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A procedure inspired by the Tamm-Dancoff method is applied to the chiral quark
model which has been extended to include additional degrees of freedom: a pseu-
doscalar isoscalar field as well as a triplet of scalar isovector fields. The simpler,
generic σ-model has been used before as a test for the Tamm-Dancoff inspired
approximation (TDIA). The extended chiral quark model is employed here to in-
vestigate possible novel effects of the additional degrees of freedom as well as to
point out the necessesity to introduce a SU(3) flavour. Model predictions for the
axial-vector coupling constant and for the nucleon magnetic moment obtained in
TDIA are compared with experimental values.
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1. Introduction

The Tamm-Dancoff method (TDM) [1, 2] has been intensively investigated dur-
ing the 1950s [3]. It has been revived recently [4–8]. In some calculations TDM can
be a much better approximation than perturbation theory [9].

As chiral bag models [10, 11] are simple effective theories of quark bound states,
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hadrons, it is not unreasonable to hope that TDM might be useful in that case,
too.

The Tamm-Dancoff inspired approximation (TDIA) [12] will be used here. It
will be developed for an extended chiral sigma model which besides usual modes
[7, 8] contains additional degrees of freedom: a pseudoscalar isoscalar field and a
triplet of scalar isovector fields. The U(2) symmetry of the simple model [7, 8] has
thus been enlarged to the present U(2)×U(2) [13]. That allows closer comparison
with the SU(3) symmetry based linear sigma model [14, 15]. In such model one
has to introduce 9 scalar and 9 pseudoscalar degrees of freedom, thus creating an
U(3)×U(3) symmetry [16–19]. While in the SU(3) based case one has 18 mesonic
degrees, in our simpler case one deals with 8 degrees only. The simple σ-model [12]
used 4 mesonic degrees. Our enlarged U(2)×U(2) model can serve as a transition
to the full SU(3) treatment showing the (non)importance of the scalar deegres of
freedom.

It will be shown to what extent the new mesonic degrees modify previously
found results [12].

2. Tamm-Dancoff inspired approximation
Full description of TDIA can be found in Ref. [12]. Here we will give only some

details pertinent for the U(2)×U(2) model. Working in the Heisenberg picture [20],
all field operators are expanded in the free fields [12]. Eventually one ends with an
infinite set of coupled differential equations instead of integral ones, which appear
in TDM [3, 4]. These differential equations are closely related to the familiar chiral
quark model equations.

The Lagrangian containing the extended linear U(2)×U(2) sigma model embed-
ded in the bag environment is:

L = LψΘ + LintδS + [Lχ + U(χ)]Θ , (2.1)

where

Lψ =
i
2
(ψ̄γµ∂µψ − ∂µψ̄γµψ) ,

Lint =
g

2
ψ̄(σ + i~τ~πγ5)ψ − ig′

2
ψ̄γ5(η + i~τ~sγ5)ψ ,

Lχ =
1
2

(∂µσ∂µσ + ∂µ~π∂µ~π + ∂µη∂µη + ∂µ~s ∂µ~s ) ,

U(χ) =
λ2

4
[
σ2 + ~π2 + η2 + ~s 2 − ν2

]2
,

+
λ2µ2

2
[
η2 + ~s 2

]
+ fπm2

πσ ,

(2.2)

and fπ = 0.093GeV. The Θ−function signalizes that L ψ is different from zero in-
side the bag (r < Rbag). The surface δ−function, δS , gives the surface quark – meson
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interaction, and Θ ensures that the potential U and the (σ, ~π, η, ~s) kinetic-energy
terms exist (only) outside the bag. In the spherical bag, Θ and Θ become θ(Rbag−r)
and θ(r − Rbag), respectively. In the product symmetry U(2)×U(2), the coupling
constants g and g′ can have different values. In actual calculations we were forced
to break this symmetry thus introducing an assortment of g’s whose values are
connected trough boundary conditions (see Eq. (2.13) below). The self-interaction
potential U contains the symmetry-breaking (SB) term cσ(x) ≡ −fπm2

πσ(x). The
other parameters are fixed by particle mass spectrum, i.e.

m2
σ = −λ2ν2 + 3λ2f2

π ,

m2
π = −λ2ν2 + λ2f2

π ,

m2
η = m2

s = λ2µ2 − λ2ν2 + λ2f2
π ,

(2.3)

by the PCAC and by the usual potential minimum conditions [14,15].
The effective empirical quantum field theory (2.1) describes quark dynamics as

an approximant for the underlying, fundamental and exact QCD.
The field operators ψ, ~π, σ, η and ~s are expanded in terms of the free field

creation (annihilation) operators. For the quark field, for example, one introduces

ψc
f (x) = φf

mbc
m,f + φ̃f

mdc†
m,f

+χfgh
m1m2m3

(x)bc
m1,fde†

m2,gb
e
m3,h + . . .

(2.4)

Many complex operator combinations are possible, besides the one shown. How-
ever, in our approximation we use only first two terms. Here c is a quark colour
and f is a quark flavour, whereas m is the spin projection. bc

m,f and dc
m,f are

the quark and antiquark annihilation operators, respectively. This infinite expan-
sion is truncated leading to a physically motivated finite basis, which defines the
Tamm-Dancoff inspired approximation (TDIA).

The truncation of the ψ field (2.4) as well as the corresponding Ansätze for the
~π, σ, η and ~s fields lead to the following system of the coupled nonlinear Euler-
Lagrange equations

rliγµ∂µψ = 0 (r < RBag),

∂µ∂µσ − λ2σ
(
σ2 + ~π2 + η2 + ~s 2 − ν2

) − fπm2
π = 0 (r > RBag),

∂µ∂µπa − λ2πa
(
σ2 + ~π2 + η2 + ~s 2 − ν2

)
= 0 (r > RBag),

∂µ∂µη − λ2η
(
σ2 + ~π2 + η2 + ~s 2 − ν2 + µ2

)
= 0 (r > RBag),
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rl∂µ∂µsa − λ2sa
(
σ2 + ~π2 + η2 + ~s 2 − ν2 + µ2

)
= 0 (r > RBag),

inµγµψ + gσσψ + gπi~τ~πγ5ψ − gηiγ5ηψ + gs~τ~sψ = 0 (r = RBag), (2.5)

(∂µσ) n̂µ = −gσ

2
ψψ (r = RBag),

(∂µπa) n̂µ = −gπ

2
ψi~τγ5ψ (r = RBag),

(∂µη) n̂µ =
gη

2
ψiγ5ψ (r = RBag),

(∂µsa) n̂µ = −gs

2
ψ~τψ (r = RBag) .

In the TDIA sense, one keeps just the terms in the field expansion which are needed
to obtain a nontrivial coupled system of differential equations.

The leading approximation follows if in Eqs. (2.5) one keeps just two first terms
in the expansion (2.4).

The result is then sandwiched between the initial quark or antiquark states

〈f | = 〈q̄a
p,r| = 〈0|da

p,r |i〉 = |0〉 , or

〈f | = 〈0| |i〉 = |qa
p,r〉 = ba†

p,r|0〉 .

(2.6)

and the vacuum, leading to the terms such as

〈0| γµ∂µψ |qc
f,m〉 = γµ∂µφf

m(x). (2.7)

The Dirac equation for the free quark inside the bag [21], according to (2.4), leads
to the following approximate TDIA Ansatz for the quark field

ψc
f (x) =

N√
4π

(
j0

i (~σr̂) j1

)
χf

mbc
m,f +

N√
4π

(
(~σr̂) j1

ij0

)
χf

mdc†
m,f . (2.8)

Here the quantities j0,1(r) are spherical Bessel functions of the order (0,1) and χf
m

is the quark isospinor (χ̃f )-spinor (χm) product.
The boundary conditions (2.5) can be satisfied with the first two terms in the

expansion (2.4) if the corresponding ~π, σ, η and ~s field expansion contains terms
such as

bc
m,f

†bc
m′,f ′ . (2.9)
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All terms in (2.5), either the bispinor ones (ψΓψ) or the meson ones (~π, σ) must
contain the same number and the same kind of the creation (annihilation) quark
operators. Thus the TDIA Ansätze given in terms of the chiral-quark operators are
[12]:

σ(r) = σs(r) · (bc†
m,fbc

m,f + dc†
m,fdc

m,f ) − fπ ,

πa(r) = πs(r)(b
c†
m,fdc†

m′,f ′ + dc
m,fbc

m′,f ′) · [χ†
m,fτaχm′,f ′ ]

+πp(r)(b
c†
m,fbc

m′,f ′ − dc†
m′,f ′dc

m,f ) · [χ†
m,f (~σr̂)τaχm′,f ′ ] ,

η(r) = ηs(r)(b
c†
m,fdc†

m′,f ′ + dc
m,fbc

m′,f ′)

+ηp(r)(b
c†
m,fbc

m′,f ′ − dc†
m′,f ′dc

m,f ) · [χ†
m,f (~σr̂)χm′,f ′ ] ,

sa(r) = ss(r) · (bc†
m,fbc

m,f + dc†
m,fdc

m,f ) · [χ†
m,fτaχm′,f ′ ] .

(2.10)

The Ansätze obey spin-isospin and Lorentz properties of corresponding particles.
They were inspired by the valence quark content of mesons and they correctly
match the quark field approximation (2.8).

At this level of TDIA expansion only the quark operators are important. The
boson operators can be introduced later on or one can assume that the theory
(2.1, 2.2) contains the fermions only. Then the terms like σ2, ~π2 etc. describe
various nonlinear interactions among fermions (quarks) which have to be coupled
in scalar (pseudoscalar) combinations. Such models (theories) [11] would be effective
nonrenormalizable field theories.

In the following the terms meson, pion, sigma, eta or s are used in that gener-
alized sense refering to expressions like (2.10).

The expansions (2.10) for bosonic quantities appear quite naturally. They have
been encountered in the past applications of the Tamm-Dancoff procedure, as for
example in the formula (4.6) of Ref. [8]. As the operators b and d have the opposite
parity [22], the TDIA conserves parity throughout.

The boundary conditions in (2.4) are now specified using the Ansätze (2.8) and
(2.10). When they are sandwiched between the final and initial states as given in
(2.6), one finds
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∂

∂r
σs(r)

∣∣∣
r=R

= −gσN2

8π

[
j2
0(ω) − j2

1(ω)
]

,

∂

∂r
πs(r)

∣∣∣
r=R

= +
gπs

N2

8π

[
j2
0(ω) + j2

1(ω)
]

,

∂

∂r
πp(r)

∣∣∣
r=R

= +
gπp

N2

4π
j0(ω)j1(ω) ,

∂

∂r
ηs(r)

∣∣∣
r=R

= −gηs
N2

8π

[
j2
0(ω) + j2

1(ω)
]

,

∂

∂r
ηp(r)

∣∣∣
r=R

= −gηp
N2

4π
j0(ω)j1(ω) ,

∂

∂r
ss(r)

∣∣∣
r=R

= −gsN
2

8π

[
j2
0(ω) − j2

1(ω)
]

.

(2.11)

Here ω’s are eigenfrequencies determined by boundary conditions (2.12). The
normalisation N is defined by (4.1) below. From Lint one can derive

ψ(r)
∣∣∣
r=Rbag

= igσσ(r)(~γr̂)ψ(r)
∣∣∣
r=Rbag

− gπ~τ~π(r)(~γr̂)γ5ψ(r)
∣∣∣
r=Rbag

+

+gηη(r)(~γr̂)γ5ψ(r)
∣∣∣
r=Rbag

+ igs~τ~s(r)(~γr̂)ψ(r)
∣∣∣
r=Rbag .

(2.12)

It takes the following form:

(
j0

i (~σr̂) j1

)
χf

mbc
m,f +

(
(~σr̂) j1

ij0

)
χf

mdc †
m,f =

− gπ/pπp(R)
(

(~σr̂)j0
−ij1

)
χf

mbd †
m1,f1

(~τ · ~τ)bd
m2,f2

[χf1 †
m1

(~σr̂)χf2
m2

]bc
m,f

+ gπ/pπp(R)
(

(~σr̂)j0
−ij1

)
χf

mdd †
m2,f2

(~τ · ~τ)dd
m1,f1

[χf1 †
m1

(~σr̂)χf2
m2

]bc
m,f

− gπ/pπp(R)
(

j1
−i(~σr̂)j0

)
χf

mbd †
m1,f1

(~τ · ~τ)bd
m2,f2

[χf1 †
m1

(~σr̂)χf2
m2

]dc †
m,f

+ gπ/pπp(R)
(

j1
−i(~σr̂)j0

)
χf

mdd †
m2,f2

(~τ · ~τ)dd
m1,f1

[χf1 †
m1

(~σr̂)χf2
m2

]dc †
m,f

+ igσσs(R)
(

ij1
−(~σr̂)j0

)
χf

mbd †
m1,f1

bd
m2,f2

bc
m,f

+ igσσs(R)
(

ij1
−(~σr̂)j0

)
χf

mdd †
m1,f1

dd
m2,f2

bc
m,f

− igσfπ

(
ij1

−(~σr̂)j0

)
χf

mbc
m,f
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+ igσσs(R)
(

i(~σr̂)j0
−j1

)
χf

mbd †
m1,f1

bd
m2,f2

dc †
m,f

+ igσσs(R)
(

i(~σr̂)j0
−j1

)
χf

mdd †
m1,f1

dd
m2,f2

dc †
m,f

− igσfπ

(
i(~σr̂)j0
−j1

)
χf

mdc †
m,f

− gπ/sπs(R)
(

(~σr̂)j0
−ij1

)
χf

mbd †
m1,f1

(~τ · ~τ)dd †
m2,f2

bc
m,f

− gπ/sπs(R)
(

(~σr̂)j0
−ij1

)
χf

mdd
m1,f1

(~τ · ~τ)bd
m2,f2

bc
m,f

− gπ/sπs(R)
(

j1
−i(~σr̂)j0

)
χf

mbd †
m1,f1

(~τ · ~τ)dd †
m2,f2

dc †
m,f

− gπ/sπs(R)
(

j1
−i(~σr̂)j0

)
χf

mdd
m1,f1

(~τ · ~τ)bd
m2,f2

dc †
m,f + . . .

+ gη/pηp(R)
(

(~σr̂)j0
−ij1

)
χf

mbd †
m1,f1

bd
m2,f2

[χf1 †
m1

(~σr̂)χf2
m2

]bc
m,f

− gη/pηp(R)
(

(~σr̂)j0
−ij1

)
χf

mdd †
m2,f2

dd
m1,f1

[χf1 †
m1

(~σr̂)χf2
m2

]bc
m,f

+ gη/pηp(R)
(

j1
−i(~σr̂)j0

)
χf

mbd †
m1,f1

bd
m2,f2

[χf1 †
m1

(~σr̂)χf2
m2

]dc †
m,f

− gη/pηp(R)
(

j1
−i(~σr̂)j0

)
χf

mdd †
m2,f2

dd
m1,f1

[χf1 †
m1

(~σr̂)χf2
m2

]dc †
m,f

+ igsss(R)
(

ij1
−(~σr̂)j0

)
χf

mbd †
m1,f1

(~τ · ~τ)bd
m2,f2

bc
m,f

+ igsss(R)
(

ij1
−(~σr̂)j0

)
χf

mdd †
m1,f1

(~τ · ~τ)dd
m2,f2

bc
m,f

+ igsss(R)
(

i(~σr̂)j0
−j1

)
χf

mbd †
m1,f1

(~τ · ~τ)bd
m2,f2

dc †
m,f

+ igsss(R)
(

i(~σr̂)j0
−j1

)
χf

mdd †
m1,f1

(~τ · ~τ)dd
m2,f2

dc †
m,f

+ gη/sηs(R)
(

(~σr̂)j0
−ij1

)
χf

mbd †
m1,f1

dd †
m2,f2

bc
m,f

+ gη/sηs(R)
(

(~σr̂)j0
−ij1

)
χf

mdd
m1,f1

bd
m2,f2

bc
m,f
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+ gη/sηs(R)
(

j1
−i(~σr̂)j0

)
χf

mbd †
m1,f1

dd †
m2,f2

dc †
m,f

+ gη/sηs(R)
(

j1
−i(~σr̂)j0

)
χf

mdd
m1,f1

bd
m2,f2

dc †
m,f .

After sandwiching [12] one obtains
j0(ω)[gσ(fπ − σs(R)) + 3gsss(R)] − j1(ω)(1 − 3gπ/pπp(R) + gη/pηp(R)) = 0,

j0(ω)(1 + 3gπ/pπp(R) − gη/pηp(R)) − j1(ω)[gσ(fπ − σs(R)) − 3gsss(R)] = 0,

j0(ω) − j1(ω)(gσfπ + 3gπ/sπs(R) − gη/sηs(R)) = 0,

j0(ω)(gσfπ − 3gπ/sπs(R) + gη/sηs(R)) − j1(ω) = 0; R = RBag .
(2.13)

In all the above relations flavour and angular-momentum dependent strong coupling
constants gπ/p, gη/p, gη/s etc. appear. This reflects chiral symmetry breaking, which
appears naturally when the non-linear system (2.2) is solved using the Ansätze
(2.8)-(2.10). In order to extract the equations for the s− and p− wave components
from Eqs. (2.5), they are “sandwiched” between the final state 〈f | = 〈qc

f,t| = 〈0|bc
f,t

and initial state |i〉 = |qc
i,u〉 = bc†

i,u|0〉. This choice yields equations for σ, π, η and
s fields[

d2

dr2
+

2
r

d
dr

]
σs(r) = fπλ2

(
f2

π − ν2
)
+

+λ2 [σs(r) − fπ]
[
(σs(r) − fπ)2 + 3πp(r) + η2

p + 3s2
s − ν2

]
,

[
d2

dr2
+

2
r

d
dr

]
πs(r) = λ2πs(r)

[
f2

π + 36πs(r) + 12η2
s − ν2

]
,

[
d2

dr2
+

2
r

d
dr

− 2
r2

]
πp(r) = λ2πp

[
(σs(r) − fπ)2 + 3πp(r) + η2

p + 3s2
s − ν2

]
,

[
d2

dr2
+

2
r

d
dr

]
ηs(r) = λ2ηs(r)

[
f2

π + 36πs(r) + 12η2
s − ν2 + µ2

]
, (2.14)

[
d2

dr2
+

2
r

d
dr

− 2
r2

]
ηp(r) = λ2ηp

[
(σs(r) − fπ)2 + 3πp(r) + η2

p + 3s2
s − ν2 + µ2

]
.

[
d2

dr2
+

2
r

d
dr

]
ss(r) = λ2ss

[
(σs(r) − fπ)2 + 3πp(r) + η2

p + 3s2
s − ν2 + µ2

]

The problem is to find a set of solutions of the differential equations (2.14), { σs, πs,
πp, ηs, ηp, ss }, which satisfy the mathematical boundary conditions (2.11). These
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solutions must be compatible with (2.13) which is independent of r so one has a
strongly correlated algebraic system (2.13) and the system of differential equations.

The parameters (λ, ν, µ) which enter L (2.2) are restricted by the symmetry
- breaking behaviour of the theory. Usually [10, 23], the σ particle is considered
to be a 1.2 GeV resonance, whereas the meson “masses” are parameter which,
for simplicity (and lack of knowledge), are assigned the values of the physical
masses. We have used rounded up values mπ = 0.140GeV, mη = 0.980GeV
and ms = 0.980GeV. Here we have tentatively identified s meson with a0(980)[
IG(JPC) = 1− (0++)

]
and η with η′(958). In the numerics we have also used

an alternative value mσ = 0.450GeV [24]. In the present application, these “ex-
perimental” values have been used, although mσ, mπ etc. can, in principle, be
considered as additional parameters.

The usage of the bag-model has to some extent decoupled the equation for the
quark expansion functions φf

m, φ̃f
m etc. (2.4) from the rest. It communicates with

the πn(r), ηn(r) (n=s, p) and σ(r), s(r) functions only through algebraic relations
(2.13).

Higher order terms in the expansion, such as the third term in (2.4) for example,
would enlarge the system of the coupled equations. As in TDM the whole system
would be coupled sector by sector. That would be governed by the number of
creation (annihilation) operators and by some additional |i〉 (〈f |) states besides
(2.6) ones. The end results would be analogous to the relations among different
sectors in the Fock space in TDM, as one should expect from its reversed picture.

3. Coupling constants and magnetic moment

The results obtained in the leading order of TDIA are used to calculate the
proton magnetic moment and the axial vector coupling constants.

The magnetic moment operator is

~µ(~r) =
1
2
(~r ×~jEM (~r)). (3.1)

Here

jµ
EM (r) = ψ(r)γµQψ(r) + ε3ijπi(r)∂µπj(r) + ε3ijsi(r)∂µsj(r) , (3.2)

Q =
2
3
· 1 + τ3

2
− 1

3
· 1 − τ3

2
. (3.3)

The quark contribution to the magnetic moment is

µ(q) =
2
3
· R

ω4
· (ω/2) − (3/8) sin 2ω + (ω/4) cos 2ω

j2
0(ω) + j2

1(ω) − 2j0(ω)j1(ω)/ω
. (3.4)
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The meson contribution is

µ(M)
p =

16π
3

· 11
3

∞∫
Rbag

r2 dr
(
πp(r)2 + ss(r)2

)
. (3.5)

The proton magnetic moment is given by

µp = µ(q) + µ(M)
p . (3.6)

The axial vector current

Jµ
A = ψγµγ5

~τ

2
ψ + σ∂µ~π − ~π∂µσ + η∂µ~s − ~s∂µη (3.7)

leads to the quark contribution:

g
(q)
A = 〈p ↑ |

∫
d3~rψ(~r)γ3γ5 τ3

2
ψ(~r)|n ↑〉

=
5
3
· 1
3
· j2

0(ω) + j2
1(ω)

j2
0(ω) + j2

1(ω) − 2j0(ω)j1(ω)/ω

(3.8)

and to the meson contribution:

g
(M)
A =

5
3
· 4π

3
·

∞∫
Rbag

dr r2
[
(σs(r) − fπ)

[
π′

p(r) +
2πp(r)

r

] − πp(r)σ′
s(r)

]
. (3.9)

Finally,

g
(p)
A = g

(q)
A + g

(M)
A . (3.10)

The isoscalar axial vector current

J0
A

µ
= ψγµγ5ψ + σ∂µη − η∂µσ + ~s∂µ~π − ~π∂µ~s (3.11)

leads to quark contribution to the isoscalar coupling constant

g0
A

(q) =
1
3
· j2

0(ω) + j2
1(ω)

j2
0(ω) + j2

1(ω) − 2j0(ω)j1(ω)/ω
. (3.12)

The corresponding meson contribution is

g0
A

(M) =
4π

3
·

∞∫
Rbag

dr r2
[
ηp(r)σ′

s(r) − (σs(r) − fπ)
(

η′
p(r) +

2ηp(r)
r

)
+

+5ss

(
π′

p(r) +
2πp(r)

r

)
− 5πp(r)s′s(r)

]
.

(3.13)
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Finally,

g0
A

(p)
= g0

A
(q)

+ g0
A

(M)
. (3.14)

4. Numerical procedure
Numerics will be illustrated here for a non-linear system of coupled ordinary

differential equations which have been derived in Sect. 2.
This system determines fermion and boson radial functions appearing in the

Ansätze, (2.8) and (2.10). The boson radial functions had to satify Eqs. (2.11),
(2.13) and (2.14).

In (2.13) the normalization constant N can be expressed in terms of spherical
Bessel functions and quark eigenfrequencies ω

N2 =
1

R3

[
j2
0(ω) + j2

1(ω) − 2j0(ω)j1(ω)
ω

]−1

. (4.1)

The radial parts of the quark wave functions appearing in (2.8) are spherical
Bessel functions j`(ωr/R) for any spherical bag with radius R. At the bag boundary,
where r = R, these functions have to satisfy the relations (2.13) which combine the
quark frequency ω with the coupling constants gσ, gπ, fπ etc.

The linear σ-model parameters satisfy the following relations derived from the
symmetry-breaking pattern (see Sect. 2) [10]

λ2 =
m2

σ − m2
π

2f2
π

, ν2 = f2
π − m2

π

λ2
, µ = 2f2

π

m2
η − 3m2

π

m2
σ − m2

π

. (4.2)

The σ meson is expected to have a mass of about 1 GeV [23]. Thus the parameter
masses mσ, mπ, mη and ms are selected to be 1.2 GeV (0.450 Gev), 0.140 GeV
and 0.980 GeV, respectively.

One has to solve simultaneously the system containing non-linear differential
equations (2.11) and (2.14) together with the boundary condition

σs(r)
∣∣∣
r→∞

= 0, πs(r)
∣∣∣
r→∞

= 0, πp(r)
∣∣∣
r→∞

= 0,

ηs(r)
∣∣∣
r→∞

= 0, ηp(r)
∣∣∣
r→∞

= 0, ss(r)
∣∣∣
r→∞

= 0
(4.3)

and with the algebraic relations (4.2) This determines the meson functions
σ(r), πs(r), πp(r), ηs(r), ηp(r) and ss(r) the quark frequency ω and various cou-
pling (gπ, gσ, etc.).

This complex system has been solved using the code COLSYS, the collocation
system solver, developed by U. Asher, J. Christiansen and R.D. Russel from the
University of British Columbia and Simon Fraser University, Canada [25]. The
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boundary conditions are set at R À Rbag, where R is set to be so large that the
fields can be approximated by zero at R. The initial guesses have been supplied.
From the asymptotic behaviour and some earlier experience the input was rather
simple and convergence has been achieved quickly.

The problem turns out to be rather sensitive to the derivative boundary condi-
tions which in all cases involve the coupling constant(s). Although the asymptotic
behaviour of the solutions can be inferred from the system itself (see also [26]), the
COLSYS is able to handle rather general initial (guess) solutions.

Upon return the routine gives error estimates for components and its deriva-
tives. The problem parameters can be gradually changed (increased) by using a
continuation method in COLSYS which is left to choose the initial mesh points,
and in the continuation procedure it refines and redistributes the (former) mesh.

The solutions are compared against the consistency conditions (2.13) and the
iterative procedure is continued until the matching is obtained. The iteration con-
sists in performing a self-consistent calculation: the coupling constants gσ, gπ, gη

and gs for the chiral quarks are set to be the same at the beginning (their value
is set to be equal to 10.00). After every iteration the system (2.13) is checked nu-
merically and iteration is preformed until proscribed tolerance is achived. These
new values are replaced in the boundary conditions to calculate new solutions. The
procedure converges rather rapidly. When the matching is achieved, the magnetic
moment, the axial constant and the physical pion mass are calculated from the
obtained solutions.

5. Results
Physically acceptable model values for the axial vector constants g3

A and g0
A and

the proton magnetic moment µp are shown in Tables 1 and 2. Other Tables, i.e.
3, 4, 5, and 6 show how the results depend on the bag radius R and on the quark
eigenfunction ω. As explained in Sect. 2 and 4, the strong coupling constants gσ,
gπ/s, gπ/p, gη/s, gη/p and gs/s were adjusted by a self consistent procedure.

As can be seen from Tables 3, 4, 5 and 6 model is weakly sensitive on mσ and
somewhat more sensitive on R and ω. For the resonable value [11] R = 5 GeV−1

meson components allows solutions with ω < ωbag (ωbag = 2.04) for which one
obtain a resonable value (Tables 1 and 2)

g3
A = 1.24 (ω = 1.95) , (5.1)

which is whithin 1.6% from experimental value g3
A(exp) = 1.26. For the same

parameters one finds
µp = 2.17 (ω = 1.95) , (5.2)

which is 25% smaller than the experimental value µp(exp) = 2.79. In both cases
(5.1) and (5.2) the contribution of mesonic phase was important, being

g3
A(M) = 9% ,
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µp(M) = 16% ,

The values (5.1) and (5.2) should be compared with the MIT-bag model values
g3

A = 1.11 and µp = 1.88. Obviously the chiral bag model works better.

TABLE 1. The results for various ω with R = 5.0 GeV−1 and mσ=1.2 GeV.

ω gσ gπs gπp gηs gηp gs g3
A g0

A µp

1.95 10.799 ±4.672 4.659 2.973 2.954 1.958 1.24 0.663 2.17
1.97 10.781 ±4.076 4.154 2.364 2.360 1.579 1.22 0.661 2.11
2.00 10.763 ±3.035 3.218 1.418 1.425 0.969 1.18 0.658 2.02

TABLE 2. Quark and meson contributions. All parameters are as in Table 1.

ω g3
A(q) g3

A(M) g3
A g0

A(q) g0
A(M) g0

A µp(q) µp(M) µp

1.95 1.14 0.10 1.24 0.681 -0.018 0.663 1.87 0.30 2.17
1.97 1.12 0.10 1.22 0.675 -0.014 0.661 1.88 0.23 2.11
2.00 1.11 0.07 1.18 0.666 -0.008 0.658 1.88 0.14 2.02

TABLE 3. The results for various R with ω = 2.0 and mσ=1.2 GeV.

R gσ gπs gπp gηs gηp gs g3
A g0

A µp

4 10.763 ±2.375 2.524 1.045 1.052 0.709 1.17 0.659 1.64
5 10.763 ±3.035 3.218 1.418 1.425 0.969 1.18 0.658 2.02
6 10.763 ±3.727 3.943 1.877 1.836 1.253 1.20 0.657 2.40
7 10.763 ±4.452 4.698 2.270 2.279 1.560 1.21 0.656 2.78

TABLE 4. Quark and meson contributions. All parameters are as in Table 1.

R g3
A(q) g3

A(M) g3
A g0

A(q) g0
A(M) g0

A µp(q) µp(M) µp

4 1.11 0.06 1.17 0.666 -0.007 0.659 1.51 0.13 1.64
5 1.11 0.07 1.18 0.666 -0.008 0.658 1.88 0.14 2.02
6 1.11 0.09 1.20 0.666 -0.009 0.657 2.26 0.14 2.40
7 1.11 0.10 1.20 0.666 -0.010 0.656 2.64 0.14 2.78

TABLE 5. The results for R = 6GeV−1 and ω = 2.0.

mσ gσ gπs gπp gηs gηp gs g3
A g0

A µp

1.20 10.763 ±3.727 3.943 1.827 1.836 1.253 1.20 0.657 2.40
0.45 10.763 ±3.509 3.944 1.933 1.953 1.337 1.20 0.657 2.40
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TABLE 6. Quark and meson contributions. All parameters are as in Table 5.

mσ g3
A(q) g3

A(M) g3
A g0

A(q) g0
A(M) g0

A µp(q) µp(M) µp

1.20 1.11 0.09 1.20 0.666 -0.009 0.657 2.26 0.14 2.40
0.45 1.11 0.09 1.20 0.666 -0.009 0.657 2.26 0.14 2.40

The isoscalar coupling constant g0
A, whose bag model value is g0

A = 0.666 is
slightly changed by the meson phase. In Table 2 one can find

g0
A = 0.663 (ω = 1.95) , (5.3)

what seems to be to large by far. One can connect [12] g3
A and g0

A with the quark
densities [27–34]

4u = 0.78 ± 0.06 ,

4d = −0.48 ± 0.06 ,

4s = −0.14 ± 0.07 .

In our SU(2)×SU(2) model 4s can be disregarded and one can identify

g3
A = 4u −4d ∼= 1.26 ,

g0
A = 4u + 4d ∼= 0.30 .

Obviously the theoretical explanation for the g0
A(exp) ∼= 0.30 must be searched in

the enlarged SU(3)×SU(3) chiral quark model.
It is useful to note that enlargement of the model from SU(2) [12] to SU(2) ×

SU(2) did not change the predicted values [12] for g3
A and µp significantly. One

is tempted to conclude that the low energy strong dynamics can be to a large
extent, mimicked by the effective pseudoscalar (i.e. pion) meson fields. Probably
that explains why a0(980) and similar mesons were not very much noticed in the
early scattering experiments [3].
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PROŠIREN MODEL KIRALNIH KVARKOVA POTAKNUT
TAMM-DANCOFFOVIM PRIBLIŽENJEM

Postupak potaknut Tamm-Dancoffovom metodom primijenili smo na kiralni
kvarkovski model koji smo proširili uključenjem dodatnih stupnjeva slobode: pseu-
doskalarnog izoskalarnog polja i tripleta skalarno izovektorskog polja. Jednostavniji,
tvorbeni σ-model se ranije primjenjivao radi ispitivanja Tamm-Dancoffom potaknu-
tog približenja (TDIA). Ovdje se uzima kiralni kvarkovski model radi ispitivanja
mogućih novih učinaka dodatnih stupnjeva slobode i da se pokaže nužnost uvod–enja
SU(3)-okusa. Predvid–anja modela s TDIA za aksijalno-vektorsku konstantu vezanja
i za nuklearni magnetski moment uspored–uju se s eksperimentalnim vrijednostima.
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