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REALISTIC REGULARIZATION OF THE QED GREEN FUNCTIONS
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Generalizing the ’t Hooft and Veltman method of unitary regulators, we demon-
strate for the first time the existence of local, Lorentz-invariant, physically moti-
vated Lagrangians of quantum-electrodynamic phenomena such that: (i) Feynman
diagrams are finite and equal the diagrams of QED but with regularized propaga-
tors. (ii) n-point Green functions are C-, P- and T-invariant up to a phase factor,
Lorentz-invariant and causal. (iii) No auxiliary particles or parameters are intro-
duced.
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1. Introduction

Perturbative predictions about quantum-electrodynamic phenomena implied by
a QED Lagrangian can be computed using the Feynman rules, a regularization
method to circumvent ultraviolet divergencies and a renormalization scheme. Regu-
larization method results in regularized n-point Green functions; a suitable limiting
procedure (a renormalization scheme) then leads to physically sensible predictions
that are independent of the particular regularization method used. But no known
regularized n-point Green functions can be regarded as being based on physically re-
alistic premises about quantum-electrodynamic phenomena: the derivation of each
is formalistic since it disregards some of the basic tenets of conventional physics
(e.g., by lacking a Lagrangian, by not being Lorentz-invariant, by introducing par-
ticles with wrong metric or statistics. . . ). So the perturbative predictions of QED
presently cannot be directly derived from physically realistic premises; for a history
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ribarič and šušteršič: realistic regularization of the qed green functions

of, and comments on this basic, conceptual inconsistency see, e.g., [1]. Dirac [2]
believed that removal of this conceptual inconsistency may lead to an important
advance in field theories.

To show that one can remove this inconsistency already in four-dimensional
space-time, we will introduce a new, physically motivated modification of the QED
Lagrangian and consider it within the theoretical framework of ’t Hooft and Velt-
man that presents an alternative to the convential perturbative quantum field the-
ory [3]. They avoid canonical formalism and take diagrams as the basis from which
everything must be derived; so they give a perturbative definition of the S-matrix
directly in terms of diagrams corresponding to a given Lagrangian as specified
by postulated Feynman rules. The question is: How do we modify the QED La-
grangian so that the resulting regularized S-matrix is derived from physically real-
istic premises?

We are using the adjectives formalistic and realistic in the sense of Pauli and
Villars [4]. Introducing their formalistic regularization method, they remarked: ”It
seems very likely that the ’formalistic’ viewpoint used in this paper and by other
workers can only be a transitional stage of the theory, and that the auxiliary masses
will eventually be entirely eliminated, or the ’realistic’ standpoint will be so much
improved that the theory will not contain any further accidental compensations.”
Which we intend to do.

Gupta [5] has shown already in 1952 that one can modify the QED Lagrangian
so that the new Lagrangian results in the S-matrix of QED, regularized by a certain
Pauli-Villars method. And twenty years later, ’t Hooft and Veltman [3] introduced
the method of unitary regulators (HV-method) that: (i) is a variant of Pauli-Villars
methods for regularizing propagators, (ii) requires only an exceedingly simple modi-
fication of the initial Lagrangian and (iii) is very suitable for proving the causality of
the regularized n-point Green functions and the unitarity of the resulting S-matrix.
Unfortunately both methods are formalistic since they introduce also unphysical,
auxiliary particles with wrong metric or statistics. To get rid of this serious con-
ceptual deficiency, we will generalize the HV-method to avoid auxiliary particles.

We will demonstrate the utility of the generalized HV-method by showing that
there are finite perturbative n-point Green functions of quantum-electrodynamic
phenomena derived from a realistic perturbative theory (a rp-theory, for short) such
that:

(i) A rp-theory of quantum-electrodynamic phenomena is specified in a contin-
uous, four-dimensional space-time by a local, Lorentz-invariant, physically
motivated modification of a QED Lagrangian.

(ii) The Feynman rules for this modified Lagrangian, defined as specified by
’t Hooft and Veltman [3], result in regularized Feynman diagrams that equal
the diagrams of QED but with regularized propagators that have no addi-
tional singularities.

(iii) All constants of a rp-theory are measurable in principle; there are no auxiliary
parameters or particles.
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(iv) For certain values of these constants, the QED propagators are such low-
energy approximations to their regularizations as acceptable for renormaliza-
tion.

(v) The n-point Green functions of a rp-theory, defined as specified by ’t Hooft
and Veltman [3] in terms of regularized Feynman diagrams, are C-, P-, T- and
Lorentz-invariant, causal, and charge and total four-momentum conserving.

Such a rp-theory of quantum-electrodynamic phenomena is not yet known; we can-
not incorporate a finite-cutoff, Pauli-Villars, dimensional or lattice regularization
of QED in a rp-theory.

2. Lorentz-invariant regularization without singularities

As in the HV-method to each additional singularity of a regularized Feynman
propagator corresponds an additional particle [3], we will first specify Lorentz-
invariantly regularized Feynman propagators that have no additional singularities
and have the Källén-Lehman representation used in proving causality and unitarity
[3,6]. Regarding the metric and other conventions, we follow Refs. [3,6]; in partic-
ular, a four-vector k = (~k, ik0), and k2 ≡ ~k · ~k − (k0)2.

Consider a Lorentz-invariantly regularized spin 0 Feynman propagator, say,
∆F (x) whose space-time Fourier transform

(2π)4i∆̃F (k) = ϕ(k2)(k2 + m2 − iε)−1 , ϕ(−m2) = 1 , (1)

where: (a) ϕ(z) is an analytic function of complex variable z with a finite discon-
tinuity somewhere across the segment z ≤ zd < −m2 of the negative real axis;
(b) |ϕ(z)| < A|z|−r with r ≥ 3/2 as |z| → ∞; (c) ϕ(z) is real on the positive real
axis; (d) ϕ(z) depends on some constant Λ so that for any Λ ≥ Λ0 > 0 it has
properties (a) to (c) and

sup
|z|<z0

|ϕ(n)(z) − δn0| → 0 as Λ → ∞ for any z0 > 0 , n = 0, 1, 2, (2)

and
sup

z≥0,Λ≥Λ0

|z(n+3)/2ϕ(n)(z)| < ∞ , n = 0, 1, 2.

As a consequence, the spin 0 propagator provides a low-energy approximation to
its regularization (1) which itself is acceptable for renormalization.

Using Cauchy’s integral formula, we can conclude that the Lorentz-invariant
regularization (1) of the spin 0 Feynman propagator admits the Källén-Lehman
representation

(2π)4i∆̃F (k) =

∞∫
0

ρ(s)
k2 + s − iε

ds (3)
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with

ρ(s) = δ(s − m2) + (2πi)−1(m2 − s)−1 lim
y→0

[ϕ(−s − iy) − ϕ(−s + iy)] , (4)

s, y > 0. Note that ρ(s) is real, ρ(s) = O(s−r) as s → ∞, and

∞∫
0

smρ(s) ds = 0 for m = 0, 1, . . . < r − 1 . (5)

So we can decompose the regularized spin 0 propagator ∆F (x) into positive and
negative energy parts: ∆F (x) = Θ(x0)∆+(x) + Θ(−x0)∆−(x) [3].

The function −i(2π)−4(
√

Λ2 − m2 +Λ)n(k2 +m2− iε)−1(
√

k2 + Λ2 − iε+Λ)−n,
Λ > m, n = 1, 2, . . ., is an example of a Lorentz-invariantly regularized spin 0
Feynman propagator that satisfies the above conditions with r = n/2. Unfortu-
nately, we cannot use such propagators for a realistic regularization of the QED
Green functions since we do not know how to construct the corresponding local,
Lorentz-invariant Lagrangians.

A propagator that satisfies conditions (a)-(c) is by (3) a generalization of the
spin-0 propagator regularized by a Pauli-Villars regulator that has a continuous
mass spectrum. Thus, to use such propagators to construct a rp-theory, we have
to extend the ’t Hooft-Veltman construction of Lagrangians in HV-method [3] to
an infinity of additional fields. To provide an example of how this can be done, we
will present a local, Lorentz-invariant Lagrangian whose propagators for interacting
fields can be taken as spin 1 and spin 1

2 propagators regularized so that they acquire
no additional singularities and have the Källén-Lehman representation.

3. An example of Lagrangian that regularizes QED
propagators

Following Veltman [6], we will consider QED with massive photons in unitary
gauge. Its Lagrangian reads

LQED = − 1
4 (∂µAν−∂νAµ)2− 1

2µ2A2−ψ̄(γµ↔
∂µ+m)ψ+ieψ̄γµψAµ+AµJµ+J̄eψ+ψ̄Je ,

(6)
where Jµ(x), J̄e(x) and Je(x) are four-vector and bispinor source fields, and µ is the
non-vanishing photon mass, a physical constant < 2 × 10−16 eV [7]. The Feynman
propagators for the four-vector field Aµ(x) and for the bispinor field ψ(x) are

−i(2π)−4 δµν + µ−2kµkν

k2 + µ2 − iε
, −i(2π)−4 −iγµkµ + m

k2 + m2 − iε
. (7)

We could use LQED to define a rp-theory as specified in Sect. 1, were the propagators
(7) are decreasing faster when k2 tends to infinity.
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However, one can modify the QED Lagrangian (6) so that the propagators for
the fields Aµ and ψ are such regularizations of propagators (7) that have no addi-
tional singularities when calculated according to the generalized ’t Hooft-Veltman
method. Take, for example, the following real-valued, local, Lorentz-invariant La-
grangian

LTR = −L1 − L1/2 + ieψ̄γµψAµ + AµJµ + J̄eψ + ψ̄Je , (8)

with

L1 ≡ q−1
1

∫
d4pΨ′

µ(x,−p)[Λt(p2) + pν↔
∂ν ]Ψµ(x, p)

+q−1
1 s1

∫
d4pd4p′ f(p′2)f(p2)[Ψ′

µ(x,−p′)Ψ′µ(x, p)

+p′νpνΨµ(x,−p′)Ψµ(x, p) − pµΨµ(x,−p′)p′νΨν(x, p)] , (9)

L1/2 ≡ q−1
1/2

∫
d4p Ψ̄1/2(x,−p)[Λt(p2) + pµ↔

∂µ]Ψ1/2(x, p)

−q−1
1/2s1/2

∫
d4p′ d4p f(p′2)f(p2)[Ψ̄1/2(x,−p′)γµΨ1/2(x, p)pµ + c.c.],(10)

Aµ(x) ≡
∫

d4pf(p2)Ψµ(x, p) , ψ(x) ≡
∫

d4pf(p2)Ψ1/2(x, p) , (11)

where: Ψµ(x, p) and Ψ′
µ(x, p) are four-vector-valued functions of two four-vectors x

and p, Ψ1/2(x, p) is a bispinor-valued function of x and p, 2a
↔
∂µb ≡ a(∂µb)− (∂µa)b;

Ψ̄1/2 ≡ Ψ†
1/2γ

4, t(p2) and f(p2) are real-valued functions of real p2,
∫

d4pf2(p2) = 1;
q1, s1, q1/2, s1/2 and Λ are real constants, not auxiliary parameters.

There are three kinds of reasons for the chosen form (8–11) of the Lagrangian
LTR:

(A) It is the purpose of this paper to show that there are Lagrangians that general-
ize the ’t Hooft and Veltman method of unitary regulators [3] to an infinity of
additional fields but do not introduce additional particles. So we constructed
the Lagrangian LTR modifying LQED on the analogy of HV-method [3]: (i) We
introduced an infinity of four-vector and bispinor fields of x that have a con-
tinuous index p, namely Ψµ(x, p), Ψ′

µ(x, p) and Ψ1/2(x, p). (ii) We replaced
the free part of LQED with the free Lagrangian of these fields, −L1 − L1/2,
which is of the first order in ∂ and has a nondiagonal mass matrix. (iii) In the
interaction and source terms of LQED, we replaced the fields Aµ(x) and ψ(x)
with weighted integrals (11) of Ψµ(x, p) and Ψ1/2(x, p) over the continuous
index p.

(B) We tried to simplify the calculations of regularized propagators. We could do
without the four-vector function Ψ′

µ(x, p) which we introduced solely to be
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able to use the same functions t(p2) and f(p2) in L1 and L1/2. We introduced
↔
∂ to make LTR itself real-valued, not only its action real as required.

(C) The physical motivation for the type of Lagrangian we constructed, which we
considered in detail in Ref. [8], is twofold: (i) The Euler-Lagrange equations
of LTR resemble the Boltzmann integro-differential transport equation, which
can better model rapidly varying, “ultra-high-energy”, macroscopic fluid phe-
nomena than the differential equations of motion of fluid dynamics. (To this
end, it uses an infinity of fields to take some account of the underlying micro-
scopic behaviour.) So the Euler-Lagrange equations of LTR may be regarded
as classical transport equations of motion for the one-particle distribution of
some infinitesimal entities, such as X-ons surmised to underly all physical
phenomena by Feynman [9]. (ii) Ever since the EPR gedanken experiment,
it is known that interpretations of certain quantum phenomena suggest the
existence of causal faster-than-light effects. The Euler-Lagrange equations of
LTR are the first Lorentz-invariant equations of motion that classicaly model
such effects, because their retarded solutions have unbounded front velocities
[8]. That is a major qualitative advantage of LTR over LQED.

Using the Euler-Lagrange equations of LTR with e = 0 and proceeding as in
Ref. [10], we calculate the causal dependence of Ψµ(x, p) and Ψ′

µ(x, p) on Jµ(x),
and of Ψ1/2(x, p) on Je(x). Thereby we can infer that the Feynman propagator for
the four-vector field Aµ(x) defined by (11) equals

−i(2π)−4g̃1
δµν + µ̃−2kµkν

k2 + µ̃2
, (12)

g̃1(k2) ≡ q1s
−2
1 I10I

−2
20 , µ̃(k2) ≡ |s1|−1I−1

20 , (13)

where Imn(k2) is an analytic function of the complex variable k2 such that

Imn(k2) = 2π2Λ−m

∞∫
0

ym+nf2(y)t−m(y)[
√

1 + Λ−2k2yt−2(y) + 1]−mdy (14)

for k2 > 0; and the Feynman propagator for the bispinor field ψ(x) defined by (11)
equals

−i(2π)−4g̃1/2

−iγµkµ + m̃

k2 + m̃2
, (15)

g̃1/2(k2) ≡ q1/2s
−1
1/2I10I

−1
20 , m̃(k2) ≡ s−1

1/2{1 − s2
1/2[I10I11 + 1

4k2I2
20]}I−1

20 ; (16)

where k2 has to be replaced everywhere with k2 − iε, by the Feynman prescription.
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If functions t(p2) and f(p2) are such that

∞∫
0

f2(y)t(y) |√y/t(y)|l+1dy = 0 (17)

for l = 0,−1, . . . ,−n, then for complex values of k as |k2| → ∞:

∣∣∣∣g̃1
δµν + µ̃−2kµkν

k2 + µ̃2

∣∣∣∣ = O(|k2|(1−n)/2) ,

∣∣∣∣g̃1/2

m̃ − iγµkµ

k2 + m̃2

∣∣∣∣ = O(|k2|−n/2) . (18)

When the function y/t2(y) takes only a finite number of real values vi, i =
1, 2, . . ., we can explicitly evaluate integrals (14); we obtain

Imn(k2) = Λ−m
∑

i

Amniv
m
i [

√
1 + Λ−2vik2 + 1]−m , (19)

where Amni are real constants. Considering such a case, we can show that for
any µ2, m2 and integer n, there exist functions f(p2) and t(p2), and constants s1,
s1/2, q1, q1/2 and Λ0 > 0 such that the propagators (12) and (15) with Λ > Λ0

are regularizations of spin 1 and spin 1
2 propagators (7) such that: (i) they have

properties analogous to those of propagator (1), and (ii) there is a positive constant
k2
0 such that for all k2 ≥ −Λ2k2

0 the functions Imn(k2), g̃1/2(k2), µ̃(k2), g̃1(k2) and
m̃(k2) are real. In such a case: (i) The constants s1, s1/2, q1 and q1/2 are such that

µ̃2(−µ2) = µ2 , m̃2(−m2) = m2 , (20)

g̃1/2(−µ2) = 1+dµ̃2(k2 = −µ2)/dk2, g̃1(−m2) = 1+dm̃2(k2 = −m2)/dk2. (21)

So the propagators (12) and (15) have poles at k2 = −µ2 and k2 = −m2, where
their behaviour is given by the spin 1 and spin 1

2 propagators (7) with ε = 0.
(ii) The difference between spin 1 propagator and propagator (12) depends on the
value of Λ so that it satisfies relations analogous to (2); and the same goes for
spin 1

2 propagators. (iii) The propagators (12) and (15) are analytic functions of k2

that (a) are not continuous everywhere across the negative real axis, (b) have no
additional singularities to those of spin 1 and spin 1

2 propagators (7), and (c) satisfy
relations (18). For any integer n ≥ 3, their Källén-Lehman integral representations
are superconvergent: in x-space we can decompose the Feynman propagators (12)
and (15) into positive and negative energy parts without contact terms [3].

As a consequence of (i) and (ii) above, the classical, inhomogeneous Maxwell
equations can be obtained from the Euler-Lagrange equations of LTR with Jµ = 0
and Je = 0 and the definitions (11), by limiting Λ → 0.
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4. Realistic regularization of the QED Green functions

To obtain a perturbative S-matrix of quantum-electrodynamic phenomena
based on the Lagrangian LTR, say STR, we use the ’t Hooft-Veltman definition
of an S-matrix [3]. In view of the results of Sect. 3, there are functions f(p2) and
t(p2), and constants s1, s1/2, q1, q1/2 and Λ such that the n-point Green functions
of LTR and the corresponding S-matrix STR have the following properties:

(i) As the Lagrangian LTR has the same interaction and source terms as the
QED Lagrangian LQED, they are expressed in terms of QED diagrams with
the spin 1 and spin 1

2 propagators (7) replaced with their regularizations (12)
and (15), whereas the vertices are the same as in QED, i.e., (2π)4γµ; so all
diagrams are finite.

(ii) To any order in the fine structure constant, the n-point Green functions are
causal [3], charge and total four-momentum conserving, Lorentz-invariant and
C-, P- and T-invariant up to a phase factor [11].

(iii) If not only the propagators (12) and (15) but also the higher-order two-point
Green functions of LTR have no additional singularities, then STR relates
the same particles as the S-matrix of QED with massive photons in unitary
gauge: electrons and positrons, each with two possible polarization vectors,
and massive photons with three possible polarization vectors; none of them
with wrong metric or statistics. As the propagators (12) and (15) admit the
Källén-Lehman representation, this scattering matrix STR is unitary to any
order in the fine structure constant [3].

(iv) In the limit Λ → ∞, the propagators (12) and (15) behave as sufficies for
renormalization.

So, the perturbative n-point Green functions of LTR are the result of a rp-theory
as defined in Sect. 1.

In view of (iv), we can compute by renormalization the renormalized n-point
Green functions of QED with massless photons from the n-point Green functions
of LTR by choosing an appropriate dependence of e, s1, s1/2, q1 and q1/2 on Λ, and
then limiting Λ → ∞ and the renormalized photon mass to zero [6].

5. Comments

Generalizing the ’t Hooft and Veltman method of unitary regulators, we have
shown, for the first time as far as we know, that one can regularize the QED Green
functions in accordance with the basic tenets of theoretical physics by suitably
modifying the free part of QED Lagrangian. As we mentioned in Sect. 3, the
physical motivation for such modification has been the Feynman surmise about X-
ons, the Boltzmann improvement on fluid dynamics by the transport theory based
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on his equation and interpretations of certain quantum-electrodynamic phenomena
that suggest causal faster-than-light effects.

Within the framework of perturbative quantum field theory as defined by
’t Hooft and Veltman [3], the Lagrangian LTR is related to the physical world
solely through the perturbatively defined scattering matrix STR. We see no physi-
cal properties of STR that require the spectral function (4) and the Hamiltonians
corresponding to free Lagrangians L1 and L1/2 (which are not free-particle La-
grangians) to be positive as they turn out to be within the framework of canonical
formalism [1].

The need for a regularization of QED that would result in a realistic physi-
cal model was felt very strongly by the founders of QED, Dirac and Heisenberg,
already some sixty-five years ago [1]. But neither they nor their contemporaries
succeded in getting rid of the ultraviolet divergencies by a physicaly motivated
modification of the QED Lagrangian. In the late 1940s, however, Tomonaga,
Schwinger and Feynman “solved” the problem of QED ultraviolet divergencies
through renormalization—a solution which does not require the preceding regu-
larization to be realistic and removes all parameters characteristic of it. As they
obtained spectacularly succesful formulas for quantum-electrodynamic phenomena,
the problem of finding a realistic, Lagrangian-based regularization of the QED
Green functions was not so urgent any more. As there had been no progress what-
soever towards a solution of this problem, it mainly came to be considered as practi-
cally unsolvable [1]; those who hoped otherwise were often considered “irrational”,
as Isham, Salam and Strathdee [12] complained twenty-five years later. Thus nowa-
days, as far as we know, no quantum-field theorist, excepting the string theorist,
pays much attention to this problem, which many of the preceding generations—
e.g., Dirac, Heisenberg, Landau, Pauli and Salam, to mention some—still hoped
to be solved somehow someday [1, 4]. But the string theorists abandon one of the
basic premises of conventional physics, the four-dimensionality of space-time. We
have shown, however, that such drastic steps may be avoided when modifying QED
Lagrangian to get rid of ultraviolet divergencies. But the question remains which
modification of the type considered is the most appropriate for better describing
quantum-electrodynamic phenomena and their faster-than-light effects than the
conventional QED, and what is the content of such a perturbative theory.
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REALISTIČNA REGULARIZACIJA GREENOVIH FUNKCIJA QED

Generalizacijom unitarnih regulatora ’t Hooft–Veltmanovom metodom pokazujemo
po prvi puta postojanje lokalnih, Lorentz-invarijantnih i fizikalno motiviranih La-
grangiana za kvantno mehaničke pojave, za koje su: (i) Feynmanovi diagrami
konačni i jednaki diagramima QED, ali s regulariziranim propagatorima. (ii) Green-
ove funkcije za n-točaka su C-, P-, i T-invariantne do na fazni faktor, Lorentz-
invarijantne i kauzalne. (iii) Ne uvode se pomoćne čestice niti parametri.
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