
A Regular Pattern of Timestamps
Between Machines with Built-in System Time

Ni Made Ary Esta Dewi Wirastuti, Komang Oka Saputra, and Wei-Chung Teng

Abstract—This paper studied the effect of 15.6 ms time
resolution where the collected timestamps are in a form of parallel
dotted lines, instead of one straight line like in classical case. The
dotted lines made the clock skew measurement of two devices to
become incorrect as the measurement which normally follow the
cluster of offsets but now follow the parallel dotted lines. Dotted
lines pattern is required in order to understand how to correct
the clock skew measurement on data containing dotted lines. To
model the dotted lines pattern is through Dotted lines Grouping
Method, a tools to find the characteristics of the dotted lines. The
dotted lines grouping method was then tested data obtained from
wired and wireless communication of two similar devices. The
dotted line grouping method results equal maximum number of
dot of 10 for both data, which indicated the robustness of the
dotted lines grouping method.

Index Terms—Clock skew, dotted lines, time resolution, times-
tamps, windows time.

I. INTRODUCTION

T IMESTAMPS or the reported time of a current event,
is the essence of time-based applications. Regarding

time synchronization, for instance, all devices must report the 
same time at the same instant, regardless of their connection 
through network [1–3]. Meanwhile, timestamps of sending
and receiving packets are collected to measure communication 
delay over network [3,4]. Another application, namely clock 
skew estimation [5,6], intends to measure the difference in 
the frequency rate between the time sources, or the clocks, of 
two devices. The fact that most digital gadgets presently come 
with a digital clock allows you to delve deeper into the subject
of time information. In the literatures, explorations of time 
information are mostly conducted in wireless sensor networks
(WSN). Its open-to-program nodes and easy-to-connect system 
with Bluetooth or Wireless Fidelity (Wi-Fi) make WSN an 
appealing subject for investigating time information, such 
as exact time-stamping algorithms [7-9], secure time syn-
chronization [9,10], or timestamps validation method [9–11].
Meanwhile, the more commercial and ubiquitous equipment,

Manuscript received November 14, 2022; revised December 8, 2022. Date 
of publication April 12, 2023. Date of current version April 12, 2023. The 
associate editor prof. Vladan Papić has been coordinating the review of this 
manuscript and approved it for publication.

Ni Made Ary Esta Dewi Wirastuti and Komang Oka Saputra are 
with the Study Program of Electrical Engineering, Faculty of Engineer-
ing, Udayana University, Bali, Indonesia (e-mails: {dewi.wirastuti, okasapu-
tra}@unud.ac.id).

Wei-Chung Teng is with the Department of Computer Science and Infor-
mation Engineering, National Taiwan University of Science and Technology, 
Taipei, Taiwan (e-mail: weichung@csie.ntust.edu.tw).

Digital Object Identifier (DOI): 10.24138/jcomss-2022-0130

... ...

... ...

...r1 2xr1

r2 2xr2

ixr1 (i+1)xr1

nxr2

nxr10

0

Calling system time 

Time difference

Time difference

Δt

C1

C2

Fig. 1. Time diagrams of two digital clocks with different clock resolutions.

such as a Personal Computer (PC), server, or laptop, are less
likely to have their timestamps analyzed. This is because the
operating systems installed in these machines, such as Linux or
Windows, are built in with system time, where their resolution
level rigorously governs the accuracy of the reported time.

Time is a continuous function. When a computer invokes
its system time to get timestamps, it treats the continuous
time into discrete time series, where the time unit is called
as tick [12]. The magnitude of the range between ticks, or the
clock resolution, rules the accuracy of the reported time. For
example, Fig. 1 shows time diagrams of two clocks, C1 and
C2, where their resolutions are r1 and r2 respectively [13].
As r1 is higher than r2, for an equal range of time, C1 ticks
more often than C2. When C2 has ticked once, C1 could have
been for multiple times. For instance, when r1 is 1 µs and r2
is 1 ms, one tick of r2 means 1000 ticks of r1. The two black
circles in Fig. 1 illustrate two requests at the same instant to
C1 and C2. Here, while C1 reports time of ixr1, C2 gives
time of r2. By notating the time-stamping location as t, and
the elapsed time from a time reference (0 in this example) to
t as ∆t, the reported time for any clock resolution r can be
expressed by

reported time = ⌊∆t

r
⌋ ∗ r (1)

where ⌊∆t
r ⌋ only is the number of ticks that has been passed

from the reference. In practice, a time reference can be the
UNIX epoch time (January 1, 1970, 00:00:00) at Coordinated
Universal Time (UTC), or other time references set by the
operating system, like 00:00:00 UTC of the first day on the
current year, or it can also be the time when the computer
booting.

Another information in Fig. 1 is that the discretization
process leaves differences for the reported times comparing
to the real one. These time differences are caused by the
rounded down process in Expression 1. The higher the clock

126 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 2, JUNE 2023

1845-6421/06/2022-0130 © 2023 CCIS

Original scientific article



resolution r in Expression 1, the fewer the time difference
will be, resulting in a more precise reported time as well
[14]. If the requirement is only a precise time, choosing an
Operating System (OS) with a high clock resolution is the
answer. However, for a wider impact, it is known also that
high clock resolutions can harm battery life, waste power,
or even slow the computer. These facts make lower clock
resolutions also a proper option. Among available OSs for
computer, Linux is one of those embedded by a system time
with a high clock resolution of 1 µs. Windows, on the other
hand, by default has a resolution of 15.6 ms on its system
time.

One of the time-stamping methods is by employing a
measurer to collect timestamps of a sending device. Basically,
the recorded timestamps are sorted based on the order of the
receiving time, {(t1, o1), (t2, o2), . . . , (tn, on)}, where t is
the receiver time, and o is offset (receiver time - sending
device time). For further analysis, these offsets are modeled
in a scatter diagram like in Fig 2(a). Each offset in this figure
lines up into a straight line from the first offset to the last
one. The decreasing trend of the offsets meanwhile, is caused
by the clock skew of both devices [5, 6], where its value can
be estimated by using linear regression [5], minimum-offsets
approaches [17], linear programming algorithm (LPA) [5], or
the Hough transform (HT)-based method [18].

900 950 1000 1050
-15

-10

-5

0

5

Receiver time (s)

O
ff

se
t (

m
s)

900 950 1000 1050

-15

-10

-5

0

5

Receiver time (s)

O
ff

se
t (

m
s)

(a)

(b)

Fig. 2. Parts of the 3000 pairs of timestamps of a Linux notebook and a
Windows PC. Offset here is Windows’ receiver time - Linux’s sender time.
(a) Classical case. (b) Dotted-lines case.

Apart from the common case in Fig. 2(a), the main point
of this paper is a case like in Fig. 2(b), where the offsets fall
into some parallel lines, instead of one straight line. As the
parallel lines are formed in a dotted style by the offsets, we
call this phenomenon as dotted lines.

The following section introduces the contribution of this
paper. Section III explains the dotted lines basic concept.
Section IV then detailed the proposed Dotted lines Grouping

Method. Next, in Section V, the evaluation results of the
proposed method on wired and wireless data are shown.
Section V also presents several discussions related to the
proposed method. The future work is then presented in Section
VI and the conclusion of this paper is given in Section VII.

II. CONTRIBUTION

The first contribution of this work is to create a method to
obtain the statistics of the dotted lines, namely Dotted lines
Grouping Method. The proposed method marks all lines in the
dotted lines including their dots member, the start and the end
dot for each lines, as well as the pattern of the number of each
dot in each line. Based on the result of the proposed method
we can then contribute a concept of the dotted lines, such
as how the dotted lines are formed, the relationships between
the slope of each line and system time resolution, and how
system time resolution produces the length of each line in
the dotted lines. In terms of potential practical applications,
this paper used clock skew measurement as the analysis’s
foundation. The effect of the dotted lines on clock skew is
next examined in comparison to typical circumstances. In the
opposite direction, how different clock skews affect the pattern
of the dotted lines is investigated. All the concepts have been
evaluated through simulations, and also experiments on wired
and wireless networks.

III. DOTTED LINES: ANALYSIS AND CHARACTERISTICS

A. The Occurrence and Characteristics of the Dotted Lines

To explain how the dotted lines arise, let use an example
as follows. There is a device D that sends its timestamps,
one per 1000 ms, to two measurers, M1 and M2, where their
clock resolutions are 1 µs, 1 µs and 15.6 ms respectively. For
the shake of simplicity, the clocks of all machines are fully
synchronized, and the delays between them are neglected. In
advance, D, M1, and M2 implemented Expression 1 when
producing their timestamps.

Table I shows the time diagrams of D, M1 and M2,
from their first 21 timestamps. For a fully-time synchronized
and neglected-delay system, all timestamps of M1 and M2
should be similar with C’s timestamps. Moreover, the clock
resolutions of M1 and M2 play their role here. While M1’s
microsecond resolution produced precise timestamps as shown
in “M1 time” column, the rounded down process of the 15.6
ms resolution at M2 let the reported timestamps contain time
differences as shown in “M2 time” column. Accordingly, the
time differences in M2’s timestamps give direct impacts to the
offsets between D and M2 (see “DM1 offset” and “DM2
offset” columns).

The pattern of the offsets on both cases can then be found
in Figs. 3(a) and 3(b). It is clear from Fig. 3(a) that D and
M1 result a horizontal pattern of offsets due to the zero
skew between them (a fully-time synchronized system). Fig.
3(b), meanwhile, shows how the offsets of D and M2 are
formed by the rounded down process at M2. Observe the first
line on Fig. 3(b) and the first ten packets in Table I for the
rationale. On each M2 timestamp, 1.6 ms, the remainder of
the rounded process of the 15.6 ms resolution, is gathered.

N. M. A. E. D. WIRASTUTI et al.: A REGULAR PATTERN OF TIMESTAMPS BETWEEN MACHINES 127



TABLE I
TIME DIAGRAMS BETWEEN D, M1, AND M2

Packet
number

D
time

M1
time

DM1
offset

M2
time

DM2
offset

1 0 0 0 0 0
2 1000 1000 0 998.4 -1.6
3 2000 2000 0 1996.8 -3.2
4 3000 3000 0 2995.2 -4.8
5 4000 4000 0 3993.6 -6.4
6 5000 5000 0 4992 -8
7 6000 6000 0 5990.4 -9.6
8 7000 7000 0 6988.8 -11.2
9 8000 8000 0 7987.2 -12.8
10 9000 9000 0 8985.6 -14.4
11 10000 10000 0 9999.6 -0.4
12 11000 11000 0 10998 -2
13 12000 12000 0 11996.4 -3.6
14 13000 13000 0 12994.8 -5.2
15 14000 14000 0 13993.2 -6.8
16 15000 15000 0 14991.6 -8.4
17 16000 16000 0 15990 -10
18 17000 17000 0 16988.4 -11.6
19 18000 18000 0 17986.8 -13.2
20 19000 19000 0 18985.2 -14.8
21 20000 20000 0 19999.2 -0.8

These accumulated values form DM2’s offsets into -1.6 ms,
-3.2 ms, and so on until -14.4 ms, where these offsets fall into
one straight line as illustrated in Fig. 3(b).

As the 15.6 ms resolution fully bounds the time-stamping
process, the accumulation of the rounded down remainder is
also bounded by the value of 15.6 ms. The offsets show that
they terminate at -14.4 ms since the next value, which should
be -16 ms, has past the boundary of -15.6 ms. When the
boundary is exceeded, a new accumulation process is started,
along with the creation of a new straight line similar to the
second line in Fig. 3(b), which is formed by packets 11 to 20.
For this example, where the sending interval at D is 1000 ms,
the number of offset (dot) in a line is 10. Expression 2 then
shows how to calculate the number of dots of each line for
any sending interval int (in the unit of ms).

number of dot = ⌊ 15.6

mod(int, 15.6)
⌋+ 1 (2)

From the example above, the skew of each line is the rate of
the offsets accumulation, -1.6 ms for every 1 second, or -1.6
ms/s (-1600 ppm). On practical applications however, the line
skew is the ratio between the offsets range and the elapsed
time from the offsets of a particular line as illustrated in Fig.
3(b) and then expressed in Expression 3.

line skew =
∆o

∆t
=

offsetlast − offsetfirst
rec. timelast − rec. timefirst

(3)

To this point, the condition between M2 and D, which is
set to be fully time synchronized, has not been figured yet in
Fig. 3(b). Even if LPA is implemented, the lower bottom of
the two lines cannot be bounded as a horizontal line to indicate
a zero skew.

More offsets are clearly needed to show the time-
synchronized condition. Fig. 3(c) shows an extension of Fig.
3(b), where 117 offsets of M2 and D are involved. It can be
seen that the lower bottom of the offsets in Fig 3(c) can now

0 5 10 15 20

-1

0

1

Receiver time (s)

O
ff

se
t (

m
s)

0 5 10 15 20

-15

-10

-5

0

Receiver time (s)

O
ff

se
t (

m
s)

(a)

(b)

0 20 40 60 80 100

-15

-10

-5

0

Receiver time (s)

O
ff

se
t (

m
s)

(c)

Δt

Δo

Fig. 3. Offset-set of the case in Table I. (a) 20 offsets of D and M1. (b) 20
offsets of D and M2. (c) 117 offsets of D and M2.

be bounded by a horizontal LPA line (the dashed line) to show
a 0 ppm skew.

One fact from the above explanations is, even they need
more offsets, the dotted lines do not alter the clock skew of
the observed devices comparing to the condition when they
are in the normal case.

Another unique fact from Fig. 3(c) is that the number
of dot in each line does not always follow Expression 2.
Among several lines with ten dots, there exist lines with nine
dots only. Like the other lines, these lines are also started
when the offsets accumulation has exceeded the -15.6 ms.
However, in this case, the -15.6 ms is exceeded sooner than
usual. This anomaly happens due to the starting offset of each
line also encounters accumulation every time the -15.6 ms
is exceeded. This condition can be found in Table I, “DM2
offset” column, at the packet number 11 and 21, where the
starting offsets of the second and third lines are -0.4 ms and
-0.8 ms (accumulated by -0.4 ms). The accumulations on the
starting offset affect the ending offset as well. From -14.4
ms as the ending offset of the first line, it then becomes -
14.8 ms in the second line. The third and fourth values (they
are unwritten in Table I), should be -15.2 ms and -15.6 ms
respectively. However, as -15.6 ms has exceeded the resolution
boundary, the last offset of the fourth line is only -14 ms, or
the fourth line has one dot fewer than normal.

As there exist lines with number of dot that is fewer than
the one obtained by Expression 2, for the rest of this paper,
result of Expression 2 (and also later Expression 4) is named

128 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 2, JUNE 2023



TABLE II
TIME DIAGRAMS BETWEEN D, M3, AND M4

Packet
number

D
time

M3
true time

M3
time

DM3
offset

M4
true time

M4
time

DM4
offset

1 0 0 0 0 0 0 0
2 1000 999.9 998.4 -1.6 1000.2 998.4 -1.6
3 2000 1999.8 1996.8 -3.2 2000.4 1996.8 -3.2
4 3000 2999.7 2995.2 -4.8 3000.6 2995.2 -4.8
5 4000 3999.6 3993.6 -6.4 4000.8 3993.6 -6.4
6 5000 4999.5 4992 -8 5001 4992 -8
7 6000 5999.4 5990.4 -9.6 6001.2 5990.4 -9.6
8 7000 6999.3 6988.8 -11.2 7001.4 6988.8 -11.2
9 8000 7999.2 7987.2 -12.8 8001.6 7987.2 -12.8
10 9000 8999.1 8985.6 -14.4 9001.8 9001.2 1.2
11 10000 9999 9984 -16
12 11000 10998 10998 -2

as “maximum number of dot”, instead of “number of dot”
only. The pattern of the dotted lines can then be figured as
“some lines with maximum number of dot that are somehow
intercalated by some lines with one fewer number of dot”.

B. Relations Between Dotted Lines and Clock Skew

Another case is used to explain how clock skews affect
dotted lines. D is now communicating with two other mea-
surers, M3 and M4, where both are in 15.6 ms resolution.
Meanwhile, the relative clock skew between M3 to D is -100
ppm, and M4 to D is 200 ppm. To support the explanations,
Table II provides the time diagrams.

In Table II, contents in “M3 true time” and “M4 true time”
columns are the true times of M3 and M4 before they are
time-stamped by using Expression 1. It can be seen from the
two columns that M3 has decreased times, 100 µs per second
(-100 ppm), while M4’ times are increased 200 µs per second
(200 ppm).

On the previous case, the system is fully controlled by the
rounded down process when timestamps are produced. Now,
there is a clock skew accumulation that adds/reduces the true
time before the time-stamping process. However, as clock
skew accumulates in a small magnitude, at least in hundreds of
microsecond per second [14], its accumulation does not always
affect the reported time, but when the value is large enough to
make a 15.6 ms change in the numerator of Expression 1. For
instance, in “M3 time” column, the accumulation of -100 µs/s
takes effect after 11 timestamps, where the reported time by
M3 is one tick (15.6 ms) fewer than the normal case without
skew (see “M2 time” in Table I). Meanwhile, the 200 µs/s
accumulation in M4 takes effect after 10 timestamps, where
in this case, the reported time by M4 is one tick more than
the normal case.

As offset is a function of receiver time, the one tick fewer
or one tick more than normal that occurs in the receiver
time change also the offsets accumulation boundary. From
the two examples, while the positive skew makes the value
to be exceeded in offsets accumulation is less than 15.6 ms,
the negative skew makes it larger. The direct result from the
change in the offsets accumulation boundary is the maximum
number of dot. Mathematically, the maximum number of dot
in dotted lines for any interval int, and clock skew skew (in

the unit of ms/ms), can be expressed by

number of dot = ⌊ 15.6

mod(int ∗ (1 + skew), 15.6)
⌋+ 1 (4)

Theoretically, the larger the observed skew in Expression
4 the less the maximum number of dot be, and vice versa.

C. Marking the Member of Each Line

Apart from analyzing the offsets, the number of tick of each
receiver time can also be used to show how every lines are
formed in the dotted lines. On every time-stamping event at
the receiver, the ideal number of tick, namely “base tick”, is
expressed in Expression 5

base tick(i) = i ∗ ⌊RecT (i) − RecT (i− 1)

15.6
⌋ (5)

where RecT is used to notate the receiver time, i is started
from 2, and the first receiver time, RecT (1), is zero as
exemplified in Tables I and II.

Based on this expression, the base tick of every receiver
time in Table I are: {0, 64, 128, 192, 256, 320, 384, 448, 512,
576, 640, 704, 768, 832, 896, 960, 1024, 1088, 1152, 1216,
1280}.

However, as time passes by, the remainder accumulation
of the rounded down processes alter each number of tick to
not follow the base tick rule. Below is how the remainder
accumulation when affecting the number of tick is modeled,
where the number of tick for every receiver time is called as
“real tick”.

real tick(i) = ⌊ i ∗ (RecT (i) − RecT (i− 1))

15.6
⌋ (6)

By using Expression 6, the real tick of each receiver time
in Table I can be listed as {0, 64, 128, 192, 256, 320, 384,
448, 512, 576, 641, 705, 769, 833, 897, 961, 1025, 1089, 1153,
1217, 1282}. The difference between the real tick and the base
tick, namely “diff tick”, can then be calculated as {0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2}.

Diff tick always increases by one every time a new line
is started, where, therefore, diff tick can be used to mark the
member of each line on the dotted lines. Packets with diff tick
of 0 indicate that they are the members of the first line, 1 is
the second line, and so on and so forth.

IV. DOTTED LINES GROUPING METHOD

Based on the diff tick concept, an algorithm is designed to
collect the statistics of the dotted lines. However, in practice,
the receiver times are not always in a fixed interval, due to
the possible occurrence of packet losses. When packet losses
occur before the ith received packet, the value of “RecT (i)
− RecT (i − 1)” in Expression 5 and 6 to become incorrect.
To overcome this issue, let first simplify both expressions by
combining them into Expression 7, where dtick here notates
the diff tick value.

dtick(i) = ⌊
RecT (i) − j ∗ ⌊ int

15.6⌋ ∗ 15.6
15.6

⌋ (7)

Inside the rounded down bracket, the left hand side is the
real tick part, and the right hand side is the base tick part. The

N. M. A. E. D. WIRASTUTI et al.: A REGULAR PATTERN OF TIMESTAMPS BETWEEN MACHINES 129



Algorithm 1 Dotted lines grouping method
Require: RecT , PackL, SenT , int
1: DotL = null
2: PackL = null
3: j = 0
4: for i = 1; i < RecT .length; i++ do
5: if i > 1 then
6: loss = floor((SenT (i) − SenT (i− 1))/int)
7: if loss > 0 then
8: Create a new row in PackL
9: Add i to PackL(PackL.rowlength - 1)

10: Add loss to PackL(PackL.rowlength - 1)
11: j = j + loss
12: end if
13: end if
14: dtick = floor((RecT (i) − j*floor((int/15.6)*15.6))/15.6)
15: if DotL == null or DotL.rowlength ≤ dtick then
16: Create (dtick − DotL.rowlength − 1) new row in DotL
17: Add i to DotL(DotL.rowlength − 1)
18: else
19: Add i to DotL(dtick)
20: end if
21: j = j + 1
22: end for

receiver time after the occurrence of packet losses is related
only to the real tick. Therefore, to obtain a correct dtick, the
base tick part has to be adjusted to run in the same number
of packet as the real tick does. To obtain that purpose, the
base tick part uses variable j instead of i. In the case of no
packet losses occur, j is equal to i − 1, but not when packet
losses exist. To keep the distance between j and i, j must be
added by the number of the packet losses. Hence, the relation
between the base tick and the real tick is corrected.

Algorithm 1 is the practical implementation of Expression
7. RecT , int, and dtick here remain: all the recorded receiver
times, the interval between consecutive packets sent to the
receiver, and the diff tick value for each receiver time respec-
tively. The other parameters: DotL, is an array list to store
all detected lines including their member of dot; PackL, is
an array list to store the position of detected packet loss as
well as its number; SenT , is an array that is composed by all
the sender times; and loss, is a variable to save the number
of packet losses.

Before dtick can be obtained in line 14, the occurrence of
packet losses is counted first in line number 5 to 12. This
simple yet effective procedure state that packet losses exist
only when the sequence of sender times is broken, indicated by
the difference between two consecutive sender times observed
in line 6 is larger than int. The number of detected packet
losses, loss, is then added to j in line 11, to follow the rule of
Expression 7. Meanwhile, i, the offset number of the detected
packet losses and its corresponding loss, is stored in PackL.

Lines 14 to 20 are intended to input all detected lines and
their member (variable i) based on their dtick into DotL. The
row index of DotL, {0, 1,. . . , N}, are used to indicate the
dtick values. It means that the values stored in the columns
of the first row (indexed by 0), are the packets number of
the first line of the observed dotted lines. The second row is
for the second line, and so on and so forth. To input i of a
dtick resulted in line 14, the latest condition of DotL has to
be checked first (line 15). If the associated row of the current

Algorithm 2 Creating dotted lines for simulation data
Require: skew, int, N
1: for i = 0; i < N ; i++ do
2: true t = int*i
3: SenT (i) = true t
4: RecT (i) = floor((true t + (skew*int/1000))/15.6)*15.6
5: end for

dtick does not exist, new row(s) is/are created first in DotL
(line 16). Afterwards, i is put in the first column of the newly
created row (line 17). Meanwhile, when the associated row is
available, i of the current dtick is placed directly in the first
empty column of the corresponding row (line 19). This process
is repeated for all the recorded receiver times in RecT .

After the grouping method ends, some information can
be extracted from DotL. The number of row in DotL is
the number of detected lines. The maximum number of dot
(Expression 4) is found from the row with the longest column.
And also, the skew of each line can be obtained by running
Expression 3 on the values of the first and the last columns
of each row. Meanwhile, the total number of packet losses is
the sum of all field in the second row of PackL.

V. RESULT AND DISCUSSION

Dotted lines from simulations as well as from experiments
on a real environment were used for evaluations. The simula-
tion samples were created based on Algorithm 2. int, RecT ,
and SenT are the same parameters with those in Algorithm
1. skew remains also the relative skew between the sender
and receiver. The other parameters: N , is the number of
timestamps being created; and true t, is the accumulated true
time from the first timestamp to the N (th) timestamp. As
the sender is the reference (skew receiver relative to sender),
SenT is set similar for every interval to true t (line 3). On
the other hand, line 4 shows how RecT is manipulated to
form the desired dotted lines. Meanwhile, the real-environment
experiments were conducted on a wired local area network,
where a notebook using Ubuntu 14.04 OS sent its timestamps,
one per 1000 ms, to a PC with dual OSs of Windows 7 and
Ubuntu 14.04.

The first evaluation is to demonstrate the correctness of the
proposed dotted lines grouping method. The proposed method
was tested on 3000 offsets collected when the PC receiver is
set to use its Windows OS. Part of the offsets of this sample are
figured in Fig. 2(b). It has been mentioned in Section III.A that
the skew of each line is close to -1.6 ms/s. However, any wrong
detection by the proposed method, can make the detected lines
to have wrong members, which definitely can cause wrong line
skews as well. Therefore, as a proof of the robustness of the
proposed method, the skew of all detected lines must be all
as close as possible to -1.6 ms/s. Next, the second check is
related with the last member of each detected line. One of the
methods for estimating clock skew is by obtaining the slope of
offsets positioned in the lower bottom of the scatter diagram
[16,17]. Theoretically, all offsets of the last member of each
line are positioned in the lower bottom of the scatter diagram,
where the slope of a linear regression method [5] on them
all is the clock skew of the collection. However, any wrong

130 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 2, JUNE 2023



offset placed as the last member by the proposed method can
create outliers on the collected last-member offsets, which can
alter the slope and then degrade the clock skew. Therefore, as
the second proof of the robustness of the proposed method,
the resulted clock skew must be as accurate as possible. A
clock skew reference is used to validate the resulted clock
skew, where it is obtained from a classical offset-set collected
when the PC receiver is set to use its Ubuntu 14.04. Part of the
classical offset-set are shown in Fig. 2(a). As both samples are
taken from the same two devices, their clock skews should be
very similar, if not the same. Therefore, the closer the clock
skews of both samples, the more robust the proposed method
is.

The second evaluation is addressed as a proof of concept
for the relations between the maximum number of dot with
the value of clock skew. The lower the skew the more the
maximum number of dot be, and in the opposite way, the
higher the skew the less the maximum number of dot be,
stated in Section III.B. To obtain a skew trend from high
to low, eight values of skew were observed: -400 ppm, -
300 ppm, -200 ppm, -100 pm, 100 ppm, 200 ppm, 300
ppm, and 400 ppm. For those eight skews, eight dotted-
lines simulation samples were created by using Algorithm
2. However, the unavailability of devices with the targeted
clock skews is a crucial problem to produce real-environment
data. As a solution, a method to imitate any clock skews
introduced in [15] can be employed. Through this method,
eight experiments were conducted, where in each experiment
the notebook imitated one of the targeted skews to become its
skew. Samples from simulations and real-network experiments
were then input into the dotted lines grouping method to count
their maximum number of dot. The trend of the maximum
number of dot of all samples should follow the concept stated
above.

A. Evaluating the Dotted Lines Grouping Method

1) Estimating Line Skew: Table III shows some results of
the dotted lines grouping method when estimating the full-
sample of Fig. 2(b). Three of the 309 detected lines, line
number 9, 71, and 226, are detailed in Table III. The skews
of these lines that are very close to -1.6 ms/s indicate that the
detected lines are correct lines that contain correct members as
well. Furthermore, the average value of -1.6581 ms/s from the
309 line skews with a fluctuation of only 0.0335 ms/s show
that all lines are detected correctly by the proposed method.

2) Estimating the Global Clock Skew: At first, the full-
sample of Fig. 2(a) was estimated by using LPA. The clock
skew of -7.51 ppm was obtained, and then it is used as the
reference for the clock skew of the dotted lines grouping
method when estimating the full-sample of Fig. 2(b).

All the 309 offsets of the last member of all lines produced
by the grouping method are depicted in Fig. 4. The skew
estimations by using linear regression on these offsets are
shown in Table IV. The skew of all the 309 offsets is -7.81
ppm, very close to the skew reference with an error of only
0.3 ppm. The shorter-time estimations were also conducted by
using only 50 offsets for each estimation. The skew fluctuation

TABLE III
RESULTS OF THE GROUPING METHOD ON THE FULL SAMPLE OF FIG. 2(B)

Number of offset 3000
Number of line 309
Sample #1 (line number 9)
Number of dot
Line skew

10 (78 to 87)
-1.6207 ms/s

Sample #2 (line number 71)
Number of dot
Line skew

9 (679 to 687)
-1.6190 ms/s

Sample #3 (line number 226)
Number of dot
Lines kew

10 (2190 to 2199)
-1.6187 ms/s

Average of all line skews -1.6581 ms/s
Max value of all line skews -1.6181 ms/s
Min value of all lines kews -1.6516 ms/s
Max - Min 0.0335 ms/s

0 1000 2000 3000
-40

-30

-20

-10

Receiver time (s)

O
ff

se
t (

m
s)

Fig. 4. 309 offsets of the detected lines in the full sample of Fig. 2(b).

of only 0.46 ppm as depicted in Table IV shows that the
trend of the offsets is stable. From the distribution of the
offsets meanwhile, the way they are gathered densely with
no outliers occur, can conclude that all the offsets must be
from the lower bottom of the scatter diagram. All these facts
indicate that the proposed method has grouped all the dots
into their corresponding lines correctly.

3) Evaluating the Relations Between the Maximum Number
of Dot and Clock Skew: The maximum number of dot of
the experimental and simulation samples are depicted in Table
V. From two values of interval, 500 ms and 1000 ms, both
the experiments and simulations show that clock skew can
change the maximum number of dot in dotted lines. The
500 ms interval gives maximum number of dot from 16
to 26. The 1000 ms interval meanwhile, are from 8 to 14.
The consistent results between simulations and experiments
in Table V confirmed that the larger the skew value makes the
dotted lines to have less number of dot, and vice versa.

B. Discussion

The previous experiments analyzed the concept of dotted
lines and evaluated their correctness. However, the analysis are
bounded in a neglected and stable delay, the wired network.
In practice however, the sending device and the receiver are
most likely connected in a network with higher delay jitter
such as wireless network. To complete the scope of the
dotted lines study, this section provides some discussions and

N. M. A. E. D. WIRASTUTI et al.: A REGULAR PATTERN OF TIMESTAMPS BETWEEN MACHINES 131



TABLE IV
CLOCK SKEWS OF THE 309 OFFSETS IN FIG. 4

Long-term
measurement

Short-term
measurements

Offset Clock skew (ppm) Offset Clock skew (ppm)
1 to 309 -7.81 1 to 50 -7.45

51 to 100 -7.43
101 to 150 -7.89
151 to 200 -7.59
201 to 250 -7.71
251 to 309 -7.89

Average -7.66
Max - Min 0.46

TABLE V
RELATIONS BETWEEN CLOCK SKEW AND MAXIMUM NUMBER OF DOT

Clock skew
(ppm)

Maximum number of dot
Experiment Simulation

500 ms
interval

1000 ms
interval

500 ms
interval

1000 ms
interval

400 16 8 16 8
300 17 9 17 9
200 18 9 18 9
100 19 10 19 10

-7.8 (original skew) 20 10 20 10
-100 21 11 21 11
-200 23 12 23 12
-300 24 13 24 13
-400 26 14 26 14

considerations for the case when the dotted lines stand on a
wireless network.

1) The Shape of the Dotted Lines: When packets travel
with a similar delay, the arriving times are constant, where
the rounded down process of the receiver can freely form the
offsets into dotted lines as explained in Section 1. However,
when some packets travel on higher delay, they arrive longer
than normal, where their offsets are normally separated up
(outliers) from the other offsets with unpredictable distance
[14,15]. Uniquely, in dotted lines, the distance between the
outliers with the other offsets can be estimated, thanks to the
15.6 ms boundary when producing timestamps in Expression
1. For an illustration, Fig. 5 shows the first three lines of the
dotted lines in Fig. 3(c) but with some outliers exist, noted by
black circles. Let first observe Expression 1 again, where, it
can be noted that all the reported times by this expression
are in multiplies of 15.6 ms. As a result, the extra delay
experienced by a packet can give effect to the offset also in
multiplies of 15.6 ms. For example, packet number 4 can be
said to arrive at the measurer between 31.2 ms to nearly 46.8
ms longer than normal, which makes the offset to jump 2x15.6
ms up from its normal position.

As every line has one tick larger (15.6 ms) than the previous
line (explained in Section IV), when an offset jumps up due to
an extra delay, it will be positioned on another line depends on
the extra delay value. Packet number 12 for instance, it moves
from the first line to the second line, due to an extra delay of
only 15.6 ms from normal. Since the effect of higher delay
only to move offsets from one line to another line, the dotted
lines grouping method is still an adequate tool for observing
the dotted lines’ characteristics.

0 10 20 30

-20

0

20

Receiver time (s)

O
ff

se
t (

m
s)

2x15.6 ms 1x15.6 ms

Fig. 5. Dotted lines when affected by high delay.

2) Line Skew and the Maximum Number of Dot: Theo-
retically, even some offsets move from their original lines to
another lines, the line skews still remain close to -1.6 ms/s. The
rationale is, even the delay variation of each received packets
give some effect to the numerator of Expression 1 when the
receiver producing timestamps, the remainder of the rounded
down process does not change much.

The maximum number of dot meanwhile, is not likely to
be found on the line with the highest member, as now each
line can be added by some unwanted offsets from previous
lines. However, there is one value that still represents the
ideal number of dot in dotted lines, on whatsoever the lines
condition is, the average number of dot per line. The average
number of dot per line is calculated from the total number
of received offsets, the number of packet loss, and the total
number of detected lines. The relation with the maximum
number of dot can then be expressed by Expression 8 below.

max dot = ⌈received packets + packet loss

number of line
⌉ (8)

To proof these two concepts, the notebook previously con-
nected to the PC through a wired connection, was reconnected
through a wireless one. The sending interval and the number of
timestamps being sent remain 1000 ms and 3000 timestamps
respectively. Part of the offsets from this experiment are shown
in Fig. 6, where their statistics obtained by the grouping
method are written in Table VI. From the three sample lines,
number 79, 226, and 284, their number of dot are highly
difference, 13, 10, and 7, where their members are also not in
fixed orders. All these facts indicate the effect of high delay
in the experiment.

Table VI also shows that the line skews fluctuate higher
comparing with the results on the wired network. The small
difference between the fluctuations of both cases (0.00335
ms/s and 0.1393 ms/s) proofs that the line skews are more
influenced by the rounded down process than the delay effect.

Meanwhile, 13 as the highest number of dot of all lines
is definitely not the maximum number of dot of this dotted-
lines sample. From the 3000 received offsets (with no packet
loss) and the number of detected line of 317, the average
number of dot per line is 9.43, and then the maximum number
of dot is 10. Even the detected lines do not provide correct
number of dot, their statistics show that this sample should
have maximum number of dot of 10, which in fact remains
consistent with the result of the wired-connection experiment.

3) The Global Clock Skew: All offsets of the last member
of the detected 317 lines are shown in Fig. 7. The offsets do not

132 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 2, JUNE 2023



1050 1100 1150 1200 1250

-20

-10

0

10

Receiver time (s)

O
ff

se
t (

m
s)

Fig. 6. Part of offsets from the experiment on wireless network.

TABLE VI
RESULTS OF THE GROUPING METHOD ON THE FULL SAMPLE OF FIG. 6

Number of offset 3000
Number of line 317
Sample #1 (line number 79)
Number of dot
Line skew

13 (720, 732, 734 to 744)
-1.6614 ms/s

Sample #2 (line number 226)
Number of dot
Line skew

10 (2120, 2123 to 2131)
-1.6601 ms/s

Sample #3 (line number 284)
Number of dot
Lines kew

7 (2671 to 2674, 2677 to 2679)
-1.6617 ms/s

Average of all line skews -1.6629 ms/s
Max value of all line skews -1.5607 ms/s
Min value of all lines kews -1.7001 ms/s
Max - Min 0.1393 ms/s
Average number of dot per line 9.43
Maximum number of dot 10

line up as dense as the distribution of the previous experiment
on the wired network (See Fig. 4). It has been stated before that
some offsets can jump up from their original line to another
line. When incidentally the last member of a line to jump up,
the upper dot of this line will be detected as the last member.
As a result in the scatter diagram, the position of offsets that
are not supposed to be the last member, are separated from the
real-last member offsets. This is the reason why some outliers
occur on the collected offsets in Fig. 7, which make the offsets
are distributed with lower density comparing to those in Fig.
4.

The skew estimations of the 317 offsets in Fig. 7 are shown
in Table VII. Due to the occurrence of some outliers, it is not
surprised that the accuracy of the short-term measurements
(1.61 ppm) is lower than the accuracy on the wired network
(0.6 ppm). Meanwhile, the long-term measurement produces
clock skew of -7.91 ppm, very close to the clock skew
reference with an error of only 0.4 ppm.

VI. FUTURE WORK

As stated in the previous section that the line skews fluc-
tuation are more influenced by the rounded down process of
15.6 ms than the delay effects, we can say that the position
of outlier offsets that apart from the main group can be
modeled into 15.6 ms pattern. Therefore, there is a chance
that the outliers can be return info their original position.
To reconstruct the dotted lines full of outliers into dotted
lines without outliers will benefit info a more accurate skew

0 1000 2000 3000
-40

-30

-20

-10

0

Receiver time (s)

O
ff

se
t (

m
s)

Fig. 7. 317 offsets of the detected lines in the full sample of Fig. 6.

TABLE VII
CLOCK SKEWS OF THE 317 OFFSETS IN FIG. 7

Long-term
measurement

Short-term
measurements

Offset Clock skew (ppm) Offset Clock skew (ppm)
1 to 317 -7.91 1 to 50 -7.07

51 to 100 -8.04
101 to 150 -6.61
151 to 200 -8.22
201 to 250 -7.18
251 to 317 -7.58

Average -7.45
Max - Min 1.61

estimation. The future work is then to develop a dotted lines
reconstruction method.

VII. CONCLUSION

This paper first introduced a data when measuring times-
tamps on computer with low clock resolution of 15.6 ms,
namely dotted lines. This paper then proposed the Dotted lines
grouping method. Through this method the characteristics of
the dotted lines can be obtained as follows: 1) dotted lines are
composed by several dots that form parallel lines along the
timestamps measurement period, 2) all lines have an equal
skew with a value that is close to -1.6 ms/s, 3) dotted lines do
not change the global clock skew of two devices comparing
with when the two devices are in a normal case, and 4) the
number of dot of their lines is affected by the observed clock
skew, where, the higher the skew the less the number of dot
and vice versa. The consistency of the results of the Dotted
lines grouping method is then proven through dotted lines data
obtained from wired and wireless communication, where on
both data the proposed method show that: 1) the line skews
and the maximum number of dot are consistent, and 2) the
global skews of the samples taken from both networks are
close to a clock skew reference. To this point, the dotted lines
has been introduced and analyzed, and the supporting tool, the
dotted lines grouping method, has also been confirmed to be
robust for providing the characteristics of the dotted lines.

ACKNOWLEDGMENT

Authors thank to the Lembaga Penelitian dan Pengabdian
Kepada Masyarakat (LPPM) of the Udayana University for the
2022 Invention Scheme of the PNBP Research Grant.

N. M. A. E. D. WIRASTUTI et al.: A REGULAR PATTERN OF TIMESTAMPS BETWEEN MACHINES 133



REFERENCES

[1] F. Shi, H. Li, S. X. Yang, X. Tuo and M. Lin, ”Novel Maximum
Likelihood Estimation of Clock Skew in One-Way Broadcast Time
Synchronization,” in IEEE Transactions on Industrial Electronics, vol.
67, no. 11, pp. 9948-9957, Nov. 2020, doi: 10.1109/TIE.2019.2955427.

[2] A. Y. Vinogradov and E. A. Suvorova, ”Time Synchronization Influ-
ence on the SpaceFibre QoS Mechanisms,” 2021 Wave Electronics
and its Application in Information and Telecommunication Systems
(WECONF), St. Petersburg, Russia, 2021, pp. 1-9, doi: 10.1109/WE-
CONF51603.2021.9470644.

[3] R. Fan, W. Liu, M. Li and Z. Chai, ”Clock Offset and Skew Estimation
Based on Correlation Detection with One-way Dissemination in Wireless
Sensor Networks,” 2022 10th International Workshop on Signal Design
and Its Applications in Communications (IWSDA), Colchester, United
Kingdom, 2022, pp. 1-5, doi: 10.1109/IWSDA50346.2022.9870609.

[4] V. K. Chandrasegar, G. Park and J. Koh, ”A Super Resolution Algo-
rithms for Time Delay Measurement,” 2021 IEEE International Sym-
posium on Antennas and Propagation and USNC-URSI Radio Science
Meeting (APS/URSI), Singapore, Singapore, 2021, pp. 1137-1138, doi:
10.1109/APS/URSI47566.2021.9704516.

[5] X. Liu and H. Wang, ”Embedded Clock Skew Estimation in Industrial
Networks,” in IEEE Communications Letters, vol. 26, no. 8, pp. 1873-
1877, Aug. 2022, doi: 10.1109/LCOMM.2022.3178158.

[6] H. Wang, F. Yu, M. Li and Y. Zhong, ”Clock Skew Estimation for
Timestamp-Free Synchronization in Industrial Wireless Sensor Net-
works,” in IEEE Transactions on Industrial Informatics, vol. 17, no. 1,
pp. 90-99, Jan. 2021, doi: 10.1109/TII.2020.2975289.

[7] Z. Wang, B. Yu, B. Pei and L. Zhang, ”Research on AES encryp-
tion algorithm based on timestamp in Wireless Sensor Networks,”
2nd International Conference on Information Technology and Com-
puter Application (ITCA), Guangzhou, China, 2020, pp. 15-18, doi:
10.1109/ITCA52113.2020.00010.

[8] H. Wang, R. Lu, Z. Peng and M. Li, ”Timestamp-Free Clock Parameters
Tracking Using Extended Kalman Filtering in Wireless Sensor Networks,”
in IEEE Transactions on Communications, vol. 69, no. 10, pp. 6926-6938,
Oct. 2021, doi: 10.1109/TCOMM.2021.3095155.

[9] S. Ashraf, T. Ahmed and S. Saleem, ”NRSM: Node Redeployment
Shrewd Mechanism for Wireless Sensor Network, ” in Iran Journal of
Computer Science, vol. 4, no. 9, pp. 171-183, 2021, doi:10.1007/s42044-
020-00075-x.

[10] N. Ha, H. -S. Lee and S. Lee, ”An algorithm for compensat-
ing synchronization error in IoT-based wireless sensor networks,”
2020 IEEE International Conference on Consumer Electronics - Asia
(ICCE-Asia), Seoul, Korea (South), 2020, pp. 1-3, doi: 10.1109/ICCE-
Asia49877.2020.9276777.

[11] S. Ashraf, O. Alfandi, A. Ahmad, A. Khattak, B. Hayat, K. Kim and
A. Ullah, ”Bodacious-Instance Coverage Mechanism for Wireless Sensor
Network,” Wireless Communications and Mobile Computing, vol. 2020,
pp. 1-11, 2020, doi:10.1155/2020/8833767.

[12] N. Knyazeva and E. Dukhan, ”Timestamp Change Model in Windows
OS,” 2020 Ural Symposium on Biomedical Engineering, Radioelectronics
and Information Technology (USBEREIT), Yekaterinburg, Russia, 2020,
pp. 623-626, doi: 10.1109/USBEREIT48449.2020.9117698.

[13] N. Knyazeva, D. Khorkov and E. Vostretsova, ”Building Knowledge
Bases for Timestamp Changes Detection Mechanisms in MFT Windows
OS,” 2020 Ural Symposium on Biomedical Engineering, Radioelectronics
and Information Technology (USBEREIT), Yekaterinburg, Russia, 2020,
pp. 553-556, doi: 10.1109/USBEREIT48449.2020.9117712.

[14] D. Palmbach and F. Breitinger, ”Artifacts for Detecting Timestamp
Manipulation in NTFS on Windows and Their Reliability, ” Forensic
Science International: Digital Investigation, vol. 32, pp. s1-s9, Article
300920, 2020, doi:10.1016/j.fsidi.2020.300920.

[15] B. Singh and G. Gupta, ”Analyzing Windows Subsystem for Linux
Metadata to Detect Timestamp Forgery, ”15th IFIP International Con-
ference on Digital Forensics (DigitalForensics), Jan 2019, Orlando, FL,
United States. pp.159-182, Jan. 2019, doi: 10.1007/978-3-030-28752-8 9.

[16] T. Cooklev, J. C. Eidson and A. Pakdaman, ”An Implementation
of IEEE 1588 Over IEEE 802.11b for Synchronization of Wireless
Local Area Network Nodes,” in IEEE Transactions on Instrumentation
and Measurement, vol. 56, no. 5, pp. 1632-1639, Oct. 2007, doi:
10.1109/TIM.2007.903640.

[17] C. M. De Dominicis, P. Pivato, P. Ferrari, D. Macii, E. Sisinni and A.
Flammini, ”Timestamping of IEEE 802.15.4a CSS Signals for Wireless
Ranging and Time Synchronization,” in IEEE Transactions on Instrumen-
tation and Measurement, vol. 62, no. 8, pp. 2286-2296, Aug. 2013, doi:
10.1109/TIM.2013.2255988.

[18] K. Oka Saputra, W. -C. Teng and T. -H. Chen, ”Hough Transform-
Based Clock Skew Measurement Over Network,” in IEEE Transactions
on Instrumentation and Measurement, vol. 64, no. 12, pp. 3209-3216,
Dec. 2015, doi: 10.1109/TIM.2015.2450293.

[19] K. O. Saputra, W. -C. Teng and Y. -H. Chu, ”A Clock Skew Replication
Attack Detection Approach Utilizing the Resolution of System Time,”
2015 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT), Singapore, 2015, pp. 211-214,
doi: 10.1109/WI-IAT.2015.10.

[20] M. Aoki, E. Oki and R. Rojas-Cessa, ”Scheme to measure One-Way
Delay Variation with detection and removal of clock skew,” 2010 Interna-
tional Conference on High Performance Switching and Routing, Richard-
son, TX, USA, 2010, pp. 159-164, doi: 10.1109/HPSR.2010.5580276.

[21] D. -J. Huang, K. -T. Yang, C. -C. Ni, W. -C. Teng, T. -R. Hsiang and
Y. -J. Lee, ”Clock Skew Based Client Device Identification in Cloud
Environments,” 2012 IEEE 26th International Conference on Advanced
Information Networking and Applications, Fukuoka, Japan, 2012, pp.
526-533, doi: 10.1109/AINA.2012.51.

[22] W. -C. Teng and J. -D. He, ”Entropy-based clock skew measure-
ments for mobile devices,” 2016 Third International Conference on
Digital Information Processing, Data Mining, and Wireless Commu-
nications (DIPDMWC), Moscow, Russia, 2016, pp. 268-271, doi:
10.1109/DIPDMWC.2016.7529401.

[23] P. Orosz and T. Skopko, ”Software-Based Packet Capturing with High
Precision Timestamping for Linux,” 2010 Fifth International Conference
on Systems and Networks Communications, Nice, France, 2010, pp. 381-
386, doi: 10.1109/ICSNC.2010.65.

[24] R. Okabe, J. Yabuki and M. Toyama, ”Avoiding Year 2038 Problem
on 32-bit Linux by Rewinding Time on Clock Synchronization,” 2020
25th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Vienna, Austria, 2020, pp. 1019-1022, doi:
10.1109/ETFA46521.2020.9212079.

[25] Y. Li, B. Noseworthy, J. Laird, T. Winters and T. Carlin, ”A study of
precision of hardware time stamping packet traces,” 2014 IEEE Interna-
tional Symposium on Precision Clock Synchronization for Measurement,
Control, and Communication (ISPCS), Austin, TX, USA, 2014, pp. 102-
107, doi: 10.1109/ISPCS.2014.6948700.

[26] H. Marouani and M. R. Dagenais, ”Comparing high resolution times-
tamps in computer clusters,” Canadian Conference on Electrical and
Computer Engineering, 2005., Saskatoon, SK, Canada, 2005, pp. 400-
403, doi: 10.1109/CCECE.2005.1556956.

[27] S. B. Deb and A. Chetry, ”USB Device Forensics: Insertion and removal
timestamps of USB devices in Windows 8,” 2015 International Sympo-
sium on Advanced Computing and Communication (ISACC), Silchar,
India, 2015, pp. 364-371, doi: 10.1109/ISACC.2015.7377371.

[28] G. S. Cho, ”An Intuitive Computer Forensic Method by Timestamp
Changing Patterns,” 2014 Eighth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, Birmingham, UK,
2014, pp. 542-548, doi: 10.1109/IMIS.2014.92.

[29] K. P. Chow, F. Y. W. Law, M. Y. K. Kwan and P. K. Y. Lai, ”The
Rules of Time on NTFS File System,” Second International Workshop
on Systematic Approaches to Digital Forensic Engineering (SADFE’07),
Bell Harbor, WA, USA, 2007, pp. 71-85, doi: 10.1109/SADFE.2007.22.

134 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 19, NO. 2, JUNE 2023



Ni Made Ary Esta Dewi Wirastuti received
the B.Eng. degree in electrical engineering from
Udayana University, Bali, Indonesia, in 2000, the
M.Sc. degree in mobile communication systems
from University of Surrey, Guildford, United King-
dom, in 2002 and the Ph.D. degree in Telecommu-
nication Systems from University of Bradford, West
Yorkshire, United Kingdom, in 2007. From 2007
to 2009, she was a Post Doctoral Fellowship with
the Mobile and Satellite Communication Research
Centre (MSCRC), University of Bradford, United

Kingdom worked to the VeSeL (Village e-Science for Life) project, Engineer-
ing and Physical Sciences Research Council (EPSRC) grant. Dr. Wirastuti was
a recipient of the Best Paper Student in 2006 from University of Bradford for
paper presentation at INTI College, Malaysia. Her research interest includes
the development of physical layer model for the next wireless and mobile
communication systems. She has been a lecturer in Department of Electrical
Engineering, Faculty of Engineering at Udayana University, Bali, Indonesia,
since 2001. She can be contacted at email: dewi.wirastuti@unud.ac.id.

Komang Oka Saputra received his B.Eng. degree
from the Brawijaya University in 2004, and his
M.Eng. degree from the University of Indonesia in
2006, both in electrical engineering, with the spe-
cialization of telecommunication engineering. Since
2008, he has been a faculty member of the De-
partment of Electrical and Computer Engineering,
Faculty of Engineering, Udayana University, Bali,
Indonesia. Currently, he is pursuing his PhD in
the Department of Computer Science and Informa-
tion Engineering at the National Taiwan University

of Science and Technology, Taiwan. His major research interests include
computer network and security. He can be contacted at email: okasapu-
tra@unud.ac.id.

Wei-Chung Teng received his Doctor of Engineer-
ing degree in 2001 from the University of Tokyo. He
is Associate Professor of Department of Computer
Science and Information Engineering at National
Taiwan University of Science and Technology. His
research interests include human computer interac-
tion focusing on remote robot manipulation, network
communication protocols of time synchronization,
and network security issues. He can be contacted
at email: weichung@csie.ntust.edu.tw.

N. M. A. E. D. WIRASTUTI et al.: A REGULAR PATTERN OF TIMESTAMPS BETWEEN MACHINES 135


	Introduction
	Contribution
	Dotted Lines: Analysis and Characteristics
	The Occurrence and Characteristics of the Dotted Lines
	Relations Between Dotted Lines and Clock Skew
	Marking the Member of Each Line

	Dotted Lines Grouping Method
	Result and Discussion
	Evaluating the Dotted Lines Grouping Method
	Estimating Line Skew
	Estimating the Global Clock Skew
	Evaluating the Relations Between the Maximum Number of Dot and Clock Skew

	Discussion
	The Shape of the Dotted Lines
	Line Skew and the Maximum Number of Dot
	The Global Clock Skew


	Future Work
	Conclusion
	References
	Biographies
	Ni Made Ary Esta Dewi Wirastuti
	Komang Oka Saputra
	Wei-Chung Teng




