̄ to obtain the total temporal spin–flavour wave function varying with

time in an external magnetic field Bz = B. We note that Eqs. (2.19) and (2.20)
are antisymmetric in flavour for the first and second preons while antisymmetric
in spin for the second and third preons. It is noteworthy to point out that in Ref.
34 we demonstrate that specific correlations between preons in the Rishan model
generate the correct ratio µµ/µd = −2 for quark magnetic moments to correctly

FIZIKA B 5 (1996) 3, 205–216 211



wolf: discriminating amongst composite models . . .

predict the famous relation µp/µN = −3/2 for the proton to neutron magnetic
moment ratio. It suggests that generation structure might be a manifestation of
a specific correlation between preon properties such as spin, flavour, colour and
hypercolour [35].

When we evaluate the x component of the spin polarization for a linear combi-
nation of Eqs. (2.19) and (2.20), we obtain after inserting the Markov probabilities
in the coefficients of Eqs. (2.19) and (2.20)

< Sx >=< Sx1
+ Sx2

+ Sx3
>=

=





1√
2
Ψ↑e

− iE+

h̄
t
+

1√
2
Ψ↓e

− iE−

h̄
t


×

×(Sx1
+ Sx2

+ Sx3
)





1√
2
Ψ↑e

− iE+

h̄
t
+

1√
2
Ψ↓e

− iE−

h̄
t


 , (2.21)

< Sx >= h̄ cos
eB

me
t











√

P 3
1n
(+)P1n(−)P 2

2n
(−)

+
√

P 3
1n
(−)P1n(+)P 2

2n
(+)

+2
√

P 2
1n
(+)P 2

1n
(−)P2n(+)P2n(−)











. (2.22)

In Eq. (2.21)

Ψ↑ =
√
2
√

P1n(+)P1n(−)P2n(+)
↑
P1

↑
P2

↓
P1

−−−−

Ψ↓ =
√
2
√

P 2
1n
(−)P2n(+)

↓
P1

↑
P2

↓
P1

−−−− . (2.23)

It is clear that the signature for how the < Sx > spin polarization varies with n is
different in each model. In Eq. (2.9) we have two distinct preons with no flavour
degrees of freedom, in Eq. (2.13) we have a spin–flavour model generated from SU(6)
that resembles the quark model, and in Eq. (2.22) we have a SU(2)Flavour×SU(2)Spin
model with the correlations of spin and flavours mentioned above. In Eq. (2.22) we
have the same type of terms as appeared before, only they appear with diferent
coefficients.

In an effort to dispense with the hypercolour degree of freedom in the Rishon
model, we have constructed a theory of 3 Rishons coupled to a spin 1 and spin 0 bo-
son. The orginal Rishon model [36] has two fermionic Rishons (T, V) of charge 1/3
and 0, respectively. The T Rishons carry colour, the V Rishons carry anti–colour
and both T, V Rishons carry hypercolour (the binding force of the Rishons). For
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quarks it is possible to put 2 similar Rishons in an anti–symmetric colour state, all
three Rishons are in totally anti–symmetric hypercolour state and the two similar
Rishons can be put in an anti–symmetric spin state so that the total wave func-
tion is anti–symmetric for the two similar Rishons to fulfill the requirements of the
exclusion principle. However, for leptons it is impossible to satisfy the exclusion
principle for fundamental Rishons since all the Rishons are similar and the com-
bination of a totally anti–symmetric colour function (colour singlet) and totally
anti–symmetric hypercolour function for a total spin 1/2 (3 particle state) would
make it impossible to fulfillthe requirements of the exclusion principle since there is
no totally anti–symmetric 3 particle spin state. To remedy this situation, we have
constructed a Rishon model of the charged (or uncharged leptons) that does not
need hypercolour. It consists of 3 spin 1/2 T Rishons (q = −e/3) in a spin 3/2
(symmetric state) and a totally anti–symmetric colour state (colour singlet). In ad-
dition, we need a spin 1 boson of charge −e/3 and a spin 0 scalar of charge +1/3.
The spin 3/2 of the 3 fermion combination couples to the spin 1 boson to generate
a total spin 1/2 state of the composite fermion. Also angular momentum excita-
tion of the spin 1 boson can produce spin–orbit interaction sufficient to produce
the generation structure of the charged leptons. To reproduce the correct magnetic
moment of the composite charged leptons, we write for the total magnetic moment
of the 3 fermion–spin 1 combination

~µ = − e1
m1

(

~S1 + ~S2 + ~S3

)

− e2
m2

~S4

(1, 2, 3 stand for Rishons of spin 1/2, 4 stands for boson of spin 1). We impose
e1 = e2; m1 = m2; e1/m1 = e2/m2 = e/me to give

µz = − e2
m2

(Sz1 + Sz2 + Sz3 + Sz4) = − e

me
SzTot

. (2.24)

The fifth preon (of spin 0) has charge e/3, so the total charge is −e. To develop the
Markov influence on the spin–polarization precession amplitude, we have to write
the total function of the four preons. For spin up Sz = 1/2 we have

Ψ↑
e−

=
1√
2
U

3/2
3/2V

1
−1 −

1√
3
U

3/2
1/2V

1
0 +

1√
6
U

3/2
−1/2V

1
1 , (2.25)

Ψ↓
e−

=
1√
6
U

3/2
1/2V

1
−1 −

1√
3
U

3/2
−1/2V

1
0 +

1√
2
U

3/2
−3/2V

1
1 , (2.26)

where

U
3/2
3/2 =↑↑↑

U
3/2
1/2 =

1√
3
(↑↑↓ + ↑↓↑ + ↓↑↑)
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U
3/2
−1/2 =

1√
3
(−−−−−)

U
3/2
−3/2 =↓↓↓ .

for the three spin 1/2 (T) Rishons.

Here V 1
0 , V

1
1 , V

1
−1, refer to the Sz basis functions for the spin 1 preon (charge

is −e/3). When Eqs. (2.25) and (2.26) are modified to take into account Markov
environmental processes, we arrive at a formula for the spin polarization amplitude
depending on the two probabilities for the spin 1/2 Rishons and actually 6 Markov
probabilities for the spin 1 preon since they depend on whether spin 1 correlates
with a Sz = ±3/2 or Sz = ±1/2 state of the three spin 1/2 Rishons. The calcula-
tions involved in this model are lengthy and we discuss them in another note. The
essential difference between this model and the usual Rishon model for charged
leptons is that by eleminating hypercolour, we consider additional preons of spin 1
and 0.

3. Conclusion

We have seen in Eqs. (2.9), (2.13) and (2.22) that depending on whether or
not flavour admits an SU(2) symmetry and can be included in a higher rank group
(SU(6)), the spin polarization amplitude depending on n takes on different func-
tional values. Another probe to Markov effects along with a test for specific com-
posite structure of the electron lies in the fact that if the flavour symmetry of the
preons for the electron is expressed by Eq. (2.10), then the proton and the electron
should exhibit similar (small time) chaotic fluctuations in < Sx >. Although we
calculated < Sx > for one other spin flavour model beyond the model described
by Eq. (2.12), all SU(2)×SU(2) spin flavour models would have the same form for
the spin polarization amplitude as that expressed in Eq. (2.22) with the possibility
of different numerical coefficients for the terms in Eq. (2.22). The details of these
calculations will be discussed in another note. Lastly, the modified Rishon model
with a spin 1 boson will also produce specific signatures for short time variations
of the spin polarization amplitude. From an experimental point of view, probing
the short time variation of < Sx > could be attained by passing an already po-
larized beam of leptons in the x–direction into a z–component magnetic field. The
appearance of small time fluctuation in the amplitude of < Sx > could be followed
by secondary effects that the spin polarization of e− produces. An example would
be the interaction with a polarized anti–neutrino beam that in turn produces w−

(to decay into quark and leptons). Since only a left handed e− could produce the
w−, we would expect a peak in the decay products of w− when < Sx > is opposite
to the motion of the e− beam.

In closing, the experimental mass splitting of the baryons predicted by the SU(6)
quark model [10] was one of the greatest achievements of twentieth century physics.
It might also be that lepton and quark composites might also be discovered through
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an innovation such as short time variations of the spin polarization precession in a
z–component magnetic field.

Certainly, the present search for lepton and quark compositeness has only pro-
duced limits using anomalous moments, rare decays and form factors [37], whereas
a technique such as spin polarization precession in a “Penning trap” [38] might not
only produce limits but also clear and distinct yes–no signatures for compositeness.
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KRITERIJI ZA RAZLIKOVANJE MODELA LEPTONA MJERENJEM
PRECESIJE SPINA ČESTICE

Razmatra se niz složenih modela za električki nabijene leptone i pokazuje da se, pod
utjecajem smetnje uzrokovane Markovljevim procesom u jakom magnetskom polju,
mogu izvesti kriteriji za razlikovanje modela mjerenjem precesije spina čestica.
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