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By allowing for a multi-fractal distribution for the population densities of the states of a
harmonic oscillator we demostrate that the thermal average energy of a quantizied har-
monic oscillator receives a correction due to the non-extensive statistics of Tsallis. By
applying this result to the phonon spectrum we show that this in turn generates an anoma-
lous correction to the Debye formula for the specific heat of a solid at low temperatures.
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1. Introduction

The fact that configurations of condensed matter as well as cosmological structures
admit fractal or multi-fractal structures has increasingly become realized in the past two
decades [1–3]. The universe, usually thought to be homogeneous and isotropic over large
scales, has revealed a self-similar structure on smaller scales [4], and in fact all microscopic
systems with long range interactions and non-Markovian memory [5] have proved to admit
a multi-fractal structure requiring a statistical treatment beyond the usual Boltzmann-Gibbs
approach and quantum statistical approach. The introduction of the non-extensive statistics
of Tsallis [6] involves generalizing the Boltzmann-Gibbs entropy and takes into account
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the multi-fractal relationship of the energy levels of a system with respect to one another.
Subsequent applications of this idea to the solar plasma [7–9] have proven to cut-off the
high energy tail of the Maxwell–Boltzmann distribution and lead to the production of solar
neutrinos in accord with experimental finding of solar neutrino production. Along with
these studies, applications to a generalizedH theorem [10–12], the fluctuation dissipation
theorem [13], the Langevin and Fokker–Planck equation [14], the classical equipartition
theorem [15], the Ising chain [16,17] paramagnetic systems [18] and the Planck radiation
law [19,20], have lead to measurable corrections to the usual treatment in terms of the
non-extensive parameterq==1. In cosmology, the non-extensive statistics of Tsallis leads
to a modification of the primordial helium abundance that can be parametrized in terms
of (q� 1) [21]. In the present note, we consider the states of the quantized harmonic
oscillator to be distributed in a multi-fractal manner, and apply Tsallis statistics to calculate
the average thermal energy of a single ”phonon mode” of frequencyν. We then use this
average energy to calculate the total thermal energy of the lattice vibrations, which in turn
leads to modifications of the Debye theory of specific heat at low temperatures [22]. Since
lower and lower temperatures are being probed in low temperature physics [23], limits
on modifications of the specific heat due to non-extensive statistics might very well be
established if the corrections can be singled out.

2. Non-extensive statistics and the Debye theory of specific
heat

We begin by writing the entropy of an ensemble ofN identical systems (or particles)
using the non-extensive statistics of Tsallis,

S=
kN

q�1

�
1�∑Pq

i

�
= kσN ; (2:1)

wherePi =Ni=N, q is nonextensive statistics parameter andσ is the dimensionless entropy
of a single particle. In the present problem, the non-extensive statistics is applied to the
states of a single particle system. Equation (2.1) can be written as

S=
kN

q�1

�
∑Pi�∑Pq

i

� �
Pi =

Ni

N

�
; (2:2)

where we vary Eq. (2.2) with respect toNi , along with the constraints

∑Ni = constant; (2:3)

∑Niεi = constant:

We find upon using the Lagrangian multipliersµ=τ and�1=τ (µ is the chemical potential,
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τ = kT, T is the absolute temperature andk is the Boltzmann constant)

Ni =
N

q1=(q�1)

�
1+

µ� εi

τ
(q�1)

�1=(q�1)

; (2:4)

Ni =
N

q1=(q�1)
exp

�
1

q�1
ln

�
1+

µ� εi

τ
(q�1)

��
;

giving for (q�1) small

Ni =
N

q1=(q�1)
exp

�
µ� εi

τ
�
(µ� εi)

2

2τ2 (q�1)

�
; (2:5)

To findµ, we expandµ= µ0+αµ1+α2µ2, whereq�1= α is a small parameter. Further,
we have

1

q1=(q�1)
=

1

(1+α)1=α =
1

eln((1+α)=α)
�=

1

e(α�α2=2)=α
�= e�1

�
1+

α
2

�
: (2:6)

(to first order inα), and finally

1

q1=(q�1)
= e�1

�
1+

α
2

�
:

When we insert the expansion forµ= µ0+αµ1+ : : : and Eq. (2.6) into Eq. (2.5), we find

Ni =
N
e

�
1+

α
2

�
e(µ0�εi)=τ

�
1+

αµ1

τ

��
1�

(µ0� εi)
2α

2τ2

�
; (2:7)

or

Ni =
N
e

e(µ0�εi)=τ
+

αN
e

e(µ0�εi)=τ
�

1
2
+

µ1

τ
(µ0� εi)

2

2τ2

�
: (2:8)

When we sum Eq. (2.8) using∑Ni = N, we have to zeroth and first order for the states of
a simple harmonic oscillator(εi = (i+1=2)h̄ω)

e(µ0=τ) =
e

∑∞
i=0e(εi=τ) = e

e(h̄ω=τ)
�1

e(h̄ω=τ) ; (2:9)

µ1 =�
τ
2
+

1
2τ

∑e(µ0�εi)=τ(µ0� εi)
2

∑e(µ0�εi)=τ :

Thus

µ0 = τ lne+ τ ln
�

ēhω=τ
�1
�
+ τe�h̄ω=2T (2:10)
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' τ+h̄ω�h̄ω=2'h̄ω=2 for h̄ω=τ� 1:

Forµ1 we have

µ1 =�
τ
2
+

µ2
0

2τ
�

µ0

τ

�
h̄ω
2
+

h̄ω
ēhω=τ�1

�
(2:11)

+
1
2τ

 
ēhω=τ

�1

ēhω=τ

!�
1
4
+

τ
h̄ω

+2
� τ
h̄ω

�2
�
(h̄ω)2 :

In evaluating Eq. (2.9), we used

∑e�εi=τ
=

ēhω=2τ

ēhω=τ
�1

;

∑εie�εi=τ

e�εi=τ =
h̄ω
2
+

h̄ω
ēhω=τ

�1
;

∑ε2
i e�εi=τ (i = n)

by the integral
∞Z

0

ε2
ne�εn=τdn= (h̄ω)2

∞Z

0

(n+
1
2
)
2e�(n+1=2)h̄ω=τdn

= (h̄ω)2
∞Z

1=2

x2e�xh̄ω=τdx= (h̄ω)2e�h̄ω=2τ
�

1
4
+

τ
h̄ω

+2
� τ
h̄ω

�2
�

:

Forh̄ω=τ� 1,

µ1'�
τ
2
+
(h̄ω)2

8τ
�
(h̄ω)2

4τ
+
(h̄ω)2

8τ
=�

τ
2
: (2:12)

Thus,

µ0 =
h̄ω
2
; µ1 =�

τ
2
; for h̄ω=τ� 1:

For the average thermal energy, we have from Eq. (2.8)

ε̄ =
1
N ∑Niεi =

1
N ∑Ne�1e(µ0�εi)=τεi (2:13)

= αe�1∑
i

 
εi

2
+

µ1εi

τ
+

�
µ0� εi

2τ2

�2

εi

!
e(µ0�εi)=τ :
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Using eµ0=τ = e=(∑e�εi=τ), andµ1 =�τ=2 in Eq. (2.13), we have

ε̄ =
h̄ω
2
+

h̄ω
ēhω=τ

�1
�

α
2τ2

∑e�εi=τ(µ0� εi)
2εi

∑e�εi=τ : (2:14)

Again in Eq. (2.14), if we replace the sums∑ε2
ne�εn=τ and∑ε3

ne�εn=τ by

∞Z

0

ε2
ne(n+

1
2 )h̄ω=τ dn!

h̄ω
2

2 ∞Z

1=2

x2e�xh̄ω=τ dx

and
∞Z

0

ε3
ne(n+

1
2 )h̄ω=τ dn!

h̄ω
2

3 ∞Z

1=2

x3e�xh̄ω=τ dx

we find for Eq. (2.14)

ε̄ =
�

1�
αµ0

2τ2

��h̄ω
2
+

h̄ω
ēhω=τ

�1

�

e(h̄ω=τ)
�1

e(h̄ω=τ)

"
αµ0

�
h̄ω
τ

�2�1
4
+

τ
h̄ω

+2
� τ
h̄ω

�2
�

(2:15)

�
α

2τ2 (h̄ω)3
�

1
16

+
3
4

� τ
h̄ω

�
+3
� τ
h̄ω

�2
+6
� τ
h̄ω

�3
��

Again, forh̄ω=τ� 1, Eq. (2.15) becomes

ε̄ =
�

h̄ω
2
+

h̄ω
ēhω=τ�1

� 
1�

α
8

�
h̄ω
τ

�2
!
+

2
32

α
(h̄ω=τ)3

τ2 : (2:16)

We have obtained the result Eq. (2.16) in a previous note [24], but in that discussion we
only considered the specific heat of a single modeω (Einstein model of specific heat)
[25]. We now multiply Eq. (2.16) by 3ω2=(2π2V3

0 )dω, which is the number of modes
of phonon excitations betweenω and ω+ dω (per unit volume), where there are three
polarization states and the speed of sound in the solid isV0 (Ref. 22). We also note that
3N=ω3

M=(2π2V3
0 ), whereN is the number of atoms per unit volume. For the totoal energy

of the lattice vibrations, we have

U =

ωMZ

0

�
h̄ω
2
+

h̄ω
ēhω=τ

�1

� 
1�

α
8

�
h̄ω
τ

�2
!�

3ω2

2π2V3
0

�
dω (2:17)
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+
3
32

α
ωMZ

0

(h̄ω)3

τ2

�
3ω2

2π2V3
0

�
dω :

If we subtract off the vacuum energy from Eq. (2.17), we get from that equation

U =
3h̄

2π2V3
0

ωMZ

0

ω3dω
ēhω=τ

�1
�α

Z
(h̄ω)3

τ2(ēhω=τ
�1)

�
3ω2

16π2V3
0

�
dω (2:18)

+α
ωMZ

0

3
64

(h̄ω)3

τ2

ω2dω
π2V3

0

:

The first term in Eq. (2.18) represents the usual term, and the other two are corrections due
to the non-extensive statistics. Letting ¯hω=τ = x in the first two terms of Eq. (2.18), we
have

U =
3τ4

2π2h̄3V3
0

xMZ

0

x3dx
ex�1

�
3ατ4

16π2V3
0h̄3

xMZ

0

x5dx
ex�1

+
αh̄3ω6

M

128π2V3
0 τ2

: (2:19)

For very lowT, we may letxM ! ∞ giving

U = T4

 
3k4

2π2h̄V3
0

π4

15
�

K0αk4(3)

16π2h̄3V3
0

!
+

β
τ2 = γT4

+
β
T2 : (2:20)

where

K0 =

xMZ

0

x3dx
ex�1

; β =
αh̄3ω6

M

128π2V3
0 k2

;

γ is the coefficient ofT4 in Eq. (2.20),ωM is given by 3N=ω3
M=(2π2V3

0 ), andτ = kT. For
the specific heat, we have per unit volume (N atoms per unit volume)

CV =

�
∂U
∂T

�
= 4γT3

�
2β
T3 : (2:21)

The first term in Eq. (2.21) represents the Debye formula (with the modified coeffi-
cient) for the specific heat [26], while the second term represents a negative 1=T3 correc-
tion that increases with decreasingT. Here the correction term will change the curvature
of CV vs. T for decreasingT at low T. Two points should be made concerning the above
calculations, firstly, the assumption ¯hω=τ� 1, used in evaluating Eqs. (2.10) and (2.11)
breaks down for lowω. However, if the first discrete mode ofω is such that ¯hω > τ, the
replacement of the discrete sum by the integral in Eq. (2.17) is justified and the assumption
h̄ω=τ� 1 valid in Eqs. (2.10) and (2.11). The second points that in Eq. (2.20), the second
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term is assumed small compared to the first term, thus below a certain criticalT, Eq. (2.21)
is no longer valid. The essential point is that when the corrections are taken into account, a
small lowering ofCV varying as 1=T3 will be a signature of non-extensive statistics in the
phonon spectrum.

3. Conclusion

The result in Eq. (2.21) predicts corrections to the Debye theory that are unlike any
corrections predicted by improving on mode counting due to the discrete nature of the lat-
tice waves. The usual formula 3ω2=(2π2V3

0 )dω for the number of modes betweenω and
ω+dω receives its first correction asb4ω4dω(b4 = const) [27]. This in turn generates a
correction toCV that varies asT5. This implies that any corrections toCV that decrease
CV at low T with a characteristic curvature of 1=T3 would be suggestive of the presence
of anomalous statistics operative in the phonon spectrum or lattice wave spectrum. An-
other feature of the curve ofCV vs.T that would reveal anomalous statistical effects is the
fact that the coefficient of theT3 term inCV would be diminished below that predicted
by the Debye theory as expressed in Eq. (2.20) forU . Since extremely low temperature
measurements ofCV would yield very small values ofCV , it would be most feasible to
search for anomalous deviations from theT3 behaviour at temperatures exceeding 100 K.
The known deviation (Ref. 22, p. 126) of the predicted values ofCV from the experimental
value ofCV at 100 K is about 1.4% for silver, which suggests that more precise measure-
ments might be capable of identifying the presence of anomalous statistical effects giving
rise to a correction which is of the order of a percent or less.
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PROMJENA DEBYEVE TEORIJE SPECIFIČNE TOPLINE U NEEKSTENZIVNOJ
STATISTICI

Pretpostavi li se viˇsefraktalna raspodjela gusto´ce popunjenosti stanja harmoniˇckog oscila-
tora, pokazuje se da, prema Tsallisovoj neekstenzivnoj statistici, prosjeˇcna toplinska en-
ergija kvantiziranog oscilatora prima popravku. Primjenom tog ishoda na fononski spektar,
dobiva se anomalna popravka Debyevog izraza za specifiˇcnu toplinučvrsnine na niskim
temperaturama.
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