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It is shown that eigenspectra corresponding to various interactions with three-
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the quasi-exactly solvable sl(2) symmetry approach.
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1. Introduction

When the whole set of eigenfunctions and eigenvalues of the Schrödinger equa-
tion are accessible by purely algebraic means, the problem is said to be exactly solv-
able (ES) which usually is admitted to underline certain type of group-symmetry
structure.

The problem becomes quasi-exactly sovable (QES) when only part of it can
be reached algebraically, while the remaining part must be handled by numerical
means implying also existence of some dynamical algebraic structure.

There is an intermediate situation, when exact solvability can be obtained only
after specific constraints have been imposed on the parameters of the potentials,
and the problem in this case is said to be conditionally exactly solvable (CES).

The first part of this paper serves to introduce the use of the “mixing function”
formalism in order to examine the structure of the eigenspectrum of a three-term
potential V (A,B, C; x) involving inverse fractional powers with three strength pa-
rameters A, B and C.

The discussion is then extended to the case of quasi-exact solvability which
allows to recover and confirm some earlier results obtained by other authors.
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When one of the parameters is removed from the theory, then three types of two-
term potentials with inverse fractional power will result, i.e., V (A,C; x), V (B,C; x)
and V (A,B; x). Two of them can be approached in the frame of the present dis-
cussion.

The physical relevance of the potentials with the inverse fractional powers in-
volving two and three terms have already been mentioned by some authors, for
instance, the possibility of construction of double-well potentials [1], the existence
of hidden symmetry sl(2) [2], the Coulomb correlation problems in atomic and
molecular physics [3], etc.

2. Formulation

Consider the system of two coupled first-order differential equations which in
matrix form is

φ′ + Fφ = 0 , φ = (φ1, φ2)
+ , F =

( −u1 d1
0 u2

)
. (1)

The details of this formulation can be found in Ref. [4]. In principle, the functions
u1, u2 and d1 may be any analytic functions.

The “mixing function” is defined as

φ1 = Xφ2 . (2)

The compatibility condition must be

d1 = −X′ + (u1 + u2)X . (3)

Differentiating (1) and making use of (3) leads to the following coupled equation

φ′′1 − (u21 + u′1)φ1 − [X′′ − 2u2X′ + [(u22 − u′2) − (u21 + u′1)]X]φ2 = 0 (4)

If E is the eigenvalue, then it can be seen that from (4), the Schrödinger equation
will come out provided X be the solution of the second-order differential equation

X′′ − 2u2X′ + [(u22 − u′2)− (u21 + u′1) −E]X = 0 (5)

and

φ′′1 − (u21 + u′1)φ1 = Eφ1 (6)

By construction and up to a constant of normalisation, the set of eigenfunctions
can be written as

φ1,n = Xn exp(−
∫
u2 dx) . (7)
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In other words, the problem of investigating the exact solvability of the
Schrödinger equation (6) is now reduced to the search for the exact solutions of
Eq. (5).

Furthermore, as the potential V + = u21 + u
′
1 defined in (6) is supersymmetric,

it has a “partner” potential defined by V − = −u21 − u′1 which, in order to be more
complete, will now be included in the theory.

Consider again the system (1) in which

φ̄′ + F̄ φ̄ = 0 , φ̄ = (φ̄1, φ2)
+ , F̄ =

(
u1 d̄1
0 u2

)
(1b)

With the same reasoning as above, a second mixing function can also be defined

φ̄1 = Y φ2 . (2b)

It can be shown that the link between these two functions is

Y ′ − (u2 − u1)Y = X (8)

(see the proof in the Appendix).

This result means that if one of these functions is known, then the other one
can always be inferred by solving this first order differential equation.

3. The potential

The following potential is under consideration

V (A,B, C; x) =
A√
x
+
B

x
+
C√
x3
. (9)

A, B and C are free parameters.

Although it is usually admitted that, in principle, this type of potentials is not
exactly solvable, it will be shown in this paper that under certain conditions, the
present approach may lead to a different point of view. The theory relies on the
appropriate choice of the two functions u1 and u2. Let

u2 =
1

4

b√
x
, u1 = u2 + k (10)

b and k are paremeters.

The couple of potentials defined above now reads

V (A,B, C; x) =
1

2

kb√
x
+
1

6

b2

x
∓ 1
8

b√
x3
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that is

A =
1

2
kb, B =

1

6
b2, C = ∓ 1

8
b ,

so that the number of independent parameters in now reduced to two. In this case,
the equation (5) become tractable with the following double transformation

x = t2, X = t2 exp

(
1

4
at2 + bt

)
h(t) (11)

a and b are arbitrary quantities, but it will be seen below that they can be expressed
in terms of the original parameters b and k and h(t) is the unknown function which
must be determined.

Substituing (11) in (5), and after some algebra, one can verify that this function
must be solution of the following second-order differential equation (the notations
are h′ = dh/dt, etc.)

th′′+(at2+ bt+3)h′+ [(
1

4
a2− 4k2− 4E)t3+ (1

2
ab− 2kb)t2+2at+2b]h = 0 (12)

4. The Heun’s biconfluent equation

This type of equation has been recently investigated by Exton [1] who considered
the second-order differential equation

ty′′ + (a1t2 + b1t+ 3)y′ + (a0t2 + 2a1t+ 2b1)y = 0 (13)

where a1, b1 and a0 are free parameters. The interesting point is that it has been
shown that this equation is exactly solvable provided these parameters are subject
to a specific constraint

(
a0
a1

)2
−
(
a0
a1

)
b = −(n + 1) a1, n = 0, 1, 2, . . . (14)

The solution is then

y =
dYn
dt

where Yn is represented by a linear expansion in terms of the powers of the variable
t.

The detais of the analytical form of this expansion, which will not be displayed
here, can be found in Ref. [1] (see for instance relation (13) there).

Equation (14) leads to a rather interesting situation where the structure of the
eigenspectra become accessible from it.
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In fact, comparing (12) with (13), it can be seen that they are identical if

(a) E − k2 = 1
16
a2 , (b) a0 =

1
2
ab− 2kb ,

(c) a1 = a , (d) b1 = b .
(15)

Equation (15b) with the constraint (14) yields the following third-order algebraic
equation for the unknown a

a3 − 1
4

b2

n+ 1
a2 +

4k2b2

n+ 1
= 0 , (16)

from which the eigenspectrum can be inferred since En is given by (15a).

As this solution depends on two independent parameters, k and b, they can
alwaus be chosen so that Eq. (16) leads to real, unique or multiple solutions. As the
domain of the variable x is defined inD[0,∞], only negative solutions (a < 0) can be
retained since it leads to possible normalisation of the corresponding eigenfunction
from (11).

Specifically, and as an example, we consider the first case (real, unique solution).
Using the standard technique pertaining to this type of equation, and setting k =
mb, m > 0, m being any parameter, we find that the validity condition relative to
this case is reduced to

1 >
b2

m2
1

(n+ 1)2
10−3 (17)

which depends on the ration b/m and n.

Interpretation: Consider two cases

1) 1 ≤ b
m
<
√
1000 2)

b

m
≥ 100

As n is positive, it is seen that the first case is always valid, meaning that the
whole eigenspectrum can be reached analytically provided a < 0. For instance, it
can be verified that with b = 1, m = 1, the real solution a will always be negative.
The second case means, the first three eigenvalue n = 0, 1 and 2 are not accessible
within the present approach, that is to say, this eigenspectrum will be split into
two regions, the “upper” one, which can be reached (if a < 0), and the “lower” one
which is inaccessible.

A more complete description will be given later on with a specific example.

5. The quasi-exact solvability

When the set of parameters (A,B, C) are not subject to the contraints (10), su-
persymmetry is removed so that a more conventional approach must be considered.
Let

φ′′1 − V (A,B, C; x)φ1 = Eφ1, φ1 = Xg(x) . (18)

FIZIKA B (Zagreb) 9 (2000) 1, 1–10 5



cao chuan: eigenvalues of multiterm inverse-fractional-power potentials

where g(x) is to be determined. We use now a transformation similar to (11), that
is

x = t2, X = t2 exp

(
1

4
at2 +

1

2
bt

)
. (19)

After substitution in (18), it can be verified that this function must be solution of
the equation

tg′′ + (at2 + bt+ 3)g′

+
[(
1
4 − 4E

)
t3 +

(
1
2ab− 4A

)
t2 +

(
1
4b
2 + 2(a− 2B)) t + 32 b− 4C] g = 0

(20)

which becomes significant with the conditions

E =
1

16
a2 ,

1

2
ab−4A = 0 , 1

4
b2+2(a−2B) = −an , n = 1, 2, . . . . (21)

since Eq. (20) can be expressed in terms of the generators J+, J− and J0, of s1(2)
symmetry, i. e.

[
J0J− +

(
3 +
n

2

)
J− + aJ+ + bJ0 + (3− n) b

2

]
g = 4Cg . (22)

Recalling that

J+ = t2
d

dt
− nt, J− =

d

dt
, J0 = t

d

dt
− n
2
,

the preceding equation is quasi-exactly solvable since the differential operator in the
left hand of (22) always preserves invariance of the finite dimensional subspace of
the polynomials g [3]. Note that in the present case C must be seen as an “adjustabe
parameter”, i. e., for each n, it must be chosen appropriately. This is due to the
type of three-term recurrence relation which would result from the usual expansion
approach.

With these precautions, one may now extract some instructive results from the
theory.

l) With the constraint (21, third relation), one can obtain the algebraic equation
determining a, from which the eigenspectrum can be inferred

a3 − 1
4

B

n + 2
a2 +

16A2

n+ 2
= 0 . (23)

Apart some slight modification in the notations in (23), it is in exact agreement
with the result obtained previously in Ref. [2]. In the present discussion l = 0 (l is
orbital quantum number). Extension to the case l /=0 is straightforward.
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2) Consider now the two term potential V (A,C; x) mentioned above (B = 0)
so that Eq. (21, third equation) reduces to

a = −1
4

b2

n+ 2
,

(note that here a < 0) from which

En =
1

42/3
A4/3

(n + 2)2/3
. (24)

which is exactly the result obtained by Bose [3] who used the method of expansion
with l /=0.

3) It would be instructive to examine simultaneously and on the same footing
the cases of three- and two-term potentials, i.e., V (A,B, C; x) and V (A,C; x). The
simplest way to achieve this is to return to the special case k = 1 and b = 1. For
the first case, we obtain

En − 1 = 0.062

(n + 1)2
10−4 − 0.159

(n + 1)4/3
+

0.101

(n+ 1)2/3
,

while for the second one

En =
0.250

(n + 2)2/3
.

This means that when En � 1 (the “upper” region), there may be some expected
similarity for these two cases concerning the rate of decrease of En with increasing
n.

4) Turning now to the second two-term potential V (B,C; x) (A = 0), the same
reasoning remains valid so that Eq. (16) reduces to (since k = 0)

a2
(
a− 1
4

b2

n+ 1

)
= 0 . (25)

Alternatively, if in (1) we set u1 = u2 and repeat the same procedure with the
double transformation (11) where h(t) is replaced by the function f(t), then

tf ′′ + (at2 + bt+ 3)f ′ +
[(
1

4
a2 − 4E

)
t3 +

(
1

2
ab

)
t2 + 2at+ 2b

]
f = 0 (26)

which in fact is the Heun’s equation if

E =
1

16
a2 , a0 =

1

2
ab , a1 = a , b1 = b ,
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and, therefore, yield the same solution as in (25). However, the difficulty here lies in
the fact that for real values of b, the quantity a will always be positive, invalidating
then the theory.

So, the only significant situation consists in the choice b = ic (c > 0), i.e., an
imaginary parameter. The eigenspectrum becomes

En =
1

162
C4

(n+ 1)2
. (27)

However, this choice does give rise to a non-hermitian Hamiltonian problem which
is not our concern for the moment, although it can be noted recently that this
domain of speculations has been considered by other authors (see for instance Ref.
[5]).

6. Conclusion

The main results obtained in this work are summarised below

- For the quasi-exactly solvable problem, the method enables one to recover
and confirm previous result of other authors concerning the three- and two-term
potentials V (A,B, C; x) and V (A,C; x), A, B and C being arbitrary parameters.

- Under certain conditions, namely when the number of independent parameters
of the three-term potential is reduced to only two, that is to say

A =
1

2
kb, B =

1

16
b2, C = ∓ 1

8
b ,

k, b being free parameters, then the three-term problem is shown to be supersym-
metric and tractable with the “mixing function” formalism and using the solution
of the biconfluent Heun’s equation.

- The two-term potential of type V (B,C; x), which cannot be handled with
the usual QES approach (sl(2)), becomes tractable with the present formalism if
B = b2/16, C = ±b/8 and and b is imaginary.
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Appendix

1) In order to prove the relation (8), first note that, following the same pro-
cedure, it can be checked that the mixing function Y must be the solution of a
differential equation similar to (4) but where the function u′1 is replaced by −u′1.
Using a more compact notation with the differential operator P defined by

P =
d2

dx2
− 2u2 d

dx
+ [(u22−u′2)− (u21− u′1)] , one obtains (P −E)Y = 0 . (28)

If the result (8) is true, then by substituing into equation (4), one will be led to
a third-order differential equation in terms of Y . After simplifications, it can be
written in compact form

[
d

dx
− (u2 − u1)

]
(P −E)Y = 0 ,

which, from (28) is always true.

An alternative approach to this proof is to consider the technique of the “ladder
operator” in supersymmetry wich also leads to the same result. For simplicity let
us define the “ladder operator” as

A± = − d
dx
± u1

and note that

A+A− =
d2

dx2
− (u21 + u′1) and A−A+ =

d2

dx2
− (u21 − u′1)

with the couple of eigenfunctions φ+ and φ− corresponding to the eigenvalue En.
φ+ and φ− must obey to the first-order coupled equations

A−φ−n =
√
En φ

+
n+1 and A+φ+n+1 =

√
En φ

−
n .

φ+ and φ− can be identified with the couple φ1 and φ̄1 considered in this work.
If

φ1 = Y φ2, φ̄1 = Xφ2, and φ2 = exp(

∫
u2 dx)

then

φ̄1 = constA
+φ1 ≈ [Y ′ − (u2 − u1)] exp(

∫
u2 dx) ,

from which follows the relation (8) in the text.
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The interesting point here is to note that the above proof can be obtained
independently of the supersymmetry, which implicitly means that this approach can
be extended to a wider range of problems which may include non-supersymmetric
systems.

Finally, for the special case u1 = u2, one obtains X = Y
′, thus recovering the

result obtained in the earlier work [4].

Although Eqs. (23) and (16) are similar (analytically speaking), they must be
interpreted differently since in Eq. (23), the third parameter C must be chosen
according to each n, and only the set of eigenfunctions in the “lower region” (< n)
are accessible analytically.

In the second case, this role of adjustable parameter is played by k.

PROBLEM SVOJSTVENIH VRIJEDNOSTI ZA VIŠEČLANI POTENCIJAL S
INVERZNIM RACIONALNIM POTENCIJAMA

Pokazuje se kako se, pod izvjesnim uvjetima, mogu analitički odrediti svojstvene
vrijednosti za razna med–udjelovanja s tri ili dva člana s inverznim racionalnim po-
tencijama, primjenom bilo rješenja bikonfluentne Heunove jednadžbe, ili poluegza-
ktno rješivim pristupom sa sl(2) simetrijom.
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