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1. Introduction

In previous papers [1–6], the Dirac equation with two mass parameters and related
topics were discussed. The approach was used to derive standard equations for massive,
massless and tachyonic fermions. In particular, a massless equation was obtained, which
differs from the usual one and does not produce a superfluous conserved current. In this
paper, the aforementioned results are reformulated and justified on the grounds of desir-
able features related to the active symmetry operations (time reversal, spatial parity, etc.).
It is seen that these operations (together with physical evidence and/or assumptions) are
instrumental in determining which standard equations should be adopted for the descrip-
tion of fermionic matter. The outlined treatment is done before second quantization. Also,
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in Section 5, the flavoured neutrino model of Ref. 3 is revisited, with the aim of suggesting
some probability interpretations.

Notation is rather conventional throughout the paper. Specifically, and unless otherwise
noted, Greek (Latin) indices run through the values 0;1;2;3 (1;2;3) and the summation
convention is applied to repeated up and down labels. Units are such that ¯h = c = 1. An
attempt is made at distinguishing powers from superscripts: for instance,(m)2 andjvj2 are
powers, whilex2 indicates a specific variable with superscript 2.

2. Dirac equation with two mass parameters

In a frame of referenceX of real spacetime coordinatesx= fxλg and pseudoeuclidean
metricgµν = diagf+1;�1;�1;�1g, the Dirac equation with two mass parameters [1] may
be written as follows

=P ϒ(x) = Mϒ(x) ; (1)

with
=P = iγα∂α (2)

and

M =
1
2

h
(a+b)I� (a�b)εγ5

i
; (3)

wherea;b are complex constants andϒ(x) is a complex four-spinor. The Dirac matricesγλ

(in a fixed chosen representation) obey the usual rules

γµγν + γνγµ = 2gµνI ; (γµ)† = γ0γµγ0 ; (4)

with I being the 4�4 identity matrix. The matrixγ5 = iγ0γ1γ2γ3 is hermitian and unitary,
and anticommutes with allγλ. For general reference on the Dirac equation and related
topics, see, for instance Refs. 7–17. The value of the signε = (�1)T+S depends on the
frame of reference [1,18]. Namely, the time-indexT and the space-indexS of X are so
defined:T = 0 if t = x0 runs forward (T = 1 otherwise) andS= 0 if s= fx`g is a right-
handed triplet (S= 1 otherwise). It is also reminded:

(γµ)� = B†γµB; (5)

whereB is the (fixed chosen) unitary matrix associated with the charge conjugation oper-
ation [2], and the asterisk denotes complex conjugation.

The solutionsϒ(x) of Eq. (1) are eigenstates of the squared four-momentum (S.F.M.)
operator [1]

�∂αgαβ∂β (6)

for the eigenvalueab. Six cases can be identified, labeled with Roman numerals:
(I) a= 0= b; (II) a==0;b= 0; (III) a= 0;b==0; (IV) ab> 0; (V) ab< 0; (VI) ab=2ℜ.
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Case (VI) is of unclear interpretation, and will not be considered here. For each of the
other cases, one of the objectives of a previous paper (Ref. 1) was that of obtaining an
equivalent “standard” equation which would simplify Eq. (1). This was accomplished by
rewriting Eq. (1) as

=P Ψ(x) = NΨ(x) ; (7)

by means of some appropriate linear transformation

ϒ(x) = HΨ(x) : (8)

Here,H is an invertible 4�4 matrix, chosen as to produce Eq. (7) with a simple enough
(and “convenient” enough) mass matrix N. The mass matrix N should be simpler and more
convenient than the original mass matrix M: for a discussion of the relevant criteria, see
Sections 3 and 4. Due to Eqs. (1)–(3), (7) and (8), bothH and N are linear combinations
of I andεγ5. Specifically,H may be expressed in terms of two complex parameterse and
d as follows:

H = eI+dεγ5 ; e==�d ; (9)

and N results as
N = (γ0Hγ0)�1MH : (10)

In cases (II)–(VI), the covariance of Eqs. (1), (7) is shown by the usual methods em-
ployed for the massive Dirac equation [13]. Thus, the parametersa;b;e;d are treated as
scalars, and the spinorial transformations under the Poincar´e group (passive transforma-
tions) may be realized as outlined in Ref. 2.

The standard equations for the various cases [1] are described in the remainder of this
section. All quantities referring to a specific case are labeled with an ordinary number in
place of the corresponding Roman numeral; the use of Roman numerals is retained in text,
as to avoid confusion with references to numbered equations and to the bibliography. For
each case, the values of the parametersa andb will be considered to be fixed.

Case (I) [a(1) = 0= b(1) ]
The only equation of type (7) obtainable by means of transformations like (8) is as follows:

=P Ψ(1)(x) = 0 : (11)

The form of Eq. (11) is identical to that of Eq. (1) in this case. Equation (11), in spite of
its history, does not appear to be directly usable, since it has a redundant current: it will be
here disregarded. However, see Refs. 1 and 2 for alternative applications.

Case (II) [a(2) ==0;b(2) = 0]
In this case, the original equation reads

=P ϒ(2)(x) =
a(2)
2

(I � εγ5)ϒ(2)(x) : (12)
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By means of transformations like (8), all forms of type (7) which can be obtained are given
by

=P Ψ(2)(x) =
m(2)

2
(I � εγ5)Ψ(2)(x) ; (13)

wherem(2) is an arbitrary nonvanishing complex constant. Equation (13) is in standard
form if the constantm(2) is chosen to have some fixed real value [2], positive or negative.

For all possible (complex) values ofm(2), the conserved current (aside from a multi-
plicative constant) may be expressed as follows:

j µ
(2)(x) = Λ(2)(x)γµΛ(2)(x) ; (14)

where a bar over a spinor indicates its Dirac adjoint, and whereΛ(2)(x) is the left-handed
component ofΨ(2)(x) defined by [1]

Λ(2)(x) =
1
2
(I � εγ5

)Ψ(2)(x) : (15)

The normalization Z
j 0
(2)(t;s)ds= 1 (16)

infers a one-particle probability significance for the spinorΛ(2)(x): this is a consistent
interpretation ifΛ(2)(x) is regarded as the physically relevant part [1,2] ofΨ(2)(x). The
integration extends to the entire three-dimensional space, taken with positive orientation
(equivalently, only the volume whereΛ(2)(x) is nonvanishing at timet needs to be consid-
ered); dsdenotes the volume element.

Case (III) [a(3) = 0;b(3) ==0]

This case is similar to the previous one. With considerations like those of case (II), the
standard form is

=P Ψ(3)(x) =
m(3)

2
(I + εγ5)Ψ(3)(x) ; (17)

with m(3) chosen to have some fixed real value, positive or negative.

Case (IV) [a(4)b(4) > 0]

In this case the standard form is of the Dirac type [1]. That is, either

=P Ψ(4)(x) = m(4)Ψ(4)(x) ; m(4) = [a(4)b(4)]
1=2 > 0; (18)

or

=P Ψ(4)(x) =�m(4)Ψ(4)(x) : (19)
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However, this case allows much freedom; for example:

=P Ψ(4)(x) = im(4)εγ5Ψ(4)(x) (20)

is another simple equation of type (7) which can be obtained by means of a transforma-
tion (8). The next section will discuss why this choice and other possible ones are less
convenient than (18) or (19). For Eqs. (18)–(20), and for similar choices such that

N†
(4) = γ0N(4)γ0 ; (21)

the conserved current (aside from a multiplicative constant) has the formal expression

j µ
(4)(x) = Ψ(4)(x)γµΨ(4)(x) : (22)

The normalization Z
j 0
(4)(t;s)ds= 1 (23)

induces a one-particle probability interpretation for the spinorΨ(4)(x).

Case (V)[a(5)b(5) < 0]

In this case, the standard equation [1] is taken to be

=P Ψ(5)(x) =�m(5)εγ5Ψ(5)(x) ; m(5) = [�a(5)b(5)]
1=2 > 0; (24)

or

=P Ψ(5)(x) = m(5)εγ5Ψ(5)(x) : (25)

As in the previous case, other simple choices could be proposed; for example:

=P Ψ(5)(x) = im(5)Ψ(5)(x) : (26)

The discussion is postponed to Section 4. For Eqs. (24)–(26), and for similar choices such
that

N†
(5) =�γ0N(5)γ0 ; (27)

the conserved current (aside from a multiplicative constant) has the formal expression

j µ
(5)(x) =�εΨ(5)(x)γµγ5Ψ(5)(x) : (28)

For general reference on tachyons, see, for instance Refs. 19 and 20. Also, for a variety of
opinions: [21–27].
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3. Massive and massless cases

This section will discuss cases (II) through (IV); case (V) is referred to the next section.

Case (IV) [a(4)b(4) > 0]

The massive Dirac equation (18) or (19) is one of the best known equations in physics,
and this makes it an ideal choice for case (IV). More precisely, the Dirac equation is
equipped with a number of active symmetry operations (charge conjugation, time rever-
sal, etc.) which have standard mathematical expressions and physical meanings, and leave
the equation invariant. As a matter of practice, it is not convenient to change the expres-
sions of these operations. Thus, for example, consider the standard spatial parity [2,13]
transformation (here displayed for some generic four-spinorΨ):

eΨ(x) = (global phase factor) iγ0Ψ(t;�s) : (29)

Notice that each of Eqs. (18), (19) is invariant under (29), while Eq. (20) is not: in fact, it
can be verified that (18), (19) are the only possible forms in case (IV) to manifest invari-
ance under (29). In a rather tautological sense, this consideration makes either Eq. (18) or
Eq. (19) the most convenient choice. The underlying assumption is that, for each of the
cases (I)–(VI), all possible forms (7) represent the same physical reality, because of the
simple linear relation implied by Eq. (8) in each case. Hence, if Eq. (20) or another form
were here chosen in place of (18) or (19), the expression of the parity transformation would
have to be modified (either directly, by means of a definition different from the one above,
or, perhaps, in a more indirect fashion).

It is reminded that each of Eqs. (18), (19) is invariant under the standard charge conju-
gation [2,13] operation

eΨ(x) = (global phase factor)γ5BΨ�(x) : (30)

Thus,Ψ(4)(x) may be taken to represent matter (e.g., electrons) as well as antimatter (e.g.,
positrons). In either situation, Eq. (18) is usually preferred to Eq. (19): see Ref. 10. See
Section 68 of Ref. 28 concerning the issue of charge conjugation and intrinsic parities;
also, Chapter XX of Ref. 13. Note, however, that a proper treatment of charge conjugation
would require second quantization [2,14].

Remark. In the absence of interactions and second quantization, the distinction between
matter and antimatter is formally uneasy; a possible definition is given in the following. An
equation and its spinor are said to represent (or refer to) matter if the equation’s positive
energy solutions describe matter. A positive energy solution is here defined as an equation’s
solution which is eigenstate of the operatorE = i (�1)T∂0 for some positive eigenvalue.

Case (II) [a(2) ==0;b(2) = 0]

This case, including transformation properties, was studied in Ref. 2. At any rate, the
only choice here concerns the selection of the parameterm(2) ==0. If this parameter is not
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chosen to be real, Eq. (13) is not manifestly invariant under the standard time reversal
[2,13] operation

eΨ(x) = (global phase factor)γ0BΨ�(�t;s) : (31)

Since a physical time reversal invariance has to be present (according to the experimental
evidence), the choice of a non-realm(2) would end up suggesting a change of the expres-
sion of the time reversal operation for case (II). Thus, Eq. (13) becomes the standard form
for case (II) provided a real nonvanishingm(2) is chosen. The actual value ofm(2) is unim-
portant here [2]. However, it cannot be excluded that[m(2)]

2 might become observable in
some larger context, such as that of Sections 6 of Ref. 1 or that of Section 5 of this paper.
For this reason (or, if anything else, for reasons of convenience),m(2) is considered to be
fixed, in either of the sign options�jm(2) j.

Even with realm(2), Eq. (13) is not invariant under the standard charge conjugation
operation (30), as this transformation sends (13) into a form of type (17): see Ref. 2 for
clarity. This appears to be in agreement with the experimental evidence, and does not
make a case for modifying the expression of the charge conjugation operation for case (II)
(a similar situation arises with parity). As a consequence, the spinorΨ(2)(x) represents
either matter or antimatter exclusively. Specifically, given that massless fermionic matter
appears to be left-handed,Ψ(2)(x) refers to matter.

Case (III) [a(3) = 0;b(3) ==0]
This case can be approached similarly to case (II). However, due to the charge conjugation
properties described above, case (III) is essentially redundant, in thatΨ(3)(x) has the same
role as the charge conjugate ofΨ(2)(x).

4. Tachyons

This case presents more ambiguity than the previous ones, due to the lack of experi-
mental evidence. Still, case (V) may be examined on the ground of “reasonable assump-
tions” regarding the relevant properties possessed by tachyonic fermions [19]. It is noted
that the existence of tachyons would not necessarily imply the existence of frames of ref-
erence moving at speeds faster than light (just like the existence of photons does not imply
the possibility of frames moving at light speed). As a matter of fact, superluminal transfor-
mations of coordinates have not been considered in this paper.

The presence of the factor(I � εγ5) in the equation for massless matter generates an
appealing correlation, which, in lack of solid alternatives, may be exploited as a tool for
the selection of the standard equation for case (V). Namely:
(a) with no formal changes in the active symmetry operations for case (V), if Eq. (18)
is chosen as the standard matter equation for case (IV), then Eq. (24) refers to tachyonic
matter;
(b) with no formal changes in the active symmetry operations for case (V), if Eq. (19)
is chosen as the standard matter equation for case (IV), then Eq. (25) refers to tachyonic
matter.
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A desirable feature for tachyonic fermions is the presence of a physical time reversal
invariance: indeed, each of Eq. (24), (25) is invariant under (31), while, for instance,
Eq. (26) is not. It is also interesting to examine the charge conjugation operation. For
example, take Eq. (24) and apply (30), to obtain:

=P eΨ(5)(x) = m(5)εγ5eΨ(5)(x) ; (32)

which is of the form of Eq. (25), not Eq. (24). According to the author’s reading of the
relevant literature, this too is appropriate, as is the analogous behaviour under spatial parity.

The various choices outlined above and in the previous sections can be put together in
a compact formalism. For that, relabel cases (IV), (II), (V) (in this order) with the index
ω =�1;0;1. Then, with a different spinor symbol, write the standard equations as

=P Θω(x) = N(ω)Θω(x) ; (33)

with

(a) N(ω) =
mω

2

h
(I � εγ5)�ω(I + εγ5)

i
; (34)

or (making use of the convenient replacementm0 !�m0):

(b) N(ω) =�
mω

2

h
(I � εγ5)�ω(I + εγ5)

i
; (35)

where eachΘω(x) refers to matter (massive, massless, tachyonic).
Equations (33), (34) were introduced in a previous paper (Ref. 1), but with the values

of mω all being the same. The interpretation was that of a Dirac particle with three pos-
sible mass states: these states were linearly combined in Ref. 3. In the next section, some
probability interpretations are examined, which are associated with the aforementioned
superpositions.

5. Neutrino flavours

Here, Eqs. (33), (34) are taken withmω = m> 0. Each stateΘω(x) is a mass eigenstate
corresponding to the eigenvalue�(m)2 ω of the S.F.M. operator. The linear superpositions

Φ f (x) = vω
f Θω(x) ; f =�1;0;1 (36)

are introduced [3], where(vω
f ) is a 3�3 unitary matrix of mixing coefficients. The spinor

Φ f (x) is regarded as a particle flavour: specifically, a neutrino flavour [3]. The transfor-
mation properties of flavour spinors are not discussed in this paper, but some relevant
probability interpretations will be suggested.

Equation (36) is patterned after Pontecorvo’s formulation [29]. However, each compo-
nentΘω(x) of the flavour spinorΦ f (x) has its own expression of the conserved current,
and, in particular, the tachyonic current does not induce a clear probability interpretation
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[19]. Thus, without second quantization, the meaning ofΦ f (x) is much less manifest
than in Pontecorvo’s model (and, even with second quantization, tachyons are notoriously
difficult to treat). At any rate, it is still possible to obtain probabilistic information from
Eq. (36). For example, if the non-tachyonic components ofΦ f (x) are normalized as indi-
cated at Eqs. (16), (23), the values of the squared magnitudes of the mixing coefficients
may be understood as follows:

j vω
f j

2
= p(ω j f ) ; (ω =�1;0) ; (37)

wherep(ω j f ) denotes the conditional probability that a flavourf will be measured to
have a value�(m)2 ω of the S.F.M. operator. Then, by normalization of probability

p(1 j f ) = 1� [ p(�1 j f )+ p(0 j f ) ] = j v1
f j

2; (38)

regardless of the actual normalization ofΘ1(x). The procedure entailed by Eqs. (37), (38)
has to be specified more carefully: if a neutrino is detected (equivalently, produced or
absorbed) with flavourf at a (macroscopically small) spacetime neighborhoodN (Q) “sur-
rounding” a pointQ of fixed coordinatesq= fqλg, a measurement of this particle’s S.F.M.
performed atN (Q) returns the value�(m)2 ω with a probabilityp(ω j f ). The detection
of the neutrino with flavourf at N (Q) implies that the spinor representing this particle
for x 2 N (Q) is a superposition as indicated at the right-hand side of Eq. (36), with non-
tachyonic components normalized within the spatial extent ofN (Q). For consistency, it is
assumed that the usual equations of motion are not applicable withinN (Q), as measure-
ments are taking place: see Ref. 30.
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6. Conclusions

For each flavour, the quantity

∑
ω

�
�(m)2 ω

�
p(ω j f ) (39)

represents the mean value of the S.F.M. of the flavour, in the probabilistic interpretation
outlined in the previous section. In particular, a choice of the mixing coefficients such that

p(�ω j f ) = p(ω j f ) (40)

reduces to zero the S.F.M. mean values for all flavours: thus, the possibility arises of
treating the “average” behaviour of each flavour as purely massless. It is hoped that this
concept (admittedly vague) and the issue of flavour oscillations can be addressed in future
work.
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MASA I OKUS SPINORA IZ DIRACOVE JEDNAĎZDE S DVA MASENA
PARAMETRA

Ispituje se odabir standardnih jednadˇzbi za masene, bezmasene i tahionske fermione na
osnovi poželjnih odlika koje su vezane s operacijama simetrije. Ponovno se razmatraju
linearna dodavanja masenih stanja i predlaˇzu moguća tumaˇcenja vjerojatnosti.
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