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We propose an intensity–dependent pion–nucleon coupling Hamiltonian within a
unitary multiparticle–production model of the Auerbach-Avin-Blankenbecler-Sugar
(AABS) type in which the pion field is represented by the thermal–density ma-
trix. Using this Hamiltonian, we explain the appearance of the negative–binomial
(NB) distribution for pions and the well–known empirical relation, the so–called
Wróblewski relation, in which the dispersion D of the pion–multiplicity distribution
is linearly related to the average multiplicity < n > : D = A < n > +B, with the
coefficient A < 1. The Hamiltonian of our model is expressed linearly in terms of
the generators of the SU(1, 1) group. We also find the generating function for the
pion field, which reduces to the generating function of the NB distribution limit
T → 0.

1. Introduction

During the last years, a considerable amount of experimental information has
been accumulated on multiplicity distributions of charged particles produced in pp
and pp̄ collisions in the centre–of–mass energy range from 10 GeV to 1800 GeV.
Measurements in the regime of several hundred GeV [1] have shown the violation
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of the Koba-Nielsen-Olesen (KNO) scaling [2], which was previously observed in
the ISR c.m. energy range from 11 to 63 GeV [3]. The violation of the KNO
scaling is characterized by an enhancement of high–multiplicity events leading to a
broadening of the multiplicity distribution with energy.

The shape of the multiplicity distribution may be described either by its C
moments, Cq = 〈nq〉/〈n〉q, or by its central moments (higher–order dispersions),

Dq = 〈(n − 〈n〉)q〉1/q, q = 2, 3 . . .. The exact KNO scaling implies that all Cq mo-
ments are energy independent. Only at energies below 100 GeV do the C moments
appear to be energy independent. It can also been shown [4] that the KNO scaling
leads to a generalized Wróblewski relation [5]

Dq = Aq〈n〉 −Bq, (1)

with the energy–independent coefficients Aq and Bq. The pp and pp̄ inelastic data
below 100 GeV also show the linear dependence of the dispersion on the average
number of charged particles, but with the coefficients Aq and Bq that are approxi-
mately equal within errors.

The fact that the dispersion of the multiplicity distribution grows linearly with
〈n〉 implies that the elementary Poisson distribution resulting from the independent
emission of particles is ruled out.

The total multiplicity distribution Pn of charged particles, for a wide range of
energies (22−900 GeV), is found to be well described by a negative–binomial (NB)
distribution [1,6] that belongs to a large class of compound Poisson distributions
[7]. It is a two–step process [8] with two free parameters: the average number of
charged particles 〈n〉 and the parameter k which affects the shape (width) of the
distribution. The parameter k is also related to the dispersion D = D2 by the
relation

(

D

〈n〉

)2

=
1

k
+

1

〈n〉 , (2)

so that the observed broadening of the normalized multiplicity distribution with
increasing energy implies a decrease of the parameter k with energy. The KNO
scaling requires constant k.

Although the NB distribution gives information on the structure of correlation
functions in multiparticle production, the question still remains whether its clan–
structure interpretation is simply a new parametrization of the data or has a deeper
physical insight [9]. Measurements of multiplicity distributions in pp̄ collisions at
TeV energies [10] have recently shown that their shape is clearly different from that
of the NB distribution. The distributions display the so–called medium–multiplicity
”shoulder”, with a shape qualitatively similar to that of the UA5 900 GeV and UA1
distributions [11]. A satisfactory explanation of this effect is still lacking [12].

In this paper, we propose another approach to multiplicity distributions based
on a unitary eikonal model with a pion–field thermal–density operator given in
terms of an effective intensity-dependent pion–nucleon coupling Hamiltonian. We
assume that the system of produced hadronic matter behaves as a hadron gas in
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thermodynamical equilibrium at the temperature T before the hadrons themselves
decouple (freezing–out) and decay, producing observable particles in the detector.

The paper is organized as follows. In Sect. 2 we explain the basic ideas of our
unitary eikonal model with a pion–field thermal–density operator. A discussion of
the Wróblewski relation and the NB distribution is presented in Sect. 3. Finally,
in Sect. 4 we draw conclusions and make remarks on the possible extension of the
model to include two–pion correlations in the effective pion–nucleon Hamiltonian.

2. Description of the model

At present accelerator energies, the number of secondary particles (mostly pi-
ons) produced in hadron–hadron collisions is large enough, so that the statistical
approach to particle production becomes reasonable. Most of the properties of pions
produced in high–energy hadron–hadron collisions can be expressed simply in terms
of a pion–field density operator. We neglect difficulties associated with isospin and
only consider the production of isoscalar ”pions”. In high–energy collisions, most of
the pions are produced in the central region. In this region, the energy – momentum
conservation has a minor effect if the transverse momenta of the pions are limited
by the dynamics.

2.1. The AABS model

A long time ago, a class of unitary eikonal models (AABS models) [13] have been
formulated in which the incident hadrons propagate through the interaction region
without making significant changes in their longitudinal momenta (leading–particle
effect). Only the part W = K

√
s of the total c.m. energy

√
s, in every concrete

event, is avaliable for particle production, where K is the inelasticity: 0 ≤ K ≤ 1 .

In the AABS type of models, the scattering operator Ŝ is diagonal in the rapidity

difference Y = ln(s/m2) and in the relative impact parameter ~B of the two incident

hadrons. The initial–state vector for the pion field is Ŝ(Y, ~B) | 0 >, where the
vacuum state | 0 > for pions is in fact a state containing two incident hadrons.

The n–pion production amplitude for n ≥ 1 is given by

iTn(Y, ~B; k1 . . . kn) = 2s〈k1 . . . kn | Ŝ(Y, ~B) | 0〉. (3)

We write the square of the n–pion production amplitude in the form

| Tn(Y, ~B; k1 . . . kn) |2= 4s2Tr{ρ(Y, ~B) | k1 . . . kn〉〈k1 . . . kn |}, (4)

where the pion–density operator ρ(Y, ~B) is defined as

ρ(Y, ~B) = Ŝ(Y, ~B) | 0〉〈0 | Ŝ†(Y, ~B). (5)
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The square of the elastic scattering amplitude is then the matrix element of ρ(Y, ~B)

between the states with no pions, i.e., 〈0 | ρ(Y, ~B) | 0〉.
In terms of the pion–number operator

N̂ =
∑

k

a†kak =
∑

k

N̂k, k ≡ (ωk,~k), (6)

the square of the S–matrix element, when no pions are emitted, can also be written
in the form

| 〈0 | Ŝ(Y, ~B) | 0〉 |2= Tr{ρ(Y, ~B) : e−N̂ :} = e−Ω(Y, ~B). (7)

Here : : indicates the operation of normal ordering and Ω(Y, ~B) is the usual eikonal
function (or the opacity function) of the geometrical model [14]. The connection
with the inelastic cross section and the exclusive cross section for production of n
pions is then

σinel(Y, ~B) = 1− e−Ω(Y, ~B), (8)

and for n ≥ 1, it is

σn(Y, ~B) = Tr{ρ(Y, ~B) :
N̂n

n!
e−N̂ :}. (9)

In terms of a normalized pion–multiplicity distribution at each impact parameter,

Pn(Y, ~B) = σn(Y, ~B)/σinel(Y, ~B), the observed complete multiplicity distribution

Pn(Y ) is obtained by summing Pn(Y, ~B) over all impact parameters ~B with the

weight function Q(Y, ~B) = σinel(Y, ~B)/σinel(Y ), i.e.,

Pn(Y ) =

∫

d2BQ(Y, ~B)Pn(Y, ~B). (10)

The first–order moment of Pn(Y ) gives the average multiplicity

〈n〉 =
∑

nPn(Y ) =

∫

d2BQ(Y, ~B)n̄(Y, ~B). (11)

The higher–order moments of Pn(Y ) give information on the dynamical fluctuations
from 〈n〉 and also on the multiparticle correlations. All these higher–order moments
can be obtained from the pion–generating function

G(z) =
∑

znPn(Y ) =

∫

d2BQ(Y, ~B)G(Y, ~B; z), (12)

by differentiation, where

G(Y, ~B; z) = Tr{ρ(Y, ~B)zN̂} (13)
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is the pion-generating function in B–space . Thus the normalized factorial moments
Fq are

Fq =
〈n(n− 1) . . . (n− q + 1)〉

〈n〉q = 〈n〉−q d
qG(1)

dzq
, (14)

and the normalized cumulant moments Kq are

Kq = 〈n〉−q d
qlnG(1)

dzq
. (15)

These moments are related to each other by the formula

Fq =

q−1
∑

l=0

(

q − 1

l

)

Kq−lFl. (16)

For the Poisson distribution, all the normalized factorial moments are identically
equal to 1 and all cumulants vanish for q > 1.

We are concerned here mostly with the q = 2 moments, which are directly
related to the dispersion D:

F2 = K2 + 1 = (
D

〈n〉 )
2 + 1− 1

〈n〉 . (17)

2.2. Thermal–density operator for the pion field

The operator | 0〉〈0 | appearing in the definition of ρ(Y, ~B) represents the density
operator ρ(vac) for the pion–field vacuum state.

The density operator for a pion field in thermal equilibrium at the temperature
T is

ρT =
1

Z
e−βH0 , β =

1

kBT
, (18)

where

H0 =
∑

k

ωk(a
†
kak + λ), (19)

lnZ = −βλ
∑

k

ωk −
∑

k

ln(1− e−βωk).

The quantity λ
∑

k ωk = 〈0 | H0 | 0〉 −
∑

k ωk〈0 | N̂k | 0〉 represents the lowest
possible energy of the pion system in the leading particle environment. The “zero–

point energy” corresponds to λ = 1
2 . If the energies ωk =

√

~k2 +m2
π of the pion gas

in volume V are closely spaced, the summation over k is replaced by an integral:

∑

k

→ V

∫

d3k/2ωk.
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Note that ρ(vac) = ρT=0. The mean number of thermal (chaotic) pions is

n̄T =
∑

k
1

eβωk−1
(20)

=
∑

k n̄Tk.

Owing to the interaction of pions with the nucleon field, the density operator
ρT is transformed by means of the unitary S–matrix into

ρT (Y, ~B) = Ŝ(Y, ~B)ρT Ŝ†(Y, ~B) (21)

= 1
Z e−βH(Y, ~B),

where

H(Y, ~B) = Ŝ(Y, ~B)H0Ŝ†(Y, ~B) (22)

is regarded as an effective Hamiltonian describing the pion system in interaction
with the leading particle system.

Now we take into account an old observation of Golab–Meyer and Ruijgrok
[15] that the Wróblewski relation can be satisfied for all energies if the square of
the pion–nucleon coupling constant increases linearly with the mean number of
pions 〈n〉, and propose the following form of the effective pion–nucleon coupling
Hamiltonian:

H(Y, ~B) =
∑

k

[ǫk(Y, ~B)(Nk + λ) + gk(Y, ~B)(ak
√

Nk + 2λ− 1 + h.c.)] (23)

=
∑

k

Hk(Y, ~B),

where ǫ2k(Y,
~B) = ω2

k + 4g2k(Y,
~B). The interaction part of the Hamiltonian Hk for

the k–mode is no longer linear in the pion–field variables ak and represents an
intensity–dependent coupling [16]. It is also easy to see that the operators

K0(k) =Nk + λ, (24)

K−(k) = ak
√

Nk + 2λ− 1,

K+(k) =
√

Nk + 2λ− 1 a†k

form the standard Holstein–Primakoff [17] realizations of the SU(1,1) Lie algebra,
the Casimir operator of which is

Ĉk = K2
0 (k)−

1

2
[K+(k)K−(k) +K−(k)K+(k)] = λ(λ− 1)Îk. (25)
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The Hamiltonian Hk(Y, ~B) ≡ Hk is thus a linear combination of the generators of
the SU(1, 1) group:

Hk = ǫkK0(k) + gk[K+(k) +K−(k)]. (26)

The corresponding S–matrix which diagonalizes the Hamiltonian H(Y, ~B) is

Ŝ(Y, ~B) =
∏

k

Ŝk(Y, ~B), (27)

where

Ŝk(Y, ~B) = exp{−θk(Y, ~B)[K+(k)−K−(k)]}, (28)

with

th θk(Y, ~B) =
2gk(Y, ~B)

ǫk(Y, ~B)
. (29)

Since the dependence on the variables Y and ~B is contained only in the hyperbolic

angle θk(Y, ~B), from now on, we shall assume this dependence whenever we write
θk.

It is easy to see that the initial–state vector for the pion field, Ŝ(Y, ~B) | 0〉,
factorizes in the k–space

Ŝ(Y, ~B) | 0〉 =
∏

k

(Ŝk(Y, ~B) | 0k〉), (30)

with

Ŝk(Y, ~B) | 0k〉 =(1− th2θk)
λ
∑

nk

(−thθk)
nk
(Γ(nk + 2λ)

nk!Γ(2λ)

)1/2 | nk〉 (31)

= | θk〉,

where | nk〉 = (nk!)
−1/2(a†k)

nk | 0k〉. In the same way, we find that the pion

thermal–density operator ρT (Y, ~B) is also factorized as

ρT (Y, ~B) =
∏

k

ρT (θk), (32)

with

ρT (θk) =
1

Zk

∑

nk

e−βωk(nk+λ) | nk, θk〉〈nk, θk |, (33)
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where | nk, θk〉 = Ŝk(Y, ~B) | nk〉. The states | nk, θk〉 form a complete orthonormal
set of eigenvectors of the k–mode Hamiltonian Hk, i.e.,

Hk | nk, θk〉 =ωk(nk + λ) | nk, θk〉 (34)
∑

nk

| nk, θk〉〈nk, θk | = I, (35)

〈nk, θk | mk, θk〉 = δn,m. (36)

3. Pion–generating function and its moments

The average multiplicity n̄T (Y, ~B), the dispersion d2T (Y,
~B), and all higher–order

moments

n̄q
T (Y,

~B) = Tr{ρT (Y, ~B)N̂q}, q = 1, 2, . . . , (37)

at the temperature T in B space, can be obtained from the pion–generating function

GT (Y, ~B; z) =
∏

k

GT (θk; z) (38)

by differentiation, where

GT (θk; z) = Tr{ρT (θk)zN̂k}. (39)

After performing a certain amount of straightforward algebraic manipulations,
we find the following expression for the pion–generating function GT (θk; z):

GT (θk; z) = G0(θk; z)(1− e−βωk)22λ−1R−1
k (1 + yk +Rk)

1−2λ, (40)

where

Rk =
√

1− 2xkyk + y2k, (41)

xk =
z + (1− z)2sh2(θk)ch

2(θk)

z − (1− z)2sh2(θk)ch
2(θk)

,

yk =e−βωk
z − (1− z)sh2(θk)

1 + (1− z)2sh2(θk)
.

and G0(θk; z) denotes the pion–generating function at the temperature T = 0:

G0(θk; z) = [1 + (1− z)sh2(θk)]
−2λ. (42)
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We observe that G0 is exactly the generating function of the NB distribution with
a constant shape parameter 2λ, and the average number of k–mode pions is equal
to

n̄(θk) = 2λsh2(θk). (43)

The vacuum value of the k–mode thermal–density operator ρT (θk) is used to obtain
the k–mode thermal eikonal function ΩT (θk)

〈0k | ρT (θk) | 0k〉 =e−ΩT (θk) (44)

= (1− e−βωk)G0(θk; e
−βωk).

The total eikonal function is ΩT (Y, ~B) =
∑

k ΩT (θk).

For the k–mode pion field in B space, we find the following average number and
the dispersion:

n̄T (θk) = n̄(θk) + n̄Tk +
1

λ
n̄(θk)n̄Tk, (45)

d2T (θk) =d2Tk + d2(θk)[1 +
2λ− 3

λ
n̄Tk +

4

λ
n̄2
Tk],

where

d2Tk = n̄2
Tk + n̄Tk,

d2(θk) =
1

2λ
n̄2(θk) + n̄(θk). (46)

Two limiting cases are of interest, namely, T → 0 and T → ∞.

For the case T → 0, we find

d2(θk)

n̄2(θk)
=

1

2λ
+

1

n̄(θk)
, (47)

as it is to be expected from the NB distribution . However, the interpretation of
this result is quite different. In our case, the parameter λ is connected with the

vacuum expectation value of the effective Hamiltonian, H(Y, ~B). It has nothing to
do with either the number of pion sources or the number of clans. Since SU(1, 1)
is a dynamical symmetry group of our effective Hamiltonian, the parameter λ also
labels the positive discrete class of its unitary irreducible representations. It is
important to observe that pions in the k–mode are distributed according to the NB
distribution with a constant shape parameter 2λ. The Wróblewski relation

d(θk) = An̄(θk) +B (48)
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is obtained with energy–independent coefficients A = (2λ)−1/2 and B = (λ/2)1/2.
If λ > 1/2, we have A < 1.

The contribution from all the k–modes in B–space gives

d2(Y, ~B)

n̄2(Y, ~B)
=

1

2λ

∑

k

p2(θk) +
1

n̄(Y, ~B)
, (49)

where p(θk) = n̄(θk)/n̄(Y, ~B). In this case, the coefficient A in the Wróblewski
relation becomes energy and B dependent and is of the form

A(Y, ~B) =
[ 1

2λ

∑

k

p2(θk)
]1/2

. (50)

Since
∑

k p(θk) = 1 and all p(θk) are positive functions of θk, the sum
∑

k p
2(θk) is

always smaller than one. Therefore, A(Y, ~B) < 1 if λ > 1/2.

Finally, the summation over all impact parameters gives

( D

〈n〉
)2

=

∫

d2BQ(Y, ~B)[(A2(Y, ~B) + 1)
( n̄(Y, ~B)

〈n〉
)2 − 1] +

1

〈n〉 . (51)

This expression, when combined with our preceding analysis, suggests that the
coefficient A in the Wróblewski relation should be energy dependent and smaller
than one.

For the temperature T going to infinity, we obtain

d2T (θk)

n̄2
Tk(θk)

∣

∣

∣

T→∞
=2− (1 +

n̄(θk)

λ
)−2 (52)

=1 + th2(2θk).

This result shows that at very high temperature of the pion source, the distribution
of pions will tend to become chaotic if θk is very small. This will happen when
the kinetic energies of the emitted pions are much larger than the corresponding

coupling to the nucleon field, ωk ≫ gk(Y, ~B).

4. Conclusions

In this paper, we have proposed an intensity–dependent pion–nucleon coupling
Hamiltonian with SU(1, 1) dynamical symmetry. We have shown that this Hamil-
tonian, within a multiparticle–production model of the AABS type, in which the
k–mode pion field is represented by the thermal–density operator, explains in a nat-
ural way the appearance of the NB multiplicity distribution for pions in impact–
parameter space. The shape parameter of the NB distribution is related to the
vacuum expectation value of the Hamiltonian.
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The Wróblewski type relation (1) is obtained with the coefficient A that is
energy dependent and smaller than one if the vacuum expectation value of the
Hamiltonian is larger than “zero–point energy” corresponding to λ = 1/2.

For T /= 0, we have found a pion–generating function that may be used for
obtaining all higher–order moments of the pion field.

In our model, the k–modes of the pion field are statistically independent and
are, therefore, described by the factorized thermal–density operator. Correlations
between different k–modes are absent and, at this stage, our model cannot describe
the emission of resonances. However, this can be remedied by adding a mode–mode

interacting part to the Hamiltonian H(Y, ~B) [18].
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PION–NUKLEON VEZANJE OVISNO O INTENZITETU U PROCESIMA
VIŠEČESTIČNE PRODUKCIJE

U okviru unitarnog modela vǐsečestične produkcije tipa Auerbach–Avin–Blanken-
becler–Sugar (AABS) u kojem se pionsko polje predočuje pomoću toplinske matrice
gustoće razmatran je pion–nukleon Hamiltonijan koji ovisi o intenzitetu. Ovim
Hamiltonijanom objašnjavamo pojavu negativne binomne raspodjele (NB) za pi-
one i poznatu empirijsku relaciju, tzv. relaciju Wróblevskog, u kojoj je disperzija
pionske raspodjele linearno povezana s prosječnim multiplicitetom < n >: D =
A< n > + B, s koeficijentom A < 1. Hamiltonijan našega modela izražava se lin-
earno pomoću generatora SU(1,1) grupe. Takoder nalazimo funkciju izvodnicu pi-
onskog polja, koja postaje funkcija izvodnica NB raspodjele u limesu T → 0.
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