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Intraday volatility analysis of CSI 300 index futures:
a dependent functional data method

Danni Wanga, Zhifang Sua and Qifang Lib

aSchool of Economics and Finance, Huaqiao University, Quanzhou, China; bSchool of Mathematics
and Statistics, Minnan Normal University, Zhangzhou, China

ABSTRACT
This study introduces a new volatility model based on dependent
functional data to investigate the intraday volatility characteristics
of CSI 300 in the context of high-frequency data. The volatility
curve is fitted and reconstructed using three methods: functional
principal component analysis, Newey-West kernel, and truncation-
free Bartlett kernel. We adopt a functional time series approach
for short-term dynamic forecasting. The empirical results show
that the proposed dependent functional volatility estimation
model based on the long-term covariance of the truncated
Bartlett kernel can accurately capture the intraday volatility trajec-
tory and outperforms other models in terms of forecast accuracy
and profitability. This study improves the volatility-related
research methodology, which is conducive to discovering the
price formation mechanism of the stock index futures market and
improving risk management capabilities.
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1. Introduction

Volatility, as an important indicator of financial market risk, can effectively reflect
the process of asset price volatility and is useful for discovering the market’s micro
price formation mechanism (Poon & Granger, 2003). However, in the actual trading
process, volatility exhibits certain deviations over time that cannot be measured dir-
ectly, with the distribution of asset returns having a leverage effect on volatility
(Bollerslev & Zhou, 2006). Therefore, it is of great theoretical significance to construct
a model that can both characterise volatility and accurately predict future volatility
trajectories to improve the trading mechanisms of financial markets, enhance the effi-
ciency of market operations, and achieve the optimal allocation of capital.

To adequately describe the volatility process of asset returns, Engle (1982) and
Bollerslev (1986) proposed the autoregressive conditionally heteroscedastic (ARCH)
and generalised autoregressive conditionally heteroscedastic (GARCH) models,
respectively, which can characterise volatility aggregation but can hardly explain the
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leverage effect of returns. Since then, Shimada et al. (2009), Wei (2012), Wu et al.
(2018), Wang et al. (2021), Kim et al. (2021), and many others have further proposed
GARCH-type and stochastic volatility (SV)-type models, which reflect the time-vary-
ing characteristics of volatility by giving it a certain structure and apply them to the
dynamics of asset prices in financial markets. However, the above parametric models
can only indirectly solve the problem of unpredictable volatility based on low-fre-
quency return data, such as daily and monthly returns. In contrast, the realised vola-
tility (RV) and heterogeneous autoregressive-realised volatility (HAR-RV) models
proposed by Andersen et al. (2003) and Corsi (2008) are measures of a non-paramet-
ric nature, which consider the long memory characteristics of RV and are gradually
becoming benchmark models for volatility modelling. In recent years, many studies
have demonstrated the high fitting accuracy of RV models based on intraday high-
frequency data, such as Kambouroudis et al. (2021), Wang et al. (2019), Li et al.
(2021). However, such models can only capture daily frequency fluctuations and can-
not accurately characterize volatility at the intraday level. Simultaneously, with the
development of financial markets and the increase in big data processing power,
investors have access to a larger volume of financial data with more complex data
structures, making it difficult for traditional low-frequency models to accurately
describe the underlying intraday stochastic processes of the actual observed data and
meet the needs of financial market development (Madden, 2012).

The current forecasting methods for financial statistics can be divided into three
main categories. The first is forecasting analysis based on microstructures such as
investor sentiment and market information transmission efficiency (Nie & Li, 2019).
The market measures of such analysis are somewhat subjective, and the applicability
of the analysis results is limited. The second is forecasting using machine learning
methods (Bao et al., 2017; Lin & Gong, 2017). Such methods generally assume that
the samples are independent of each other; however, in practice, the samples of finan-
cial asset returns are somewhat correlated in the time series and do not satisfy the
independence assumption. The third category includes methods that directly feed
high-frequency data to traditional time series models for forecasting analysis.
Nevertheless, such methods can lead to ineffective exclusion of market noise (Wang
et al., 2018).

In contrast, the functional data analysis (FDA) method, proposed by Ramsay
(1982), can describe the underlying stochastic process of asset movements from the
perspective of a curve by treating frequency-mixed, unequally spaced discrete intraday
high-frequency observations as a continuous smooth sample curve. Since then, it has
been further refined by scholars such as Ramsay and Dalzell (1991), Ramsay and
Silverman (2002), Huang et al. (2001) and He et al. (2003, 2004) to form a systematic
theoretical framework. On this basis, Dauxois et al. (1982) and Besse (1992) used
functional principle component analysis (FPCA) to transform infinite dimensional
feature vectors into finite dimensional score vectors. In recent years, FDA has also
proven to be more applicable in analysis and is widely used in meteorology, econom-
ics, biomedicine, and other fields (Cerovecki et al., 2019; Das et al., 2019; Tsay, 2016).
In particular, M€uller et al. (2011) proposed a functional volatility model by applying
FDA to study asset return volatility and the dynamics of volatility over very short
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time intervals. Shang et al. (2019) combined traditional time series forecasting meth-
ods with FDA to propose a functional time series that is more efficient than trad-
itional time series models with higher forecasting accuracy.

However, the existing FDA literature generally assumes that functional data are
subject to an independent identical distribution condition, whereas in practice, most
financial statistics, such as stock index futures and stock indices, are inter-memorably
correlated with each other. Thus, a direct conventional econometric analysis of such
an interdependent series would lead to biased statistical conclusions. Therefore,
H€ormann and Kokoszka (2010), Horvath and Kokoszka (2012), and Kokoszka and
Young (2017) proposed a dependent functional data analysis that uses a long-term
covariance function to replace the original independent homogeneous covariance
function to obtain more accurate eigenvalues and eigenfunctions, thus correcting the
estimation bias, reducing information loss, and making the analysis results more
robust and credible. Although this method can neatly characterise price changes with
significant stochasticity, the estimation of the long-term covariance function is subject
to the problem of choosing the kernel function and window width, which can be too
large or too small, leading to errors in the estimation.

Therefore, To avoid the selection error of kernel function and window width, this
study innovatively proposes a truncated Bartlett kernel long-term covariance estima-
tion statistic, and on this basis, introduces the framework of dependent functional
data analysis into the estimation process of intraday volatility, constructs a new
dependent functional volatility model, and empirically identifies the CSI 300 high-fre-
quency intraday stock price volatility pattern. Specifically, the discrete intraday high-
frequency observations are first converted into a dependent functional dataset, dimen-
sionality reduction and function curve reconstruction are achieved through principal
component decomposition, and the volatility process is further investigated based on
principal component regression for short-term dynamic forecasting and returns. This
study contributes to the existing literature by improving theortical volatility models.
Furthermore, it has far-reaching practical impliactions, as it effectively predicts the
stock market trends and broadens the application of functional data analysis in the
fields of economics and finance.

The remainder of this paper is organised as follows. Section 2 introduces the
model construction. Section 3 describes the forecasting process. Section 4 presents
and discusses the empirical results. Finally, Section 5 summarises the main
conclusions.

2. Methods

2.1. Functional volatility processes

With the development of functional data, M€uller et al. (2011) transformed the charac-
teristics of the intraday volatility trajectory mode of the return rate into the frame-
work of functional data analysis and proposed a functional volatility model. This
model assumes that the observed trajectory of volatility is realised by multiple repeti-
tions of unknown random processes: d logXiðt,xÞ ¼ liðt,xÞdt þ riðt,xÞdWiðt,xÞ,
where lðtÞ,rðtÞ is a smooth non-stationary random process under the condition of
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independent homogeneous distribution, and Wiðt,-Þ represents an independent
standard Wiener process. As the random data of real volatility cannot be measured
directly, and the impact of market microstructure noise leads to data jumping, it is
necessary to discretise the data in the diffusion model. The scaled logarithmic return
rate and the related diffusion terms are defined as follows:

ZDðtÞ ¼
ffiffiffiffi
D

p �1
log ðXðt þ DÞ

XðtÞ Þ
WDðtÞ ¼

ffiffiffiffi
D

p �1
Wðt þ DÞ�WðtÞ½ �

(1)

For high-frequency discrete data observations, the model can be further expressed
as

ZDðtÞ ¼
ffiffiffiffi
D

p �1
ðtþD

t
lðmÞdvþ

ðtþD

t
rðmÞdWðvÞ

" #
(2)

To represent the remaining term after discretisation, the above formula can be
simplified as ZDðtÞ ¼ lðtÞ ffiffiffiffi

D
p þ rðtÞWDðtÞ þ R1 þ R2, where R1 and R2 denote the

residual terms after discretisation as

R1ðtÞ ¼ 1ffiffiffiffi
D

p
ðtþD

t
lðmÞdv� lðtÞ

ffiffiffiffi
D

p
" #

R2ðtÞ ¼ 1ffiffiffiffi
D

p
ðtþD

t
rðmÞdWðvÞ � rðtÞWDðtÞ

" # (3)

When the time interval of sample values is small enough and the observed samples
are large enough, the volatility approaches D ! 0, and the asymptotic hypothesis is
approximately satisfied. Thereby, the approximate model can be obtained
as logZ2

DðtÞ� logr2ðtÞ þ logW2
DðtÞ:

Therefore, in actual observations, the smoothing process of functional volatility
can be defined as VðtÞ, where the relationship between the functional volatility pro-
cess and the actual observed value is

VðtÞ ¼ logr2ðtÞ
logZ2

DðtjÞ�q0�YDðtjÞ ¼ VðtjÞ þ UDðtjÞ
(4)

Based on the independent increment property of the Wiener processWDðtÞ �Nð0, 1Þ,
further values can be obtained by q0 and q0¼E½logW2

DðtjÞ�¼ 4ffiffiffiffi
2p

p
Ð1
0 e�t2=2 logtdt��1:27:

Specific discrete time points tj ¼ jD, j ¼ 1, 2, . . . , J with equal intervals are
expressed as:

logZ2
DðtjÞ�q0�YDðtjÞ ¼ VðtjÞ þ UDðtjÞ

UDðtÞ ¼ logW2
DðtÞ�q0

YDðtÞ ¼ log rðtÞWDðtÞ½ �2�q0

(5)
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The above formula satisfies both EUDðtÞ ¼ 0 and covðUDðtÞ,UDðsÞÞ ¼ 0, t � sj j>0:
Therefore, YDðtÞ is a random process. It can be decomposed into a functional volatil-
ity process, VðtjÞ, and a zero-mean independent increment process, UDðtjÞ:Compared
to the traditional volatility model, its advantage is that the stochastic process of vola-
tility is smooth and does not depend on the trading time interval, D:

A functional data analysis method is introduced to extract the functional volatility
process VðtjÞ in the above equation, where the mean function of the functional vola-
tility process is denoted as lVðtÞ ¼ EVðtÞ, and the covariance function is denoted as
gvðt, sÞ ¼ covðVðtÞ,VðsÞÞ: We define the linear integral covariance operator as:

Gvf ðtÞ ¼
ðT
0
gvðt, sÞf ðsÞds (6)

where /kðtÞ is the orthonormal characteristic function of the covariance operator, Gv:

The corresponding eigenvalues kk are satisfied by k1 � k1 � . . . ,
P

kk
< 1:According to the K-L decomposition, a single random functional volatility
trajectoryVðtÞ can be obtained, which can be expressed as:

VðtÞ ¼ lvðtÞ þ
X1
k¼1

nk/kðtÞ (7)

where /kðtÞ is the functional principal component, which reflects the fluctuation
mode of the individual fluctuation trajectory; the mean functionlvðtÞ reflects the
overall fluctuation trend; nk is the principal component score, which represents an
irrelevant random variable, and satisfies nk ¼

Ð ðVðtÞ � lxðtÞÞ/kðtÞdt,Enk ¼
0 VarðnkÞ ¼ kk:

2.2. A dependent functional data analysis method based on untruncated
Bartlett kernel

The functional data analysis proposed by Ramsay (1982) has significant advantages in
dealing with high-dimensional data; however, its model is mainly based on the
assumption of an independent homogeneous distribution. However, high-frequency
data in finance are not only naturally functional, but also have strong interdependen-
cies. For dependent functional data that do not satisfy the independent identical dis-
tribution condition, this study uses a long-term covariance function instead of short-
term covariance under the I.I.D condition to reconstruct the fit to the discrete data.
Further, to avoid the artificiality of choosing kernel functions and optimal window
widths, an innovative long-term covariance estimation statistic based on a truncation-
free Bartlett kernel is proposed. The specific procedure is as follows.

If a random variable Xij ¼ XiðtjÞ originates from a square integrable Hilbert space
H ¼ L2½0,T� and is a continuous random process, it can be expressed as a stationary
functional time series:
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Xij ¼ XiðtjÞ þ eiðtjÞ, 1 � i � N, 1 � j � T: (8)

WhenXnðtÞ is dependent on functional data, long-term covariance is used to
replace covariance under the I.I.D. condition to correct the functional data. The long-
term covariance function is defined as:

C s, tð Þ ¼ C0 s, tð Þ þ
X1
h¼1

Ch s, tð Þ þ C�h s, tð Þ½ �, (9)

where Chðs, tÞ andC�hðs, tÞ are self-covariance functions of order H, which are
defined as:

Ch s, tð Þ ¼ cov XiðsÞ,XiþhðtÞ½ � ¼ E XiðsÞ�lðsÞ½ � XiþhðtÞ�lðtÞ½ �� �
C�h s, tð Þ ¼ cov XiðsÞ,Xi�hðtÞ½ � ¼ E XiðsÞ�lðsÞ½ � Xi�hðtÞ�lðtÞ½ �� �

:
(10)

Moreover, h ¼ 0,C0ðs, tÞ is the short-term covariance function under the
I.I.D condition.

When discrete observation data are collected, the kernel function method can be
used to estimate the long-term covariance function as:

Ĉðs, tÞ ¼ Ĉ0ðs, tÞ þ
XN�1

h¼1

K
h
q

� �
C
_

h s, tð Þ�C
_

�h s, tð Þ
h i

C
_

h s, tð Þ ¼ ðN�hÞ�1
XN�h

i¼1

XiðsÞ � �XNðsÞ
� �

XjðtÞ � �XNðtÞ
� � (11)

The optional kernel function is defines as KðxÞ ¼ 1�jxj, jxj � 1: Some scholars
also choose the Newey-West kernel function to estimate the long-term covariance
function (e.g. Kokoszka & Young, 2017), which is defined as:

xmðhÞ ¼ 1� h
m
, h � m

0, h>m
, m ¼ 4 � N

100

� �2
9

8<
:

However, all of the aforementioned methods for estimating long-term covariance
functions face the problem of choosing the kernel function and the optimal window
width, which could generate large errors if not properly chosen. Therefore, to avoid
the above problems, this study proposes a long-term covariance estimation statistic
without a truncated Bartlett kernel.

The improved Bartlett kernel long-term covariance can be expressed as:

C ¼ C0 þ
X1
h¼1

Ck þ C�k½ �: (12)

Among them, C�k ¼ Eðmim0i�hÞ, mi ¼ ðmi1mi2 	 	 	 mikÞ0,EðmiÞ ¼ 0:
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The long-term covariance estimation statistics are as follows:

Ĉ ¼ 1
N

XN
i¼1

XN
j¼1

1� ji�jj
N

� �
viv

0
j: (13)

Only the sample long-term covariance between variables s and t at the time point
is discussed, and the above equation is transformed into

Ĉðs, tÞ ¼ 1
N

XN
i¼1

XN
j¼1

1� ji�jj
N

� �
XiðsÞ��XNðsÞ
� �

XjðtÞ��XNðtÞ
� �

: (14)

After estimating the long-term covariance of the sample, the principal component
/�
k and eigenvalue of the corresponding function k̂k can be calculated, and the princi-

pal component score of the function can be obtained as:

n�ik ¼
ð

XiðtÞ � l
�ðtÞ

h i
/�
k ðtÞdt: (15)

The function expansion can be expressed as:

XiðtÞ ¼ lðtÞ þ
X1
k¼1

nik/kðtÞ � l
� ðtÞ þ

XK
k¼1

n�ik/
�
k ðtÞ: (16)

Theoretically, the Bartlett kernel long-term covariance estimation statistics pro-
posed in this study do not need to manually select the kernel function and window
width, which is simpler and more reasonable than the covariance estimation methods
in the literature and more accurate than traditional functional data estima-
tion methods.

2.3. Dependent function volatility model

Furthermore, the Bartlett kernel long-term covariance estimation statistics are substi-
tuted into the functional volatility estimation process to obtain a new dependent
functional volatility process.

Assume N independent repeats of the price process XðtÞ, with equally spaced
observed values. According to the relationship between RV and the scaled logarithmic
return rate defined above, the following relationship can be obtained:

RVi ¼ D
XJ

j¼1

Z2
ijD

ZijD ¼ ZiDðtjÞ ¼ 1ffiffiffiffi
D

p riDðtjÞ ¼ 1ffiffiffiffi
D

p log ðXiðtj þ DÞ
XiðtjÞ Þ,

(17)
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reducingYijD ¼ YiDðtjÞ ¼ logZ2
iDðtjÞ�q0 ¼ log r2iDðtjÞ� logD�q0:At this point, we can

estimate the new principal component score asn̂ik ¼ D
PJ

j¼1ðYiDðtj � l̂VðtjÞÞ/̂kðtjÞ:
According to K-L expansion, we can further obtain the volatility trajectory of

dependence functional data as:

V̂ iðtÞ ¼ l̂VðtÞ þ
XK
k¼1

n̂ik/̂kðtÞ: (18)

3. Forecasting methods

3.1. Forecasting process

According to Equation (18), it can be concluded that the random process of depend-
ent functional volatility can be decomposed into mean functionlðtÞ and the cumula-
tive product of principal component function and principal component score, namely

XiðtÞ ¼ lðtÞ þ
X1
k¼1

nik/kðtÞ, (19)

where nik represents the k principal component score of the i curve, which is the pro-
jection of ½ViðtÞ�lðtÞ� onto the k principal component function, /kðtÞ:

In practice, K principal component scores ðn1, n1, . . . , nkÞ are typically used to
express the original data information, which can effectively achieve the effect of
dimensionality reduction. That is,

XiðtÞ ¼ lðtÞ þ
XK
k¼1

nik/kðtÞ þ eðtÞ: (20)

The functional time series dynamic predictive analysis method is based on
Functional principal component analysis. Assuming that data are available for the
first T0 moments of the nþ 1 function curve, that is, Xnþ1jnðteÞ ¼
½Xnþ1ðt1Þ, . . . ,Xnþ1ðtT0Þ�T , for forecasting data after T0 moments, only the functional
principal component score, which reconstructs the function series from the sample
estimates of the mean and covariance statistics, is required to obtain the forward h-
step forecast and is defined as

x̂nþhðtÞ ¼ E xnþhðtÞjl̂ðtÞ, ÛðtÞ, xðtÞ
� �

¼ l̂ðtÞ þ
XK
k¼1

n̂nþh, k/̂kðtÞ: (21)

Based on the above analysis, this study develops the following volatility prediction
steps. First, data pre-processing is performed to estimate the mean function from a
functional sample. Second, the principal component scores n̂1k are obtained using
covariance estimation under an independent identical distribution without consider-
ing sample dependence. Further, considering the sample dependence, the long-run
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covariance estimation with the N-W kernel and Bartlett kernel without truncation are
used to obtain the dependent function-based principal component scores n̂2k and n̂3k
. Finally, the corresponding eigenfunctions/̂kðtÞ and eigenvalues k̂k are calculated by
substituting the different functional principal component scores into the expansion
equation, from which the predicted values of the function series
ðx̂nþ1ðtÞ, x̂nþ2ðtÞ, . . . , x̂nþhðtÞÞ can be obtained. k is determined by the proportion of
varianced, ðPK

k¼1 k̂k=
PT

k¼1 k̂kÞ � d, which is chosen at 95% in this study.

3.2. Principal component score prediction

As mentioned above, the prediction of volatility is ultimately interpreted as a predic-
tion of the principal component scores, and therefore, can be predicted using differ-
ent time series methods. For example, Hyndman and Shang (2009) used a one-
dimensional time series ARMA model.

However, in practice, there is no guarantee that the lagged autocovariance matrix
of the principal component score vectors is fixed as a diagonal matrix; therefore, the
one-dimensional time series model may lose the matrix, resulting in poor prediction
accuracy. To address this problem, Aue et al. (2015) proposed a multivariate time ser-
ies vector autoregressive (VAR) model. It is assumed that the principal component
score series satisfy the VAR model, that is,

ni ¼ B0xi þ ei, i ¼ mþ 1, . . . , n, (22)

where the independent variable takes the value of X ¼ ðxmþ1, . . . , xnÞ0, the dependent
variable takes the value of Y ¼ ðnm , . . . , nnÞ0, and the least-squares method can be
used to obtain the parameter estimatesB̂OLS ¼ ðX0XÞ�1X0Y , from which the principal
component scores can be obtained as the forward h-step prediction val-
ues n̂nþhjn ¼ B̂OLSXnþh:

The above time series VAR forecasts take the whole curve as a unit; however, in
practice, the latest observations may not form a curve in time, and dynamic updates
are needed to improve the forecast accuracy. Shen (2009) and Shang and Hyndman
(2011) and Shang (2017) proposed several discrete-time dynamic forecasting methods,
such as OLS, RR, and PLS to address this problem. Among them, Shang (2018) com-
pared two dynamic forecasting methods (i.e. block moving (BM) and function-based
linear regression (FLR)) with traditional methods, and found that BM and FLR pre-
dictions were better. The FLR model embodies the idea of treating the function as a
whole, which makes its prediction better than discrete prediction. The FLR forecast-
ing model was constructed as follows:

x̂lnþ1ðtÞ ¼ l̂lðtÞ þ
ð
Ie xenþ1ðsÞ � leðsÞ� �

aðs, tÞdsþ elnþ1ðtÞ, (23)

where Ie ¼ ½t1, tm0� andIl ¼ ðtm0, tp� correspond to the observation interval and the
prediction interval, respectively.The mean function in the corresponding interval is
denoted as leðsÞ; llðtÞ; and the regression coefficient function and the regression
error function are denoted by aðs, tÞ; elnþ1ðtÞ, respectively.
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The regression coefficient functionaðs, tÞ can be estimated by projecting the inde-
pendent and dependent variables xenþ1ðsÞ; xlnþ1ðtÞ onto the functional principal com-
ponents as:

xei ðsÞ ¼ leðsÞ þ
X1
k¼1

ni, k/
e
kðsÞ ¼ leðsÞ þ

XK
k¼1

ni, k/
e
kðsÞ þ ui

eðsÞ, s 2 Ie

xliðtÞ ¼ llðsÞ þ
X1
m¼1

gi,mw
l
mðtÞ ¼ llðtÞ þ

XM
m¼1

gi,mw
l
mðtÞ þ vliðtÞ, s 2 Il:

(24)

In the above equation, the functional principal component is expressed
as/e

kðsÞ;wl
mðtÞ; the principal component score is expressed as ni, k;gi,m; the error

function caused by the truncation is expressed asuieðsÞ; vliðtÞ; the principal component
score matrix of the independent and dependent variables is expressed
asn ¼; n1, . . . , nK ; ;g ¼ ðg1, . . . ,gMÞ; and the relationship between the two is g ¼
nc: c can be estimated using OLS as ĉ ¼; n0n�1; n0g: The score matrices of the inde-
pendent and dependent variables are modelled using the reciprocal covariance struc-
ture as

Ð
t2Il

Ð
s2Ie/kðsÞwmðtÞcov½xeðsÞ, xlðtÞ�dsdt and

x̂lnþ1ðtÞ ¼ l̂lðtÞ þ
X1
m¼1

gnþ1,mw
l
mðtÞ�l̂lðtÞ þ n̂nþ1ĉŵ

lðtÞ, (25)

Similarly, using the estimated statistics based on the long-run covariance N-W ker-
nel and the truncation-free Bartlett kernel, the predicted values of the dependent
functional time series can be obtained as:

x̂0nþhðtÞ ¼ E x0nþhðtÞjl̂0ðtÞ, Û0ðtÞ, x0ðtÞ
h i

¼ l̂0ðtÞ þ
XK
k¼1

n̂
0
nþh, k/̂

0
kðtÞ: (26)

4. Results

4.1. Intraday volatility trajectory estimation

This study uses the 5-minute closing price of the current-month contract (IF2012) of
China’s CSI 300 stock futures index from 2019-11-4 to 2020-10-29 as sample data.
The data are obtained from the RESSET Financial High Frequency Database, with
trading hours of 9:35-11:30 a.m. and 13:00-15:00 p.m. The entire contract period
comprises 240 trading days. To avoid the ‘overnight’ and ‘midday’ effects on the
intraday volatility of stock index futures, the first observation is discarded in the
actual calculation, and 9:40 is taken as the first trading hour. The missing values in
the original data of intraday volatility are filled in using k-nearest neighbors (KNN)
interpolation.

First, intraday 5-minute raw closing price data are transformed into scaled log
returnsZijD ¼ ZiDðtjÞ, and then transformed into raw intraday volatility data by sim-
plification of YijD ¼ YiDðtjÞ ¼ logZ2

ijD�q0: As shown in Figure 11, the solid line
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represents the raw volatility mean curve of the CSI 300 stock futures index. As shown
in the graph, the original time series fluctuates around the mean, does not follow a
normal distribution, and has obvious volatility aggregation characteristics. Descriptive
statistics show that the original series is based on the median, with the upper and
lower quartiles as the main ranges of volatility variation. From Figure 1 and Table 1,
it can be seen that original volatility at this point is noisy, with the microstructure of
the noise having a greater impact on the true volatility.

After obtaining the CSI 300 intraday volatility data with noise, the discrete volatil-
ity data with dependence are treated as a sample consisting of random curve-gener-
ated dependence functional datasetXiðtÞ, according to the dependence functional
volatility model constructed above. The data are first smoothed using a rough penalty
method to estimate its mean function, long-run covariance function, principal com-
ponent score, and other relevant elements used to represent the volatility trajectory.
The Fourier basis is used as the basis function to consider overfitting problems.
Considering the effect of noise, a rough penalty method based on generalised cross-
validation (GCV) is used to estimate the characteristic function, which not only elimi-
nates most of the noise but also provides the optimal number of bases and penalty
parameter lambda. After obtaining an estimate of the principal components of the
function, the function is fitted and reconstructed using the K-L expansion, which
generates a function set consisting of 240 function curves.

Figure 2 shows the fitted volatility curves for a random ten-day phase dependent
functional type. As can be seen from the figure, the fitted volatilities are neither
overly smooth nor over-fitted, achieving both goals of filtering noise and accurately
capturing the volatility information contained in the data.

Figure 1. CSI 300 stock index futures 5minutes high-frequency raw volatility.
Source: statistical results.

Table 1. Descriptive statistics for yield series.
Point Mean Mid Min Max Upper Lower

11280 �6.439 �6.325 �9.889 �3.269 �5.792 �6.977

Source: statistical results.
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Descriptive research and analysis of the dependent functional data are carried out to
obtain the mean function, derivative function, covariance function, and other statistics.

From Figure 3, the volatility trajectory curve generally shows a downward then an
upward trend; however, there is a significant decline at noon, then a rebound process
in the afternoon. In other words, the trajectory of intraday volatility shows a ‘U-
shaped’ pattern of ‘peaks’ followed by ‘troughs’, and this pattern of volatility change
is consistent with the ‘calendar effects’. Andersen et al. (2003) suggested that the
existence of a ‘dip’ in the intraday volatility curve at midday is due to a drop in
return volatility caused by a drop in the trading volume. This theory also applies to
the Chinese stock market, as the hour and a half long daily market closure between
11:30 and 13:00 is the main reason for the ‘depression’ in the intraday volatility curve

Figure 2. Volatility fitting curve (random 10 trading days).
Source: statistical results.

Figure 3. Mean and standard deviation functions.
Source: statistical results.
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at midday. In addition, the nighttime closure of the stock index futures market also
hinders the market price formation process, causing the volatility of the price series
to be stronger at the beginning of the day than during other trading sessions and
then to fall rapidly due to the interruption of trading during the lunchtime closure.

From Figure 4, the first- and second-order derivative functions of the mean volatil-
ity function reflect the speed of change and acceleration of the function, respectively.
The fact that the derivative function is not constant at zero indicates that volatility is
not constant but is always changing. The overall performance is as follows: volatility
falls for a short period of time after the daily opening and then gradually starts to
increase slowly; after a short break at lunchtime, volatility falls rapidly; before the
market closes, volatility changes at an increased rate and gradually starts to rise. By
analysing the characteristic curves of the mean and derivative functions of volatility
after fitting the reconstruction, we find that the use of long-term covariance-based
estimation methods as a theoretical basis can effectively reflect the pattern and speed
of change of intraday volatility.

4.2. Principal component analysis of intraday volatility

After an initial exploratory analysis of the descriptive statistics, the covariance matrix
is decomposed, and the most significant dependent functional principal components
are extracted to infer the main patterns of intraday volatility. First, the number of
principal components is determined. As shown in Figure 5, the eigenvalue fragmenta-
tion plot, the percentages of the first five eigenvalues can be judged to be 88.75%,
3.54%, 3.03%, 2.66%, and 2.01%, respectively, with the rate of decline levelling off
from the sixth eigenvalue. From the cumulative variance explained ratio, it can be
determined that the first three principal components explain approximately 95% of
the variability in the original data. Considering the subsequent prediction of the prin-
cipal component scores, the first three principal components are selected for the ana-
lysis in this study.

Figure 6 shows the principal and rotated principal component weight functions
obtained using the maximum variance rotation method. The total variance explained

Figure 4. First-order and second-order derivatives of the volatility mean function.
Source: statistical results.
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ratio remains unchanged after the rotation. It can be judged that the first principal
component weight function (PC1) reflects the pattern of volatility variation at the
afternoon opening after the ‘midday effect’; the second principal component (PC2) is
the most variable during the afternoon trading session; the third principal compo-
nent (PC3) is the opposite of the second principal component and mainly captures
the pattern of volatility variation during the morning session. The three principal
component weight functions are orthogonal to each other, with almost no overlap
in the variability information, cumulatively explaining 95.4% of the variability in
the original data. After determining the number of principal components, we can
plot the deviation of the principal component weight functions from the mean
function, as shown in Figure 7, with ‘þ’ and ‘-’ indicating the appropriate multi-
ples of the principal component weight functions added to and subtracted from
the mean function, respectively. A more visual representation of the volatility vari-
ation characteristics is provided by the first three principal component
weight functions.

In summary, descriptive statistics and principal component analysis of the volatility
profile further confirm that CSI 300 volatility has a distinctive ‘intraday effect’, that
is, higher volatility during the opening, closing, and nearby time periods, showing a

Figure 5. Eigenvalues and cumulative variance explained ratio.
Source: statistical results.

Figure 6. Principal component weight functions: unrotated (left) rotated (right).
Source: statistical results.
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‘U-‘ or ‘V-shaped characteristics’. In general, the first principal component controls
volatility and is close to explaining 88.75% of the volatility variation. It can be con-
firmed that a theoretical framework based on dependent functional data provides
more information on the pattern of intraday volatility variation.

4.3. Empirical evidence of intraday volatility forecasting

In the previous section, dependent functional data are analysed by obtaining noisy
volatility trajectories from the variation in the return series, and then isolating
smooth volatility trajectories through filtering the noise using non-parametric statis-
tical methods. These smooth volatility trajectories are viewed as functional time series
and are further investigated. The smoothness test is the basis of time series analysis.
If the data are nonstationary, false conclusions from the pseudo-regression may be
drawn. Therefore, the volatility series is first tested for smoothness, obtaining

Figure 7. Function principal component weight function multiplier effect.
Source: statistical results.
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P¼ 0.3336. The original hypothesis is that the series is smooth and can be subjected
to subsequent predictive modelling analysis.

4.3.1. Comparison of prediction accuracy of principal component scores
In this study, three methods2 (i.e. FPC, N-W, and WTB) are used to fit the intraday
volatility principal component scores. Then, the estimated samples are used to make
short-term forecasts of the principal component scores using the FLR method.
Finally, the forecasts are compared with the results of the true volatility principal
component scores. The data are divided into estimation and forecast (validation)
samples. The model forecasting accuracy is evaluated using the mean absolute fore-
cast error (MAFE) and the mean squared forecast error (MSFE), which are defined as

MAFEj ¼ 1
Jm

XJ

j¼1

Xm
i¼1

jxnþiðtjÞ � x̂nþijnþi�1ðtjÞj

MSFEj ¼ 1
Jm

XJ

j¼1

Xm
i¼1

xnþiðtjÞ�x̂nþijnþi�1ðtjÞ
� �2

:

In practice, new data are continually generated over time; however, this is not suf-
ficient to form a complete functional curve. At this point, volatility data from the lat-
est morning half-day can be considered based on FLR forecasts to predict volatility
data for the remaining trading time periods of the same trading day. The data are
divided into an estimation sample for the first 21 trading hours (morning period)
and a forecast (validation) sample for the last 25 trading hours (afternoon period).
Specifically, the volatility data from day 1 to the morning of day 201 are used for the
first time to fit and forecast the afternoon curve of day 201, and so on, until the
morning volatility data of day 240 are finally used to fit and forecast the afternoon
curve of day 240. The point forecast accuracy is calculated for each validation sample
by date averaging, with the horizontal and vertical axes representing time and forecast
error, respectively.

Figure 8 shows the afternoon half-day of the trading day (corresponding to the
positions of horizontal coordinates 25–47) obtained using the FLR method. From the
error results, the principal component results for the FPC method, which does not
consider sample dependence, have the highest error, alternating with oscillations up
and down over time, with a tendency to increase the magnitude of error over time.
The principal component forecasting results of the N-W and WTB estimation meth-
ods, which consider sample data dependence, generally remain at a lower level, with
an average error smaller than that of the FPC, with the lowest level of error curve
obtained from the WTB fitting proposed in this study, indicating a more accurate
volatility fit. This again validates that the calendar effect at the intraday level causes
volatility to change considerably closer to the opening and closing, leading to higher
errors in forecasting.

In Table 2, we calculate and compare the prediction accuracy of the fitting of the
principal component scores using different methods. In terms of both MAFE and
MSFE, the N-W and WTB estimation methods, which consider the dependence of
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the sample data, have smaller errors than the FPC estimation methods that do not
consider the dependence of the sample. Specifically, the WTB estimation method pro-
posed in this study has the smallest error. Combined with the above figures, we find
that the volatility model proposed in this study has the best prediction accuracy when
fitting volatility at the intraday level. Additionally, the model treats the data as an
implementation of a continuous stochastic process, which has unparalleled advantages
over traditional methods.

Figure 8. Prediction error analysis.
Source: statistical results.

Table 2. Descriptive statistics for FLR prediction accuracy.

FLR

MAFE MSFE

FPC N-W WTB FPC N-W WTB

minimum 0.6381 0.5236 0.4615 0.6619 0.4728 0.4952
lower quartile 0.6810 0.6396 0.5141 0.7075 0.6208 0.5551
median 0.7168 0.6873 0.5492 0.8243 0.7613 0.5739
average value 0.7736 0.6876 0.5457 0.8110 0.7639 0.5628
upper quartile 0.7416 0.74 0.5837 0.8940 0.8685 0.5924
maximum 1.1718 0.8945 0.6092 2.0811 1.3475 0.5933

Source: statistical results.
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4.3.2. Profitability test
This subsection constructs identical trading strategies to compare profitability under
different models. We refer to the buy-and-sell trading strategy introduced by Bao
et al. (2017). This strategy suggests that investors buy futures contracts when the fore-
cast value at the point of trading is higher than the actual value and, conversely,
choose to sell futures contracts. The total returns are obtained by accumulating the
return on each trade R ¼ ðPbuy þ PsellÞ � 100:

Pbuy ¼
Pb

t�1

ðx̂nþijnþi�1ðtjÞ�xnþiðtjÞ þ ðxnþiðtjÞ � Bþ x̂nþijnþi�1ðtjÞ � SÞ
xnþiðtjÞ ;

Psell ¼
Ps

t�1

ðxnþiðtjÞ�x̂nþijnþi�1ðtjÞ þ ðx̂nþijnþi�1ðtjÞ � Bþ xnþiðtjÞ � SÞ
x̂nþijnþi�1ðtjÞ ;

To account for the impact of transaction costs on profits, B and S 3are set as the
bid and ask transaction costs, respectively, in the above equation. To ensure the con-
sistency of the test, in this section, we perform the empirical test of returns using the
sample data of the last 40 days of forecasts in the same time period as in the previous
section to compare the trading returns under the three models, FPC, N-W,
and WTB.

Table 3 lists the profitability of the different models using the forecast sample.
Other influencing factors, such as transaction costs and fees are the same under all
three models. The combined average and total returns show that FPC performs
unsatisfactorily overall, with the lowest level of returns. Both N-W and WTB achieve
closer levels of returns. However, the WTB method achieves the highest profit returns
compared to the other two models, with a daily return of 0.69% and a total return of
14.5%. Thus, in terms of both forecasting accuracy and profitability, our results dem-
onstrate that the WTB long-term covariance-based volatility model outperforms other
volatility models.

5. Conclusions

Modelling and forecasting volatility is of great practical importance for understanding
the short-term volatility patterns of financial markets, optimising investment strat-
egies, and avoiding market risks. In view of this, this study considers the dependence
and functional characteristics of high-frequency data, uses long-term covariance esti-
mation statistics based on the Bartlett kernel without truncation, modifies functional
data analysis method under independent homogeneous distribution conditions,

Table 3. Profitability.
Profitability FPC N-W WTB

Minimum 0.09848 0.582729 0.580343
average 0.334414 0.649151 0.692889
maximum 0.482973 0.694532 0.774226
Sum 7.022695 13.63217 14.55068

Source: statistical results.
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constructs a new dependence functional volatility model, and thoroughly analyzes the
intraday volatility variation pattern of CSI 300.

The empirical results show that the CSI 300 intraday volatility trajectory has typ-
ical intraday characteristics and is similar to the common ‘U-shaped’ intraday volatil-
ity pattern. In addition, compared to traditional functional data analysis methods
under the assumption of an independent homogeneous distribution, the dependent
function volatility model proposed in this paper, which considers the dependence of
sample data, has non-parametric characteristics while satisfying the stochastic charac-
teristics of volatility. Moreover, our proposed model can more accurately portray the
dynamic regularity of the intraday volatility curve and outperforms other volatility
models in terms of forecasting accuracy and return performance.

Our proposed dependent functional data analysis method greatly enriches the
existing data analysis methodology literature and can effectively correct estimation
bias and reduce information loss. To explore the dynamics of intraday volatility and
improve the accuracy of volatility estimation, future research can further use func-
tional data analysis methods to decompose the jump components of volatility at the
intraday level.
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Notes

1. The horizontal coordinates in the chart refer to the trading time period. That is, the
horizontal 0.0 point corresponds to the first volatility point at 9:40 a.m. opening and the
horizontal 1.0 point corresponds to the last volatility point at 15:00 p.m. closing.

2. FPC represents the principal component estimation method based on functions under the
I.I.D condition, N-W represents the long-term covariance estimation method based on
Newey-West estimation formula, and WTB represents the long-term covariance estimation
method based on untruncated Bartlett kernel.

3. Bao, W., Yue, J., &Rao, Y. (2017). A deep learning framework for financial time series
using stacked autoencoders and long-short term memory. Set the cost of the spot market
at 0.25% buying and 0.45% selling.
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